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Classical and quantum approach to Davydov's soliton theory
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A method introduced by Davydov for modeling energy transport in deformable molecular chains
is considered, using for the ansatz function a superposition of tensor products of single-exciton and
coherent-phonon states. Treating the time-dependent parameters of the function (exciton and pho-
non amplitudes) as generalized coordinates, we have shown that the corresponding Euler-Lagrange
equations are consistent with the averaged quantum equations, although the ansatz function does
not satisfy the Schrodinger equation. For the case of the immobile-exciton limit (in which the
quantum-mechanical problem is exactly solvable), it is shown that the ansatz function satisfies the
Schrodinger equation, so all predictions based on Davydov s method are identical to the corre-
sponding exact results (for this particular case).

I. INTRODUCTION

with

H, = g 6& „t)„Ig & „(t)„+,+a„—, ), (l. la)

The understanding of the mechanisms of energy trans-
port in molecular chains is of great importance, particu-
larly from the point of view of bioenergetics; therefore
great attention has been paid to the problem since the
middle of the 1950s.' The idea about the soliton mech-
anism of the energy transport along the one-dimensional
molecular chain, launched first by Davydov and Kislu-
kha in the 1970s is surely among the most interesting
ones, but there still exists a controversy in the current
scientific literature concerning its validity. Davydov with
his collaborators, has elaborated this idea in many papers
(see for example monography, cited as Ref. 4), and so did
A. C. Scott with his team. During the last three years,
there appeared also articles indicating the limits of the
applicability of this idea, while Kerr and Lomdahl
have presented a quantum-mechanical derivation of the
equation of motion for Davydov solitons, starting from
the assumption that Davydov trial function ("Davydov's
ansatz") satisfies Schrodinger's equation (SE). This prob-
lem was further treated in an exchange of comments by
us' and Brown et al. " We wish to present here a more
consistent approach based on Lagrangian formalism. We
start with the brief summary of essential ingredients.

Davydov's initial point is Frohlich's Hamiltonian, '

where interaction energy between intramolecular excita-
tions (Frenkel excitons) and harmonic chain vibrations is
given within the linear approximation in phonon vari-
ables (molecular displacements). In the approximation of
strong (or local) exciton-phonon coupling, the Hainiltoni-
an takes the "standard" form (with ground-state energy
already subtracted)

Here & „and Q„are boson creation and annihilation
operators, respectively, for quanta of intramolecular vi-

A. $ A.
brations with energy b, at site n; b (b ) are creation (an-
nihilation) operators for the phonon mode with energy
%co ', and I is the intersite transfer energy produced by
dipole-dipole interactions. The interaction coefficient y„
has the following symmetry property: y„' =y„, and in
the nearest-neighbor approximation for the ordered
chain, it can be written in the form

' 1/2

yq = —2yi
sinqa

e
—iqna + e

—iqna

2MNcg)

where a is the lattice constant, M is the mass of the rnole-
cule, and N is the number of molecules in the chain. The
nonlinear coupling constant y arises from modulation of
the one-site energy by the molecular displacements.

The structure of the paper is as follows: Sec. II is de-
voted to the study of quantum (Schrodinger's and
Heisenberg s) equations of motion while Sec. III intro-
duces Lagrange's (and Hamilton's) equations. In Sec. IV
we discuss the internal self-consistency of the total sys-
tem of equations (validity of the Schrodinger equation)
and the Sec. V presents a detailed study of the particular
case of the immobile-exciton limit (I=O). The paper
closes with a concise conclusion.

II. QUANTUM EQUATIONS OP MOTION

Brown et al. ' have indicated that Davydov's simple
trial function in the form of a tensor product of exciton
and phonon function cannot be the solution of
Schrodinger s equation for the Hamiltonian with interac-
tion; therefore, following their works, ' we study the tri-
al function which is the linear combination of tensor
products (in fact, which also was first introduced by
Davydov' ):

ID (t)&= gg. (t)&'„10&,„lp„(t)), (2.1)

8 h= +fico b b

8;„,= gfitoq(yqb q+y„*qb )t) „t)„.
nq

(1.1b)

(l. lc)

where

lp„(t))=e " l0) „
=exp —g (p„*q(t)bq p„q(t)b, ) l0)—i,

q
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are Glauber coherent phonon states, which satisfy the
following orthogonality relation:

The next step is the assumption that ID, (t)) satisfies
Schrodinger s equation with the Hamiltonian (1.1):

=exp ,' —g—(IP., P—, I'+P*,P., P—,P.*,}
q

iA —ID, (t)) =HID, (t)) . (2.2)

(2.1a) The explicit calculation gives

i Af (t)+ g g'"[p q(t)p' q(t) p '—,(t)p ,(t)] Is.g—(t)m mq

g(t—) g~, [y' p*,(t)+y"p, (t)+Ip, (t)I'] Ip (t))
q

+I[/ +,(t)lp +,(t))+f,(t)lp i(t))]

+ g g (t)[ihip (t) fico«(p—q(t)+yq )]e b
q I0)ph & „I0),„=0 .

q

(2.3)

In order to arrive at the differential equations for f (t) and p (t) we shall project SE (2.3}onto some particular direc-
tions.

(a) Projection onto IP„)o „IO),„gives

ikey„(t)=

b, — g [p„,(t)p„;(t} p„', (t)p„—,(t)]+ g Atoq[yqp„'q(t)+y„"p„q(t)+ Ip„,(t)l'] g'„"
q q

—I[f„,(t)(p„(t)lp„,(t) )+g„,(p„(t)lp„,(t) ) ] .

(b) Projection onto & „IO),„e " b «IO)~„gives
—$„(f)r

i Ag„(t)p„(t)=Atoq g„(t)[p„q(t)+zq ] I ( f„+i(t)—[p„+iq(t) p„q(t)](P.(t) I—P. + i(t) &

+p„ i(t)[p„ iq(t) —p„,(t)](p„(t)lp„ i(t) ) I,
while projecting (2.3) onto ID, (t) ) (averaging) gives

ikey

g„(t)f„'(t)+ ' g l&„(t)l'[P.,(t)p:,(t)—P.', (tP}., (t])

= yalq„(t)l' —I gg„'(t)[g„, (t)&P. IP. &+&.—(t)&P. Ip. -i&]

+ g Ig (t)I~[IP (t)l +y„qp„(t)+yqp„' (t)]—= (D, (t)IBIDi(t)) .

(2.4}

(2.5)

(2.6)

One can easily show that the substitution of (2.4) into
(2.6) leads to an identity, regardless of the form of p„(t}.

The other possible approach is to study the equations
of motion for the operators [Heisenberg equation (HE)].
We start with the HE for b (t):

ifib (t)=%to b (t)+ gfi~ y» d (t)a (t) . (2.7)

If SE is valid, then

i fi g I g„(t)—I'p„,(t)
at „

= g Rtoq I p„(t)I (p„q(t)+gq ) . (2.10)

Now, writing HE for & (n}8 (t} and averaging it over
ID, (t})onegets

i~—Iy„(t)I'= —
I [ti„'(t)y„,(t) & p„ Ip„,&

a

iirt&D, (0)lb, (t)ID, (0) & =imari —&D, (t)lb, ID, (t) )

= (Di(t)l [b«, II]ID,(t}&,

and using

(Di(t)lbqlD, (t)) = g lq„(t)l'p„q(t)

we obtain

(2.8)

(2.9)

+q„*(t)g„,(t) & p„ I p„

g„(t)g„*+,(t)(p„—+i(t)lp„(t) )
—g„(t)g„*,(t)(p„ i(t)IP„(t) ) ] .

(2.1 1)

Combination of (2.10) and (2.11) gives
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g it„*(t)[iAg„(t)p„,(t) —Ace, p„(t)[p„,(t)+Xq ] j

= —r y y„'(t) [q„+i(t)[p„+iq(t) p—„q(t)](P„Ip„+i &+/„ i(t)[p„ iq(t) —p„q(t)](p„ lp„, & j, (2.12)

and having in mind that there exists linear independent of [P„*j, the coefficients of g„* give

ifii(„(t)P„,(t)=hcoqit„(t)[P„q(t)+Xq] I[—tP„+i(t)[P„+iq(t) P„q(t)](P. IP„

+q„,[p„„(t) p„,-(t)]&p„lp„, & j, (2.13)

which is precisely (2.5). Therefore, we have shown that,
under the assumption that ID, (t) & satisfies the SE, there
is no inconsistency between averaged HE and SE, because
they both lead to the same equations of motion for p„q(t)
and g„(t). Of course, this is not yet the proof that

ID i(t) & does satisfy SE. In Sec. IV we shall try to answer
this question.

L = D t —— D t =Lrif& c)

2 at

with

n

(3 ' 1)

III. LAGRANGIAN FORMALISM

Strict formulation of the Lagrangian formalism' '
starts from and

+ ', y I q. I'(P', P:,—P':,P., )

nq

(3.1a)

=&D «)I&ID (t)&= g~lp. l' —r g4:(4. &P. IP. &+@.—&P. lp. — &)
n n

+ & I P. I'&, ( lP., I'+x!P:,+x."P., ), (3.1b)

where & can be proven to be the classical Hamilton function. The Euler-Lagrange equation (ELE) for g„(t) is

ikey„(t) + p„(t)g [p„,(t)p„', (t) p „;(t)p„,(t—}]
2

r(q. & p—.I p. , &+it. & p. I p. , &)+it. g aco, (lp., I'+x'.p:, +x."p., ) (3.2)

which agrees with (2.4). The ELE for the variable p„—:p„(or p„' ):

d BL
dt

gives

I C. I
'P.,+ '

—,(I @.I'P., ) =
nq

nq

(3.3a)

(3.3b)

where the problem is the evaluation of

&p. lp... &

nq
&p. lp... &

a

ap„;

A tedious calculation [using (2.1a},(3.2), and (3.3a)] gives finally

i ail @„(t)I'p„, (t) =fico, [p„,(t)+X'„]I 1(„(t)I'

rit„*(t)[g„+i(t)[p—„„q(t) p„q(t)]&p„ I p„+,&—+g„,(t)[p„ iq(t) —P„q(t)](p„ lp„ i & j . (3.4)
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(3.5)

(as proposed by Davydov' and Brown et al. ' ), but
must be obtained from Hamilton's principle in the form

5f %—Q j„dt=0, (3.6)

which, in this case, gives the same equations (3.2} and
(3.3).

The nonapplicability of Eqs. (3.5) is the direct conse-
quence of the fact that the Lagrangian (3.1) is a linear

I

Factor f„* can be canceled, and the remaining equation is

just (2.5). Our conclusions can be formulated as follows.
(i) If one supposes that ~D, (t) & satisfies the SE, then

the equations of motion for g„(t) and p„q(t) obtained by

projecting the SE onto some particular directions, aver-

aged HE's and ELE's obtained from the Lagrangian of
the system, are completely equivalent.

(ii) The Hatnilton equations for f„(t) and p„(t) (which
must be identical to ELE) cannot be obtained simply
from

function of "generalized velocities" p„(t) and p„q(t), so
the choice of the conjugated canonical (or Hamilton)
variables is rather ambiguous. '

IV. EQUATION OF MOTION
FOR THE FUNCTION ~D, (t) &

Until now we have assumed that ~D, (t) & satisfies the
SE, and all the equations for the time-dependent
coefficients g„(t ) and p„(t ) that followed from it were
consistent. As we have already mentioned, this con-
sistency is not the proof that ~Di(t) & does satisfy the SE.
In fact, one must prove the self-consistency of the ELE
[for g„(t) and p„(t)] and the SE for ~D, (t) &; that is, sub-
stitution of f„(t)and p„q(t) from the ELE into the SE for
~D, (t) & (not projecting the SE into any direction) must
result in an identity. If this statement is true, it means
that the ELE's are the necessary and suScient condition
for the validity of the SE.

Following the above-mentioned scheme, we substitute
the ELE [(2.4) and (2.5)] into the time derivative
i'(BIBt)~Di(t) &

iA—(D, (t) & =i Ag @„(t)8„)0&,„[P (t) &+ ,'i' g-@„(t)[P„,(t)P„;(t)—P„;(t)P„,(t)]8 „[0&,„(a„(t)&

dt

nq

After arranging the terms, we arrive to the following important result:

i% ~D, (t) & =B~D, (t) &+ ~5(t) &,

(4.I)

(4.2)

where

m+1 m m+1 m m+1 m —1 m m —
1 m m —1

m+1 m+1q mq m m+1 m —1 m —1q mq m m —1

q

Xe b q[0&ph]& (4 3)

which satisfies the orthogonality relation

(4.4)

Equation (4.2) is the crucial one, because it shows that
when the ELE, obtained by projecting the SE, are substi-
tuted back into the SE, one is not led to an identity, but
to the equation (4.2).

First of all one can notice that since ~5(t) & is propor-
tional to I, for the case of immobile excitation I=O, the
function ~D, (t) & with coefficients, whose time depen-
dence is defined by the ELE, satisfies the SE. This case
will be discussed in detail in Sec. V.

Further on, projecting (4.2} onto the directions

~P„&a„~o&,„and e " b ~0& h& „~0&,„(see Sec. III), we

obtain the ELE's (2.4) and (2.5). Finally, the fact that
IDi(t) & is orthogonal to ~5(t}& has an important conse-

quence, that the averaged equation (4.2),

D, (t) it)—D t(t))
8

=(D, (t}~H D, (t) &+(D, (t)~5(t) &

—= (D, (t)iHiD, (t) &, (4.5)

~@(t}& e (i/A)ut~D ((})&— (4.6)

is completely consistent with all previously derived equa-
tions.

Let us now compare the energy of the system calculat-
ed with the wave function ~D, (t) &, whose dynamics is
determined by Eq. (4.2} [coefficients f„(c) and p„q(t)
satisfy the ELE] and the (unknown) solution of the SE
evolving from the same initial state ~D i (0) &:



M. J. SKRINJAR, D. V. KAPOR, AND S. D. STOJANOVIC 38

It is clear that

&q(r)l&lq(t) &=&D,(0)I~ID, (0) &=&(t =0) .

It is easy to show [using (4.2)] that

—
& D, (t) I@ID)(r) &

= &D, (t) IHI&(r) &

—&5(t)IBID (r) &,

so that

(4.7)

(4.8)

where terms with two-particle interaction were neglected
because we shall hereafter study only single-particle exci-
ton states.

Starting from the initial state in the form

ID, (o) &
—= ly(0) &

= y y„(oe„'Io&,„

&exp g [P„(0)bt —P„;(0)b ] Io& „,
&D((r)IBID&(t) &

= &D~(0)IBID~(0) &

=&&(r)l&lp(r) & . (4.9)

We see that the energy of the system is the same as that
calculated with both functions. This fact, together with
the above-mentioned consistency of the "classical" equa-
tions and the averaged SE, was probably the reason why
the most of the authors, who previously dealt with this
problem, never questioned the validity of the SE for the
function ID, (t) &.

In fact, the additional I5(r) & term in (4.2) turns ID, (r) &

into an approximate solution of the SE, and we postpone
the estimate of the influence of this approximation onto
other average values and kinetic properties of the system
until the second paper of this series.

V. CASE OF THE "IMMOBILE EXCITQN"

0=exp —g (y»b y„'«b )it „8„—
nq

"Dressed" operators are given by the expressions

(5.1)

A =08 0 =d exp g(y«b y"qbq), (—5.2a)
q

a, =Ob, O=b, + y~» a'. u. ,

This section will be devoted to the study of the limiting
case of the "immobile exciton" I=O, where we shall com-
pute some relevant quantities of the system starting from
the ELE's and compare them with the corresponding
solutions of the quantum equations, which, in this case,
can be solved exactly as was shown by Brown et al. (fur-
ther on referred to as BWL).

The Frohlich Harniltonian (FH) (1.1) (with I=p) can
be put into the diagonal form (see BWL) by unitary trans-
formation with the operator

ly(r) & e
—(ils)Ntly(0)

&

we shall calculate the following quantities: (i)

&y, (r)I &„l((,(r) &,

where 0„ is the phonon displacement; (ii)

p, (t) x Rm~b «b» p, (t))

energy of phonon subsystem; (iii) the scalar product

& p, (r) lp(t) &

(5.5)

which gives the measure of the deviation of Davydov's
state from the exact state vector IP(t) &. Results of (i) and
(ii) will be compared with the exact results

& p(r)l &„lp(t)&

and

which can be easily calculated for I=O.
Solving Heisenberg's equations of motion for bq(t) (2.7)

for I=0, we obtain

bq(t)=bq(0)e ' —(1—e ' }gy» gt (p)g (p} (5.6}

and bearing in mind the relation

(5.4)

and defining the functions lg, (t) &—:ID, (t) &, where g„(t)
and p„«(t) are solutions of the ELE [for the initial values
t(t„(0) and p„»(0)] and the exact solution of Schrodinger's
equation

while the transformed FH has the form

H g ly«I A A + +Au«BqB« (5.3)

&y(r)IO„ly(t}& =&y(0)IC„(t)ly(0}&,
A

expressing U„ in terms of bq and b, we obtain

1/2

e '«"'[P'»(0)e ' +P q(0)e ' ]

1/2
—2+ e '«"'y «P (1 coscoqt), P =—lg (0)l (5.7}
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Similarly,

b( )r Xbreqb qb b(t))
q

ifiP„q(t)=%co [P„(t)+yq ] . (5.9b)

The solutions of (5.9), with initial values g„(0) and p„(0)
are

= g f](co P„lP„(0)e ' —(1—e ' )yq
l

. (5.8)

On the other hand, the ELE's for g„(t) (2.4) and p„(t)
(2.5), in the case I=O, take the form

itic„(t)=kg„(t)+ ,'p„(t—)g fico [yqp„' (t)+g„'qp„q(t)],
q

(5.9a)

where

P„(t)=P„q(0)e ' —yq(1 —e ' ),
P„(t)=f„(0)e

where
A,„(t}=g {Im[Z»p„'q(0)(e ' —1)]—co» ly'„I

+
l
yq

l sincoq t I .
Now, using the solutions (5.10) one gets

(S.loa)

(5.10b)

(5.10c)

2MNcoq

' 1/2

e ""'P [P',(t)+P, (t)]
x

' 1/2

e 'q"'P [P' (0)e ' +P (0)e ' ]

2MNa)

1/2

e 'q"'P y q(1 coscoqt)—, (5.11)

which is identical to (5.7}. In the same way, we obtain the energy of the phonon subsystein

rbr(t) X t)reqb qbq rbr(t)) Xt)rerP l]=)„ tt)(„t Xt)re P l]=)„(())e„'—() —e
q nq nq

(5.12)

This result also agrees with (5.8).
The scalar product (Pi(t)l((}(t)) will be obtained by the procedure described in detail in the Appendix A of BWL, so

we shall present here a brief description. We start with

(rbr(t)lrb(t))=X (rtb) (0r]r)(0 exp —X[[) q(t)b, (]"(t)b, ]'—
nm q

)qr)„e 'r"' 'b )exp X [[)„q(0)bq (0)—(]„"q.,(0)bq..(())]
'

0)
q'

=orb"„(t)rb„(0)(0 exP —X[[)„q(t)b,(r) ()„'q(t)bq(r)—] b„(r)b t(0)
nm

XexP g [P„» (0)b q (0)—P„' (0)b» (0)] ol.
q'

Bearing in mind that (see BWL)

A (t) = A" (0)e '"', 0= —g coq lg» I'
q

q

and combining it with (5.2a), we can write

cl (t)=8 (0)e ' 'exp g [yq b (0)—y*qb (0)] exp —g [yq b (t) y'qb (t)]—

(5.13)

(5.14)

(5.15)

Using the properties of the coherent-state displaceinent operator (Appendix A, BWL), after substitution of (5.15) into
(5.13), we obtain

((t)](t)lp(t) ) = Q P„exp i t)(t) iQt i g ly l
—sin—co t i Q Im[y—q p„' (0)(e ' —1)]

—i g Im{p„(t)[p*„(0)e ' y„*q(1—e ' )]]—
q

—
—,
' g Ip„,(t). ~ —p„,(0)+yq(e' ~ —l }l'

q

(5.16)
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Finally, introducing (5.10a) and (5.10c) into (5.16) we ob-
tain

(5.17)

There is a major difference between our results and the
results of BWL, because (5.11), (5.12), and (5.17) show
that the dynamics of Davydov's function ~D, (t}& given
by the ELE, for the most general initial conditions and
I=O, is equivalent to the dynamics of the exact solution
of the SE for the same initial conditions. It is also easy to
show that the propagators are identical:

&(((0)ly(r) &
—= & y(0) l((), (r) &

= Q I'„e '"'g (1—e ' )~P„(0)+J(e
~

(5.18}

which implies that ~P, (t) & and ~(()(t) & generate the same
optical spectrum. The final conclusion is that in the case

I=O, ~D&(t) & describes the dynamics of the system exact-
ly, as concluded previously from the general results of
Sec. IV.

VI. CONCLUSION

In order to avoid a misunderstanding, we wish to con-
clude by clearly stating the results of this paper. We
studied the system described by the Frohlich Hamiltoni-
an (1.1) and looked for the wave function in the form
(2.1). We have shown that the wave function ~D&(t)&
defined by (2.1), whose time dependence is determined by
the coefficients g„(t) and 13„(t) satisfying the ELE's
(which follow from the Langrangian of the system), does
not satisfy the Schrodinger equation in the general case.
In the particular case I=O, the Schrodinger equation is
satisfied. The case I&0, when ~D&(t) & becomes only an
approximate solution will be discussed in a subsequent
paper.
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