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The storage and retrieval of complex sequences, with bifurcation points, for instance, in fully con-
nected networks of formal neurons, is investigated. We present a model which involves the
transmission of informations undergoing various delays from all neurons to one neuron, through
synaptic connections, possibly of high order. Assuming parallel dynamics, an exact solution is pro-
posed; it allows one to store without errors a number of elementary transitions which are of the or-
der of the number of synaptic connections related to one neuron. A fast-learning algorithm, requir-

ing a single presentation of the prototype sequences, is derived; it guarantees the exact storage of the
transitions. It is shown that local learning procedures with repeated presentations, used for pattern
storage, can be generalized to sequence storage.

INTRODVCTION

The storage of sequences of patterns in Hopfield-type
networks' has been investigated recently by several au-
thors. Aiming at biological applicatioris, all these
studies consider networks with asynchronous dynamics:
each pattern is stable over some time period, at the end of
which a sharp transition leading to the next pattern
occurs. In this context, the main difficulty is the com-
petition between stability of a pattern and transition to-
ward the next pattern. One way to solve this problem is
to consider Hebbian-type networks, where some synaptic
efficacies evolve slowly in time as a function of the activi-

ty of the network. ' Another type of difficulty is the
storage and retrieval of complex sequences: in most of
the preceding models, a given pattern can occur only
once among all the stored sequences, which is a severe re-
striction. Having in mind bird-song acquisition, this
problem has been addressed in Ref. 6; the proposed solu-
tion involves heterosynaptic interactions, together with
sequence-detecting neurons ("hidden-units" coding for
the transition from one state to the next one). As an al-
ternative to the introduction of specific neurons, specific
attractors (patterns) uncorrelated to the patterns of the
sequences can be used.

In this paper, we consider the learning and retrieval of
sequences in a network with parallel dynamics. We want
a network to retrieve a sequence of informations when
presented with a (possibly distorted) part of it; therefore
in contrast to asynchronous networks, it is sufficient to
impose that the network should evolve, at each parallel

iteration, from one pattern of the sequence to the next.
We address the problem of finding learning rules as
efficient as possible, in order to store any given set of se-
quences. Results along these lines have already been ob-
tained; "however, most of the proposed algorithms ap-
ply only to simple sequences. The purpose of this paper
is to deal with efficient learning and retrieval of complex
sequences. Note that this problem is different from the
sequence-recognition problem.

Although we focus on parallel dynamics, part of the re-
sults can be useful for asynchronous implementations:
optimal expressions of the synaptic matrix could be used
to build the part of the synaptic efficacies which allow the
transition from one state to the next one, in the models of
references 2, 4, and 5.

In Sec. I we recall the results previously obtained; in
Sec. II we give a definition of complex sequences and pro-
pose a general formulation of the problem leading to a
"nonlocal" learning rule providing an exact solution
when it exists. In Sec. III we consider the particular case
of bifurcation points, we examine the different aspects of
various solutions, and we illustrate the methods with ex-
amples. In Sec. IV we consider iterative learning pro-
cedures: we derive an algorithm requiring one presenta-
tion of the prototype sequences only and allowing the
computation of the exact solution; it is shown that local
learning rules with repeated presentation, on which new
results have been obtained recently for pattern
storage, ' ' can be used for temporal associations. Fi-
nally, we shortly discuss how to chunk a given set of
transitions into a sequence of patterns.
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I. STGRAGK AND RETRIEVAL
OF SIMPLE SEQUENCES

In this section we briefly report results obtained previ-
ously' concerning the storage of sequences in networks
of formal neurons with parallel dynamics. We consider a
fully connected network of n formal neurons. The dy-
namics of the network can be described as follows:

cr; (t + 1)=sgn(u, (t}—8; ),
where o, (t) is the state of a neuron i (which is either +1
or —1), 8, its fixed threshold, and v;(t) its "potential" (or
local field) whose expression is

u;(t}=g C;,cr, (t) .
J

We will assume zero thresholds (8, =0), but the following
results can be easily generalized to nonzero thresholds.
Synchronous updating of the neuron states makes it pos-
sible to use a very convenient matrix formalism. We
define the state of the network as an n-dimensional vector
o whose components are the states of all the neurons.
Therefore v(t)=Ca(t) is the n-dimensional "potential
vector" and C is a (n, n) matrix which will be referred to
as the "synaptic matrix". The next state of the network
cr(t + 1) is obtained after the "threshold process" (1}.

Given a set of transitions in state space,

k k+

we want to compute a matrix C which guarantees the
storage of the sequences. This will be true if the system
of equations

Co"=o +, jt: =1, . . . ,p

can be solved. This can be put in matrix form

(4)

where X and X+ are the matrices

X=[cr',crz, . . . , crr], X+=[cr'+,o +, . . . , cr~+], (5)

whose columns are the o" and their successors cr"+, re-
spectively.

We denote by X the pseudoinverse' of matrix X. Pro-
vided that the condition

X+X X=X+

is satisfied (which is always the case when vectors cr" are
linearly independent), Eq. (4) has exact solutions,

C=X+X +8(I—XX }

where B is an arbitrary matrix. In the following, we shall
consider the case B =0 unless otherwise stated. There-
fore the prescription becomes

C =X+X

The coefficients of matrix C in relation (8) can be written
as

where Q is the matrix of the overlaps Q„„
=(1/n) g; cr;"cr," .

With such a learning rule, one can store faithfully
O(n} transitions. However, no two cr" can be identical.
In the following, we shall see how to deal with sequences
of higher complexity.

As mentioned earlier, the preceding results can be ex-
tended to asynchronous dynamics in the following way:
the stabilizing matrix (TV in Ref. 4 and J(il) in Ref. 5) can
be taken as the projection matrix XX," and the transi-
tion matrix (D; in Ref. 4 and J ' in Ref. 5) can be com-
puted by relation (8).

II. LEARNING COMPLEX SEQUENCES

Learning sequences where all patterns are dift'erent is a
severe restriction. On the other hand, it is unlikely that a
given network, biological or artificial, could store a se-
quence whatever its complexity. In the context of biolog-
ical modeling, it is shown that the type of sequences that
can be learned depends on the architecture of the net-
work; this will hold as well for artificial devices. We
define the complexity, as in Ref. 6, in the following way:
in order to generate a sequence of p diferent patterns (or
a set of such sequences with no pattern in common), one
needs only to learn the p transitions from one pattern to
its successor. Now suppose that one pattern occurs
twice; when the network reaches this bifurcation point, it
is unable to make a decision according the deterministic
dynamics described in (1), since the knowledge of the
present state is not sufhcient. Thus processing complex
sequences require to keep, at each time step of the dy-
namics, a nonzero memory span. The order of a set of se-
quences is therefore defined as the minimal memory span
necessary to produce all of them. Hence a sequence with
no two identical patterns is of order zero. A sequence
where a pattern occurs twice or more (bifurcation point)
is of order one. Examples are shown in Fig. 1.

We consider now the general formulation for learning
a set of sequences of a given order g. Following the
preceding ideas (see also Ref. 9), the retrieval of a set of
patterns of order g requires a dynamics whereby the ac-
tivity at time t + 1 is a function of the activities at times
t, t —1, . . . , t —g; the potential v;(t) must have the gen-
eral form

v;(r)= g g C,",~o, (t —1)
j l

+$$ C"" 'o (t —l)o (t —I')+'
»JJ J J

+ Y C'0 's' o (c)o (c —1} . . cr (c —g) .I Jp. -. *Jg Jp Jl Jg
Jp~. ~ Jg

(10)

C;.=( I ln)X„cr";+(Q )„„o1", (9) In the particular case where g =1, this relation is written
as
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v;(t)= g C 'o (t)+g C "o (t. —1}
J J

+y c,",'~J(t)~, ,(t)
J.J

+g C "'"0 (t —. 1)cr .(t —. 1)
J~J

+gC "'cr (t}a. '(t —1) .
J~J

It can be more convenient, for the design of learning
rules, to write the potential, with only one matrix C as

v;(t)=g C;,y, (t)

or in a matrix form,

v(t) =Cy(t),

where y(t) is the vector obtained by the concatenation of
vectors
tr(t), o(t —1), . . . , cJ(t)go(t}, . . . , tr(t)ea(t —1)e .
cr(t —g} and whose components are noted y, (t) Th. e
subsequent vector o(t+ I) is still determined by the
threshold process (1), which, for zero thresholds, reduces
to

(a)

cr; (t + 1)=sgn(v;(t)) .

In this form, the problem is a straightforward generali-
zation of the storage of patterns and simple sequences
with high-order interactions. ' Suppose that we want to
memorize a set of sequences of global order g. One has
simply to build the vectors y" with the
o",cr ', . . . , cr g, and then solve 'the system of equa-
tions:

Cyk ~k+1 k =1 p

or, in analogy to relation (4),

Cr=r+

(13)

(14)

where I is a matrix whose columns are the y and X+ is
defined as previously. If the condition

(b) X+I I =X+

is satisfied, I being the pseudoinverse of I, then the
solution of Eq. (14) is

C =X+I +B(I—I I ) (16}

(d)
FIG. 1. Sequences of various orders (each dot represents one

state of the network). {a)Order 0. (b) Order 1 with no two con-
secutive bifurcation points (this sequence represents Verlaine's
poem "Dame souris trotte, " see Fig. 3). {c)Order 1 with con-
secutive bifurcation points. (d) Complex sequence (order 3)
representing a Chinese poem.

where B is an arbitrary matrix.
Clearly, this general formulation is not operational,

considering the high dimension of vector y. In practical
situations one should use simple solutions involving a
particular choice of matrix B and where most of the
high-order terms oj(t)oj(t —1) 0, (t —I) are .set to
zero, so that one works with a reduced vector y: such
particular choices mean particular architectures of the
network. In fact, there is a wide variety of interesting
solutions.

Note that in any case, since I = ( I I ) I, one has
only to compute the pseudoinverse of the matrix I I,
which is a (p,p) matrix, whatever the dimension of the
vector y. It should be pointed out that, as before, any
particular solution will also be valid for networks with
asynchronous dynamics.

III. SEQUENCES OF ORDER I

The present section shows various possible network ar-
chitectures and learning rules for sequences of order 1.
The main results are summarized on Table I.
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TABLE I ~ Summary of the various learning rules for sequences of order 0 or 1 ~ In the third line, b is
the number of bifurcation points.

Sequence
order

Vector
potential

Synaptic
matrix

Number of Capacity a,„= Initialization
synapses Ns pmax

'"
Ns

v=co n 1 state

O
v=C

CT
2n 2n 2 states

c(0) g+gI(0) (1)v=C 0+C CT 2n n +b 0.5+b/2n 1 state

v= C(ocr )

=cy
'Equation (8).
bEquation (19).
'Equation (23).
dEquation (24).

c=r+r'4 n n 2 states

A. Linear potential: Direct solution

For a set of sequences of order 1, the only necessary
pieces of information at each time step are the present
state cr(t)=o and the previous one o(t 1)=cr—in or-
der to determine the successor cr(t+1)=cr+ Firs. t, we
consider relation (10) keeping only linear terms in cr(t)
and cr(t —1),

v(t)=Cy(t), with y(t)=

The sequences to be learned can be decomposed into
subsequences

cT ~o' —+cT,k =1, . . . ,p .

If we define, as in (5), the matrices X and X+ whose
columns are the vectors cr and cr +, respectively, and
the matrix X whose columns are the predecessors cr

matrix I can be written as

exact. For comparison with other network architectures
and learning rules, we define a storage coefficient
a=np/N, (number of bits of information stored per
synapse). The maximum storage coefficient
a,„=np, „/N, is equal to 1 in the present case.

(iv) The retrieval of a sequence requires initializing the
network with two consecutive (possibly noisy) states.

As an illustration, we show an example in which poems
were stored (Fig. 2). In this example, and in the following
ones, each character is coded on 6 bits: we use a Gray
code such that the codes of two consecutive characters in
the alphabet differ by one bit only; in addition, each capi-
tal letter is coded by the opposite of the code of the corre-
sponding lower case; the 12 remaining codes are used for
punctuations. A state of the network consists in 8 char-
acters (i.e., n =48 neurons}; lines with less than 8 letters
are ended by an appropriate number of space characters.
Three poems were stored up to a total ofp =20 elementa-
ry transitions, so that the storage coefficient ratio a/a, „
is approximately 0.2.

(18)

and relation (16}provides solutions, under condition (15).
The solution

(19)

has the following features.
(i) All kinds of first-order sequences can be stored and

retrieved.
(ii) The dimension of the synaptic matrix is (n, 2n), so

that N, =2n synapses are required.
(iii) The same arguments as in Sec. I, for simple se-

quences, lead to a storage capacity 0 (2n). More
specifically, the number of elementary transitions that
can be stored must be smaller than p,„=2n (the dimen-
sion of vectors y), otherwise the solution (19) is no longer

VOIS-TU
RIEN

VENIR?
ANNE
MASOEUR
ANNE
NE

FAIT BON
FAIT BON
DORMIR
AUPRES
DE MA

BLONDE
QU' IL

JE TE
PLUMERAI

ALOUETTE
6ENTILLE
ALOUETTE
ALOUETTE

JE NE
OLVMERAI
AQFUETt E
JEHKILLE
SLOUETTE
ALOUETTE
JE TE
PLUME RAI

ALOUE TEE
GENTILLE
ALOUETTE

FIG. 2. Sequences of order 1 (with consecutive bifurcation
points) were learned with p =21 transitions for n =48 neurons.
Linear potential with learning rule (19) was used (2n synapses,
a/a, „=0.2). The three left columns show the poems which
were learned; boldface characters indicate bifurcation points.
The right column shows the retrieval of one of the poems, start-
ing from an initialization with two distorted lines (in boldface).
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B. Linear potential: Solutions by inspection
of bifurcations points

If one first identifies all the bifurcation points, it is pos-
sible to construct simple solutions which require the ini-
tialization with one state only in the retrieval phase. We
consider a vector potential linear with respect to the vec-
tors o and o, as in (17); in the present case, however,
we separate matrix C into two (n, n) submatrices C' ' and
( (1)

v(r)=C"9+C'"~- .

Consider the subsequences

CT ~EX ~CT —+0, k —1, . . . ,p .k — k k+ k++

To guarantee their storage, one can impose, for all k, that

g(0) k k + C(1) k — k +.

or equivalently

I
2

3
4
5

6
7
8
7
9
10
11
30
12
43
14
13
15

16

Dame souris tratte,
Noire dans le gris du soir,
Dame seuris tratte,
Grise dans ie noir.
On sonne la cloche-:
Dormez, les bons prisonniers,
On sonne la cloche:
Faut que vous dormiez.
Pas de mauvais rive:
Ne pensez qu'a vos amours,
Pas de mauvais rive:
Les belles toujours !
Le grand clair de lune l

On ronfle ferme 4 cote.
Le grand clair de luna l

En realite.
Vn nuage passe,
ll fait noir comme en un four,
Vn nuage passe,
Tiens, le petit jour !
Dame souris trotte,
Rose dans les rayons bleus,
Game sauris trotte,
Debout, paresseux !

Noire dans un gris de soie
Dakfksnprqs trotte,
Nrise ddns iqknodr.
On zoone lt cloche:
Dormez, les bons prisonniers,
On sonne la cloche:
Faut que vous dormiez.
Pas de mauvais reve:
Ne pensez qu'0 vos amours,
Pas de mauvais reve:
Les belles toujours i

Le grand ciair de lune i

On ronfle ferme a cote.
Le grand clair de lune !
En rbalite.
Un nuage passe,
ll fait noir comme en un four,
Un nuage passe,
Tiens, le petit jour !
Dame souris trotte,
Rose dans les rayons bleus,
Dame souris trotte,
Debout, paresseux !

18 0 saisons, 0 chateaux l

19 Queile arne est sans defauts ?
20 J'ai fait la magique etude
21 Du bonheur, qu'aucun n'elude.
22 Salut a lui, chaque fois
23 Que chante le coq gaulois.
24 Ah ! je n'aurai plus d'envie
25 ll s'est charge de ma vie.
26 Ce charme a pris me et corps
27 Et disperse les efforts.
18 0 saisons, 0 chateaux !

y
28 L'heure de sa -uite, helas !
29 Sera I'heure du trepas.

0 maisons, 0 chameaux l

Tuel. eV?peEfs„Etn; akf'uts ?
J'ai fakt la h'?lque ftude .

Du bonheur, qu'aucun n'elude.
Salut a lui, chaque fois
Que chants le coq gaulois.
Ah ! Ie n'aurai pIus d'envie
ll s'est charge de ma vie.
Ce charme a pris arne et corps
Et disperse les efforts.
0 saisor s, 0 chateaux !
L'heure de sa fuite, helas !
Sera l'heure du trepas.
0 saisons, 0 chateaux!
Quelie arne est sans defauts ?
J'ai fait la magique etude

FIG. 3. Sequences of order 1 {with no consecutive bifurcation points) were learned, with p =39 transitions for n =210 neurons.
Linear potential with learning rule (23) was used (2n synapses, a/a, „=0.2). The left column shows the poems which were learned
[the poem "Dame souris trotte" corresponds to the sequence indicated in Fig. 1(b)]. The right part shows the retrieval of the poems
starting from an initialization with only one distorted line (in boldface).
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which gives, in a matrix form,

c"'x=a+ c'"r=a++

Tentative solutions could be

(0) y+ yI g(1) y++ yI

(21)

JE TE
PLUMERAI
ALOUETTE
GENTl& & 6
ALOUETTE
ALOUD i tE

JE NE
OLVMERAI
ALOUESLF
GENTI~ & 0
)LOUETSF

ALOUat & c
JE TE
Pl UMERAI

ALOU@& ie
GENTILLE
ALOUar ia

However, because of repetitions of identical vectors in
matrix X, these are not exact solutions. To deal with this
problem, one can simply build a matrix S which is identi-
cal to matrix X, except for the bifurcation points which
appear only once, and are associated to null vectors.
Considering the example of Fig. 1(b):

X=[cr' o o' cr, cr, o', cr, . . .],
[oi &2 o3 o4 &5 ] .

y+=[o2 ol o3 &4, o5, o4, o6 ]
S+=[0,cr', cr, 0,cr, . . .];
X++=[o'i,o3,o4, os, o4, os, cr', . . .],
S++= [0 o' cr' 0 cr ] .

(22)

one has the following solution, under conditions
S+S S =S+ and S++S S =S++:

c"'=s+s', c"'=s++s'. (23}

C. Quadratic potential

If the number p of transitions to be stored is greater
than the dimension of vector y, a convenient solution can
be obtained by considering three-neuron interactions only
with a time delay, which is very similar in spirit to the ar-
chitecture proposed in Ref. 6. In other words, matrix I
is made of columns y whose components are o;0.1

yk kg k—

This solution acts on the dynamics of the network in a
redundant way because the contributions of vectors cr"
and e lead independently to o +, which allows us to in-
itialize the network with only one state cr provided the
latter is not a bifurcation point, cr being replaced by the
vector 0. The price to be paid, as compared to the previ-
ous solution, is a reduction in the storage capacity. It can
also be noticed that the fact that the bifurcation points
are associated to null vectors in matrices S+ and S++
prevents the storage of sequences with two consecutive
bifurcation points [Fig. 1(c)]. The capacity of the net-
work is 0(n).

The example chosen to illustrate the properties of this
learning rule is shown in Fig. 3. Using the same code as
in Fig. 2, a state now consists of a line with a total of 35
characters (i.e., n =210 neurons}. Three poems have
been stored, corresponding to p =37 elementary transi-
tions. The storage coefficient ratio a/a, „ is still approx-
imately 0.2.

FIG. 4. Sequences of order 1 (with consecutive bifurcation
points) were learned with p =424 transitions for n =48 neurons.
Quadratic potential with learning rule (24) was used (n '
synapses, a/a, „=0.2). The network learned all the poems of
Fig. 2 and several others. The figure shows the retrieval of this
poem starting from an initialization with tao distorted lines.

is a straightforward generalization of the design proposed
for associative memory with high-order interactions it
has the following features.

(i) All kinds of sequences of first order can be stored
and retrieved.

(ii) The dimension of the synaptic matrix is (n, n ), so
that n synapses are required.

(iii} The storage capacity is of order n 2; a,„=l.
(iv) Retrieval of a sequence needs to give two consecu-

tive states.

The example of Fig. 4 illustrates the retrieval perfor-
mances of this last learning rule. In a network of n =48
neurons, a large number of poems have been memorized,
with a total of p =424 elementary transitions. The
storage coefficient ratio a/a, „is still approximately 0.2.

IV. ITKRATIVK LEARNING

A. One-shot learning

We consider the general solution (16) for the learning
of complex sequences. Matrix B will be taken equal to
zero,

c=x+r'. (25)

One can compute this matrix iteratively, with a one-shot
learning algorithm. ' Suppose that k —1 elementary
transitions y"~cr"+ (it = 1, . . . , k —1) have already
been learned, leading to a synaptic matrix C(k —1). To
compute C ( k) one applies

This section is devoted to the presentation of various
iterative learning procedures: first, a nonlocal algorithm
involving a single presentation of the prototypes (one-
shot learning}; next, a local procedure with multiple pre-
sentations of the prototypes (slow learning}, which leads
to the same matrix as the previous one; and, finally, alter-
nate local learning rules.

The solution

c=x+r'
C (k) =C (k —1)+(cr"+—v")g" /(~g ")[

(24) where

(26}
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1. Widrow-Ho+ type alg—orithm

In this section we show that results found for the
storage of prototypes as stable states can be extended to
sequence learning. For autoassociative memory, it has
been shown analytically' that the procedure

C(k) =C(k —1)+(1/n)(tr" v")o"—

with C(0)=[0], (27)

which is a Widrow-Hoff-type learning rule, ' yields the
projection matrix when the number of presentations of
the prototypes a goes to infinity, if the latter are linearly
independent. A derivation along the same lines as in, '

shows that, by repeated presentations of the prototype
transitions, the learning rule

C (k) =C (k —1)+(1/n)(tr" + —v")y"

with C(0)=[0] (28)

leads to the exact solution C =X+I' [relation (19)],if the
vectors y are linearly independent.

2. Perceptron-type algorithms

The Perceptron-type algorithms' compute a matrix C
which tends to satisfy the set of inequalities

gC;, o,"o,")5 Vi, Vk
J

(29)

where, if learning of prototype states cr" in fully connect-
ed networks is considered, the sum g C; being kept
fixed. A variant of the Perceptron theoretn shows that
if 5,„is the maximum value of 5 for which a solution ex-
ists, then the Perceptron algorithm allows one to reach a
solution with any 5(5m,„ in a finite number of learning
steps. In Ref. 13 an algorithm is proposed which allows
one to find 5,„and obtain a solution with 5 as close to
5,„as one wants. These results extend to temporal asso-
ciations too: Eq. (12) can be put in the form (29),

g C;,g,", &5 Vi, Vk (30)

now with g;, =o,"y,". Thus the results on the above-
mentioned algorithms hold, the number of neurons being
replaced by the dimension m of the vectors y . In partic-
ular, the maximal capacity, for which one has a nonzero
attractivity, is 2m elementary transitions if the y vectors

v"=C(k —1)y",
f'"=M(k —1)y",
M(k)=M(k —1) f—'"f'" /)(')r")(

the initial conditions being

C(0)=[0], M(0)=I .

This procedure is iterative, but is not local: it is con-
venient for computer simulations, but it is biologically
implausible and diScult to implement in devices.

B. Slow learning

are chosen at random. This is not generally the case,
even if the cr" vectors are chosen at random, some com-
ponents of the y vectors being correlated. However, this
capacity can be reached in the case of simple or first-
order sequences learning using a linear potential.

V. CHUNKING PROBLEM

Up to now, we have assumed that a sequence to be
learned was made of patterns defined by a given number
of n bits: for example, the poem of Fig. 3 is coded as a se-
quence of lines. However, one could have coded the
poem in a different way: one extreme would be to take
the letters as elementary patterns; the opposite extreme
would be to take the whole poem as a single pattern. Of
course, coding the lines as patterns is the most natural
choice, and one can expect that any problem will have its
"natural" chunking strategy. We do not attempt, in this
section, to give a systematic way of finding the optimum
strategy; we only try to give some general feeling on this
question.

We would like to know the differences between three
chunking strategies when they are allowed by the nature
of the problem. In particular, chunking a set of bits in a
sequence of p patterns of n bits is feasible if the resulting
value a of the storage coefBcient remains smaller than

a,„. We assume, for simplicity, that we use only net-
works with a linear potential and learning rule (19) (see
Sec. III A), so that, if g is the order of the sequences, the
dimension of vector y has to be, at least, (g + 1)n [the ini-
tialization has to be done with (g+1) states], and the
number of synapses N, =(g+1)n Thus. any value of n

is allowed provided a=p/[(g +1)n] a,„=i.
Suppose that the total information to be stored has

been divided, in a "natural" way, into p =po meaningful
patterns of n =no bits. Let g =go be the maximum order
of the resulting sequences. In this case, the dimension of
vector y has to be equal to (go+1)no; the number of
synapses is N, =(go+1)no. The initialization must be
done with go+1 states of no bits.

Now consider another choice, which consists in divid-
ing all elementary states into two parts so that the num-
ber of bits per state becomes n =no/2 and the number of
elementary transitions p =2po. The maximal order of the
sequences increases: it is at least equal to g =2go', howev-
er, if g remains smaller than 4go+3, the number of
synapses is decreased. For example, if g =2go, the di-
mension of vector y has to be equal to (2go+1)no/2 and
the corresponding number of synapses is
N, =(2go+1)n o/4.

Finally, an alternate choice consists in gathering two
elementary states in one, so that the number of bits per
state becomes n =2nD, and the number of elementary
transitions is p =po/2. The maximal order will decrease
at least by a factor 2. In fact, in all the studied examples,
this chunking leads to sequences of order zero. The prob-
lem lies in the number of synapses, which might, howev-
er, provide a better attractivity. It should be noticed that
these various strategies are not equivalent with respect to
initialization constraints: the adequate strategy is often



6372 I. GUYON, L. PERSONNAZ, J. P. NADAL, AND G. DREYFUS 38

the most suitable for a desired initialization (for instance,
it is natural to initialize with one line of a poem).

CONCLUSION

In this paper, we have studied the learning and re-
trieval of sequences where some patterns occur several
times. Considering parallel dynamics makes it possible to
use a convenient matrix formalism, in the same way as
for pattern recognition. We have shown that there are
several interesting solutions, corresponding to various
choices of architectures and algorithms. We have de-
tailed particular solutions for sequences with bifurcation
points. Moreover, fast- and sloe-learning algorithms

used in the case of pattern storage are shown to apply as
well for sequence storage. Finally, it has been shown that
a given set of pieces of information can be put into the
form of sequences in a variety of ways. The choice of a
solution is shown to be the result of a tradeoff between
various constraints such as storage capacity, sequence or-
der, and number of synapses.
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