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In the formal theory of scattering, the limiting behavior of off-energy-shell scattering wave func-

tions and T matrices as the energy shell is approached is of considerable importance in deriving an

impulse approximation to the full scattering amplitudes. On-shell limits do not exist for the pure

Coulomb potential, but sufficiently near the shell the off-shell wave function and T matrix are ap-

proximated by the continuum eigenstate and scattering amplitude, respectively, multiplied by cer-

tain "off-shell" factors. For central potentials which are Coulomb-like at large distances, but

modified at smaller radii, it is shown that the on-shell limits again do not exist and the near-shell ap-

proximations mimic the pure Coulomb case with the asymptotic charge appearing in the off-shell

factors. Numerical results for a realistic atomic potential covering a broad range of defects from

the energy shell give a picture of the approximations involved and show that the errors arising from

the use of near-shell forms are comparable in magnitude to the energy defects divided by the energy.

I. INTRODUCTION

The impulse approximation was introduced into formal
scattering theory by Chew in 1950 in an attempt to treat
the inelastic collisions of neutrons with protons. Subse-
quent applications have been numerous in both atomic
and nuclear physics. For many-body collisions in gen-
eral and rearrangement processes in particular, so-called
binding effects lead to the introduction of off-energy-shell
scattering wave functions and T matrices. When such
effects are small and negligible, the impulse approxima-
tion is derived by a consequent reduction of the sum over
intermediate states to a single dominant term. This is
usually the case if the process occurs near the energy
shell.

The limit to the energy shell of the off-shell wave func-
tion and T matrix is a uniform one for short-range poten-
tials like the Yukawa or inverse-power ones other than
Coulomb. For the pure Coulomb case, on the other
hand, the limit does not exist, but near the energy shell
the off-shell wave function and T matrix are approximat-
ed by the continuum eigenfunction and scattering ampli-
tude, respectively, multiplied by "off-shell" factors. '

Correction terms are of the order of the defect from the
energy shell ~ The near-shell form of the off-shell
Coulomb wave function is limited to a finite region of
coordinate space. This follows since asymptotically the
continuum eigenfunction contains logarithmic terms,
while the exact off-shell function does not.

The situation is not as clear for the large class of poten-
tials involving a short-range modification of a Coulomb
potential, and, although a statement of the wave-function
limit and work on Jost functions for the addition of
some separable potentials exists, a detailed look at the
problem seems to be warranted. The modified Coulomb
potential has particular recent relevance to the theory of

the capture of an inner-shell electron of a target atom by
a fast, heavy, charged projectile, where a controversy ex-
ists as to the precise form of the near-shell behavior.
Also, for symmetric capture at high velocities, e.g. , for
protons incident on hydrogen at MeV energies, the near-
shell behavior is needed in distorted-wave or Faddeev-
Watson approaches to the transfer process. '

In this article we use the simple device of adding and
subtracting the asymptotic forms of the full regular and
irregular continuum eigenfunctions in the coordinate
(and partial-wave) representation to show that the near-
shell approximation for a central, modified Coulomb po-
tential mimics that of the pure Coulomb case with the
asymptotic charge appearing in the off-shell factors. The
near-shell wave-function approximation is valid for a lim-
ited region of coordinate space and the on-shell limit
again is not well defined. We work within a standard po-
tential scattering formalism and place no restrictions on
the potential beyond normal boundedness requirements
on integrals involving it.

A numerical example having application to the above-
mentioned electron-capture problem and employing a
realistic atomic potential is also presented. Results of
calculations give a general picture of the magnitude of
the errors expected when the near-shell wave function or
T matrix is used; errors are seen to indeed be determined
by the size of the defect from the energy shell. The nu-
merical study extends recent work on short-range and
Coulomb potentials, but it is directed more at presenting
average wave-function deviations than at deviations
versus the radial coordinate.

In the rest of the article, we consider in Secs. II and
III, respectively, the off-shell wave function and T ma-
trix. Section IV contains results from an atomic potential
calculation. A conclusion appears at the end. Our nota-
tion follows, to a certain extent, that of a previous arti-
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cle. In general, lower-case letters will denote wave func-
tions and upper-case ones integrals containing the wave
functions. Atomic units (m, =A'= e = 1) are used.

cial to our arguments. On most later notations I will also
not be indicated.

The lth radial Green function for V (outgoing wave) is
defined as

II. NEAR-SHELL BEHAVIOR
OF THE OFF-SHELL SCATTERING %'AVE FUNCTION P—'«Pr. )[g (Pr, )+if(P». )], (2.3)

We first define the off-shell state for a general potential
V and make a partial-wave decomposition of it, after
which the limiting behavior of the radial wave function is
derived. Finally, the various waves are resummed to give
the limit for the full wave function.

The off-energy-shell, single-particle scattering state
satisfying an outgoing-wave boundary condition is
defined by

where f and g are regular and irregular positive-energy
solutions of the radial Schrodinger equation possessing
the asymptotic forms:

f (pr)- sin[pr vln(—2pr)+In/2+cr+fi] as r~ oo,

(2.4a)

g(pr) —cos[pr v1n(2p—r)+In/2+o+5] as r~ oo .

Qt+, ~ ——[1+(E—%p —V+ig) 'V]
~
k) (2.1) (2.4b)

00

f&,E(r)=(kr) ' gi'(2l + 1 )u, (k,p, r)P, (k r),
1=0

(2.2)

with E =p /2, but henceforth suppress the I dependence
on the radial wave function, i.e., u =uI, as this is not cru-

where 8p is the free-particle Hamiltonian, E is the ener-

gy, and g is an infinitesimal quantity. The state is off the
energy shell by virtue of k /2 not being equal to E. The
form of the potential V, other than it being central, is left
open at this point. The notation is such that
(r

~
k) =exp(ik. r). We introduce a partial-wave analysis

in the coordinate representation,

Z is the charge for (i.e., strength of) the Coulomb poten-
tial; it is negative for the attractive case and zero for a
short-range potential. The Coulomb phase shift 0 is
defined to be argI (l +1+iv) and v equals Z/p, the Som-
merfeld parameter. The phase shift 5 arises from the
short-range part of the potential. When Z is nonzero, 5
represents scattering relative to (and in addition to} that
from the Coulomb potential. The greater (lesser} of the
two radial variables r and r' is denoted by r (r }.

Use of Eq. (2.3) in the radial integral equation which u

satisfies leads, after some rearrangement, to the following
expression:

u (k p, r)=j (kr) p'I [F(k, r)g—(pr) G(k, r)f(p—r)]+[G(k, oo )+iF(k, ~ )]f(pr) I .

Here, j (kr} [—:krj I(kr}) is the Riccati-Bessel function and F and G are the following integrals:

F(k,b)=2f drj(kr)V(r)f(pr), G(k, b)=2f drj(kr)V(r)g(pr) .
0 0

It is useful to rewrite F and G by using the differential equations which f, g, and j satisfy and then partially integrat-
ing the ensuing derivative terms twice. Hence, the radial wave function can be put into the form

u (k,p, r) =dk(k+p)[P(k, r)g(pr) Q(k, »)f (pr)) p— 'H(k, p)f—(pr), (2.5)

where

H(k p) =G(k, oo )+iF(k, oo ) —( W[g(pr) j (kr)])„

(2.6)

The scaled wave-vector defect (k —p)/p is denoted by
dI, . We have introduced the additional functions

9'(k, b)= f drj (kr)f(pr)
0

and

Q(k, b) = f drj (kr)g(pr) .
0

The Wronskian of two functions f and g and is denoted
by W[f,g). We now consider Eqs. (2.5) and (2.6) for
short-range, pure Coulomb, and rnodified Coulomb po-
tentials.

In the case of a potential that falls off faster than r

at large radii, it is well known '6 that the correspondin~
short-range form of Eq (2.6), H. "(k,p), reduces to —pe'
with 5 a function ofp. The superscript sr stands for short
range. Equation (2.5) explicitly isolates terms propor-
tional to the off-shell energy defect. Since 9' and 9 are, in
general, analytic at k =p, and a change of variable in Eq.
(2.5) implies the essentially dimensionless and constant
nature of k +p times V and 9, it follows that

u "(k,p, r) =e'sf"(pr)+O(dk ); (2.7)

a uniform limit to the shell is obtained. 0 is short for
"terms of the order of."

For the Coulomb potential, a closed-form expression
for the function, H'(Z, k,p), of Eq. (2(6) has been ob-
tained;" however, H'(Z, k, k) is not well defined. A su-
perscript c will denote Coulomb quantities and the Z
dependence of H' has been made explicit. From the form
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in Ref. 11, the leading term in H' can be derived when dI,
is small. For the sake of completeness, we present a
derivation showing this in an Appendix. The result, for
k~p, is

H'(Z, k,p) = —pQ(Z, k,p)e' +O(d„) .

Thus, one can write

u'(k, p, r)=Q(Z, k,p)e' f'(pr)+O(dk) .

The off-shell factor Q has the form

Q(Z, k,p) =e ""~ I'(1 —iv)[(k —p)/(k +p)]'" .

(2.8)

(2.9)

(2.10)

The analyticity of V' and Q' on shell for ftnite r is again
implicit in the derivation of Eq. (2.9). Equation (2.9)
must, however, eventually become invalid for large r
since f' contains a logarithmic term in its asymptotic
form, while u' does not (because an inhomogeneous
plane-wave term determines this). The Coulomb near-
shell relation has been derived before by several au-
thors. ' Its statement here serves as a reference point
and allows the introduction of needed notation.

In order to derive a relation for the modified Coulomb
potential similar to Eq. (2.9), and something similar
might be expected since the potential's asymptotic form
is Coulombic with charge Z„we expand f and g in terms
of the Coulomb functions f' and g':

f (pr) =cos6f '(pr)+ sin5 g'(pr) =f '(pr),

g (pr) =cos5 g'(pr ) si—n5 f'(pr) =g'(pr ) .

(2.11a)

(2.11b)

=dk(k +p)[D (k, oo )+iDf(k, oo )] (2.12)

by partially integrating the derivative terms twice.
Consequently, if we add and subtract H'(k, p) in Eq.

(2.5) and replace H' by the equivalent form e' H', we ob-
tain

It is assumed here that r is greater than the cutoff radius
of the short-range modification of the Coulomb potential,
or, if no such radius is easily identifiable, that r is large
enough for these forms to be as accurate as desired. A
superscript a will, in general, denote the use of the func-

tions f' and g' in an equation. Asymptotic forms for f '
and g' are readily deduced from Eq. (2.4).

It is now convenient to define two difference integrals,

Df(k, b)= f dr j (kr)[f(pr) f'(pr—)],
0

Dg(k, b)= f dr j(kr)[g(pr) g'(pr—)],
that remain well defined for k =p, even for b going to
infinity. Using these and the differential equations which

f, g, f ', g', and j satisfy, we can write

—p '[H(k, p) —H'(k, p)]

u(k p, r)=dk(k+p)[[V(k, r)g(pr) —Q(k, r)f (pr)]+[D (k, oo )+iDI(k, oo )]f(pr)I —p 'e' H'(Z„k p)f (pr) . (2.13)

The near-shell approximation to u is now seen, with use
of Eq. (2.13), to be

u(k p, r)=Q(Z„k,p)e' + 'f(pr)+O(dk) . (2.14)

This relation, in which the asymptotic charge Z, ap-
pears, has precisely the same form as for a pure Coulomb
potential [Eq. (2.9)], even though the function f on the
right-hand side represents scattering from the full poten-
tial and not just the Coulomb part. The validity of Eq.
(2.14) relies critically on the appearance of Df and Dg in

Eq (2.13). Note . the implicit dependence of o on Z, .
Let us denote a continuum eigenstate satisfying the

outgoing-wave boundary condition by Pz . Since Q is
partial-wave independent, the near-shell approximation
to fz+F can be readily derived from the above equation by
summing the partial waves. Gathering together here the
expressions for the various potentials, we have

Pz'F+(r) =Pz'+(r)+O(d„) (short range), (2.15a)

gq E(r)=Q(Z„k,p)gq (r)+O(dk)

(modified Coulomb) . (2.15c)

The derivation of Eq. (2.15c) has assumed no special re-
quirements of the potential beyond the boundedness of

gf, +z(r)= Q(Z, k,p)gf, +(r)+O(dk) (pure Coulomb),

(2.15b)

I

the integrals involved, which, in any event, is also re-
quired of the short-range and pure Coulomb cases. The
appearance of Z, in Q and the fact that Q multiplies the
full wave function is clearly a result of the validity of Eq.
(2.11): the "pathological" asymptotic behavior of the
Coulomb potential leads to the presence of Q. Although
the above derivation is limited to positive energies, E g 0,
a generalization to negative energies should be possible if
the appropriate negative-energy Green function is intro-
duced. We do not pursue this point here.

III. NEAR-SHELL BEHAVIOR
OF THE OFF-SHELL T MATRIX

In this section the full T matrix is first introduced and
then partial-wave analyzed. Manipulations involving f'
and g' similar to those of the preceding section are car-
ried out next, leading to the near-shell limit for the par-
tial T matrix. Summation of the partial-wave com-
ponents once again gives the result for the full T matrix.

The full T matrix is defined, using the off-shell scatter-
ing state, as

(3.1)

The form of the potential in Eq. (3.1) is as yet unspecified.
A partial-wave analysis



38 LIMITING BEHAVIORS OF OFF-SHELL SCATTERING %'AVE. . . 639

T~. ~(E)=(2m lkk') g (21 + I)Tl(k', k,p)P((k'. k) (3.2)
1=0

TI(k', k,p)=2 f drj (k'r) V(r)u(k, p, r)
0

(3.3)

gives
for the partial T matrix. When Eq. (2.13) is inserted for
u, we find

TI(k', k,p)=dk(k +p) 2f drj (k'r) V(r)[V(k, r)g(pr) —Q(k, r)f(pr)]
0

+[Dg(k, oo )+iDf(k, ao )]F(k', ao ) —p 'e' H'(Z„k, p)F(k', oo ) .

From this equation, an expression for the pure Coulomb, partial T matrix TI can easily be derived. Noting that the
D functions and 5 vanish in this case, we find

Tf (k, k', p)=2d~(k+p) f drj (k'r)V'(r)[9'(k, r)g'(pr) —9'(k, r)f'(pr)] —p 'H'(Zk p)F'{k', ao) .

A relation between asymptotic and Coulomb wave functions, useful in performing some further manipulations, is

g'(pr)f'(pr') f {pr)g—'(pr') =g'(pr)f'(pr') f'(pr)—g'(pr'), (3.5)

an equation obtained with the use of Eq. (2.11).
We now consider the difference of the modified and pure Coulomb partial T matrices. Our aim, as in the preceding

section, is to produce an equation which isolates terms proportional to dl, or dk . Inserting Eq. (3.5) into the T-matrix
difference and rearranging, we get

TI —Tf =2dk(k +p) f dr j(k'r)(( Vg —V'g')V(k, r) (Vf —V'f')Q(—k, r)
0

+ V'Ig'[Df(k, r) Df(k, oo )—] f'[D (k—, r) D(k, oo—)) I )

+p '([F(k', ao ) —F'(k', ao )][(k —p )[D (k, ao )+iDf(k, ao )] e' H'(Z—„k,p )]

H'(Z„k, p—)[e' F'( k', ao ) F'( k ', a—o ) ]}+dk ( k + p) [9'(k', ao )+i 9'(k', ao ) ]Df(k, ao ) .

Some further tedious manipulations involving the use of Eq. (2.12) and the replacement of H' by its equivalent form
e' H' lead to the final form,

TI —TI'=dk(k +p) 2 f dr j(k'r }((Vg—V'g')P(k, r) —( Vf V'f')Q(k, r—)
0

+ V'I g'[Df(k, r) Df(k, oo )) —f'[Dg(k, r) —Dg(k, ao )]) )—

—[D (k, oo )sin5 —Df(k, oo )cos5] f W[g'(pr)j (k'r)]) „0+e' H'(Z„k', p)Df(k, oo )

+dk (k'+p )H(kp)DI(k', ao ) H'(Z„k', p )H—'(Z„k,p )p 'e' sin5 . (3.6)

As k, k' approach p, the terms containing dk, dI, . go to
zero. Note further, in particular, that the integrand of
the r integral decreases suSciently fast enough at large r
to allow a convergent integral. The one term which does
not contain any energy-difference factor is the last one. It
provides the leading term for small energy defects.

Before writing the near-shell approximation down, we
first recall the form of the 1th component of the short-
range part of the full (on-shell) modified Coulomb scatter-
ing amplitude, namely,

I I'(p)=p '(e' sin5)e ' (3.7)

I I' measures the extra scattering due to the short-range
potential beyond that arising from the Coulomb poten-
tial. When there is no Coulomb part, 6 becomes the
phase shift for a strictly short-range potential.

Finally, considering Eq. (3.6) and assuming that dk and

dk are small, we find, upon inserting the previously stat-
ed near-shell result for H' [Eq. (2.8)], the desired relation

[TI{k',k,p) —TI'(k', k,p }]Ikk'=—Q(Z„k',p }Q(Z„kp)+j"(p}+O(dl,)+O(d„) . (3.8)

Since Q is not 1 dependent, we can sum the partial waves to obtain the full T-matrix relation: Q multiplies the full am-
plitude.

Combining Eqs. (3.2) and (3.8) with the limiting form for the full Coulomb T matrix [Eq. (3.9b) below], we can write
down the limiting behaviors of the full T matrix for all three types of potential considered here. Collecting the results,
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we find

Tz', z(E) = 2—n+z'. z(E)+O(d& ) (short range},

Tf,. z(E) = —2m Q(Z, k', p)Q (Z, k,p )+z. z(E)+ O(d„)(.pure Coulomb),

Tz. z(E)= —2mQ(Z„k', p)Q(Z„k, p)[/ z z(E)+Qz'z(E)]+O(di, )+O(d„) (modified Coulomb) .

(3.9a)

(3.9c)

Equation (3.9c} reduces to Eq. (3.9b) when there is no
short-range modification and to Eq. (3.9a) if there is no
Coulomb part (Z, =0). The full Coulomb scattering am-

plitude, in a generalized form, ' is given by

+z j(E)=(2Z/~ k' —k
~

)e '[
~

k' —k
~

/(k'+k)]

with cr 0 denoting arg I ( 1+i v)
In Eqs. (3.9a) and (3.9b) we note that only d„ is as-

sumed small. The derivations of the near-shell approxi-
mation to the full Coulomb T matrix given in Refs. 5 and
9 show explicitly using analytic representations that ei-
ther dI, or dl, alone need to be small. We have chosen
the former to be the case here. The same is true of the
short-range case in Eq. (3.9a). For Eq. (3.9c), on the oth-
er hand, both dI, . and dI, need to be small. The dj, . term
in Eq. (3.6) is multiplied by Df and thus it vanishes for
the cases (3.9a) and (3.9b).

IV. APPLICATION TO A REALISTIC
ATOMIC POTENTIAL

We present in this section a specific study of the off-
shell wave function and T matrix near the energy shell.
Basically, we consider in Eqs. (2.13) and (3.6) the magni-
tude of the correction terms proportional to dI, and dI, .
While there are very many interesting modified Coulomb
potentials, one that is of particular importance is the
Hartree-Fock-Slater (e.g. , Hermann-Skillman) poten-
tial. ' It is an approximation to the true Hartree-Fock
potential in which an atomic electron movers; the approxi-
mate character of the potential derives from a local treat-
ment of exchange effects following Slater. '

We choose, in particular, to use the K-shell potential in
neon as this has application to electron capture from a
target atom by a fast, heavy projectile ion. In the case of
an incident proton, the final binding energy of the cap-
tured electron is one-half of an atomic unit. For impact
energies from 400 keV to 5 MeV the scaled wave-vector
defect d„=(k —p)/p in the off-shell wave function typi-
cally assumes values from 10 —10 . Results in the
range 10 ' —10 for p values of 2, 6, 10, and 14 a.u. are
presented here to provide a somewhat broader perspec-
tive on the approximate forms.

An explicit numerical construction of u runs as fol-
lows. The Numerov method is used to obtain f, g, f',
and g'. The 1th radial Green function is formed from the
first two functions and then u is generated using Eq.
(2.13) by a Simpson's integration. A further Simpson's
integration provides for the wave-function averaging.
Actually, only terms in Eqs. (2.13) and (3.6) linear in d&

are kept in calculating' u and TI and therefore the re-
sults fop dI, =0. 1 are to be viewed cautiously as concerns

I

accuracy. We have employed also a linear approximation
to H' (see Appendix). Equations (2.13) and (3.6) are espe-
cially conducive to numerical calculation involving as
they do functions which go to zero at large radii or are
even zero beyond the finite-range modification of the
Coulomb part of the potential. A double-precision (15
significant digits) program written in BASIc was used for
the calculations. The program was checked by compar-
ing the present u for short-range and Coulomb potentials
with selected results from Ref. 6. Regular and irregular
wave functions were checked for reproduction of
Manson's phase shifts' and for correctness of the Wron-
skian. Generally, f, g, f ', and g

' were accurate to five di-
gits, leading to errors in u and T& of 1%. All calculations
were performed on a Zenith ZF-148-42 personal comput-
er.

Since we are interested in an average picture of the
magnitude of the correction terms in Eq. (2.13), it is not
especially useful to show wave-function plots. Rather, we
consider the difference of the Ith of-shell and near-shell
radial wave functions divided by the near-shell one in-
tegrated from zero to some finite radius r0. We use a
finite upper limit since the near-shell approximation to u

eventually breaks down at larger r (because the asymptot-
ic forms of the two wave functions are different). The
capture problem provides us with a convenient choice of
radius, namely, that for which the neon K-shell bound-
state wave function has significant amplitude, say, 1% of
its maximum value. This occurs at 0.882 bohr or at
roughly 8 times the Bohr radius of the K shell in neon.
Although our definition of wave-function defect is neces-
sarily arbitrary, we note that the majority of the contri-
butions to a matrix element involving the continuum and
ground-state wave functions would, in general, come
from radii less than the chosen value.

The integral is, in addition, divided by the length of the
radial integration interval and scaled by the wave-vector
defect. Our scaled, averaged wave-function defect is thus
defined as

~ rodi,
~

'PJ drr
~

Re[I(r)]
~

+i
~
1m[I(r)]

~ I, (4.1)
0

where

u(k, p, r) —Q(Z„k,p)e' + 'f(kr)
I(r) =

Qei(a+5)f (kr)

P denotes a principal-part integration which is necessary
due to the zeros off (pr). We recall the implicit l depen-
dence of u and f.

Figures 1 and 2 show the scaled averaged absolute
values of the real and imaginary parts of the wave-
function defects versus the wave-vector defect dI, for
various p. The bulk of the oscillations seen in these
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FIG. 1. Average absolute values of the (a) real and (b) imagi-
nary components of the scaled, l =0 defect of the radial off-shell
wave function from the near-shell wave function divided by the
near-shell wave function are shown vs the scaled wave-vector
defect. A complete definition of the defect is given in Eq. (4.1).

FIG. 2. Average absolute values of the (a) real and (b} imagi-
nary components of the scaled, l = 1 defect of the radial off-shell
wave function from the near-shell wave function divided by the
near-shell wave function are shown vs the scaled wave-vector
defect. A complete definition of the defect is given in Eq. (4.1).
Curve designations are as in Fig. 1.

figures and in Figs. 3 and 4 are a result of the phase fac-
tor [(k —p)/(k+p)]'" in Q. For low energies, p =2, the
rapidity of the oscillations is greater because v is larger
and the ofF-shell contributions are very sma11 indeed.
With increasing energy, i.e., for p =6, 10, 14, the oscilla-
tions slow and the errors grow. The imaginary parts are
rather smoother, except at the lowest energies, and in-

crease faster at higher energy due to the irregular func-
tion contribution in D . The p =6 curve in Fig. 1(a)
shows that in certain energy ranges a more pronounced
error can occur. Overall, though, the deviations are rela-
tively small and roughly of the magnitude of dk. In an
actual application smaller deviations can be expected be-
cause of cancellation effects, i.e., the worst-case situation
presented here is not likely to be realized in practice.
When accuracy of a few percent is desired, as in the cap-
ture problem, the approximate forms should prove ade-
quate. Higher partial waves could be problematic, but
they have smaller overlaps with the ground-state wave
function.

We next consider the partial T matrix Ti(k, k', p ). fhe
pure Coulomb term has been studied elsewhere6 and need
not be considered further here. In order to keep the dis-
cussion relatively simple, we restrict k and k' to be equal

and consider the difFerence of the short-range part of the
partial T matrix with the corresponding component of
the near-shell scattering amplitude divided by that com-
ponent. This quotient is once again scaled by the wave-
vector defect dk. Explicitly, we have

di, 'I [Ti(k,k,p) Ti'(k, k,p)]—
+p'[Q(z. k p)]V'i'(p) j/(p'QV i') (4»

for the partial T-matrix defect.
In Figs. 3 and 4 we show, respectively, the absolute

values of the real and imaginary parts of the I =0 and 1

scaled defects of the short-range part of the partial T ma-
trix. The oscillatory nature and zeros of the defects are
even more apparent in these figures, with the smaller
periods reflecting the appearance of Q in Eq. (4.2). The
partial T matrix for the pure Coulomb problem also has
zeros, but unlike that case the zeros in the real and imagi-
nary parts of TI —TI' here do not occur at the same ener-
gies. Consequently, the case of no efFective scattering
cannot occur though scattering could possibly be due
solely to the short-range part of the potential. Lastly, an
envelope function determines the magnitude of the oscil-
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FIG. 3. Absolute values of the real part of the scaled defects
of the (a) 1=0 and (b) 1 =1 short-range, partial T matrices from
the corresponding components of the near-shell scattering am-
plitude divided by the respective components are shown vs the
scaled wave-vector defect. A complete definition of the defect is
given in Eq. (4.2). Curve designations are as in Fig. l.

FIG. 4. Absolute values of the imaginary part of the scaled
defects of the (a) 1 =0 and (b) 1 =1 short-range, partial T ma-
trices from the corresponding components of the near-shell
scattering amplitude divided by the respective components are
shown vs the scaled wave-vector defect. A complete definition
of the defect is g&ven in Eq. (4.2). Curve designations are as in

Fig. l.

lations and the I =1 terms are generally smaller than the
I =0 ones. Comparison of Figs. 3(a) and 4(a) shows a
more slowly varying contribution to be present also. The
defects for the T matrices are smaller than for the wave
functions and of the size of dk. For high-energy electron
capture, ' defects of the order of 0.001 arise; limiting
forms for the two partial waves discussed here would be
applicable in this range.

established. Our method, though not employing a first-
principles two-potential formalism, is nevertheless orient-
ed in this direction and indicates the need for more work
along this line, particularly in regard to placing bounds
on the factors multiplying the energy defects. Establish-
ing such bounds would offer a broader statement of the
near-shell errors which we have described briefly here
from a numerical point of view.

V. CONCI. USION

In this paper we have derived another link between
off-shell and on-shell scattering. By separating the
short-range part of the potential from the pure Coulomb
part and adding and subtracting the asymptotic forms of
the continuum eigenfunctions, the near-shell behaviors of
the off-shell wave function and T matrix for a modified
Coulomb potential have been shown to mimic those al-
ready known to exist for the pure Coulomb case. The
limiting forms for a much wider class of potential is thus
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APPENDIX

We derive here an approximation for the function H (Z, k,p) [Eq. (2.6) for a Coulomb potential] containing the lead-
ing term and terms linear in dt, . Our starting point is Eq. (20) of Ref. 11, which in our notation assumes the form

G'(k, ~)+iF'(k, ~)=[p(l!)e""~
~

I (I+1+iv)
~

']{Xt(1+1k)+Im[Pt(' ' ' '(u)]+ 2F, (l,iv, 1+iva)PI '"'"'(u)

—zF, ( l, iv, 1+iv, 1/a)Pt'"' '"'(u) j .

The variables in this equation are defined

a=dk/(2+dk) u =[1+dk+1/(1+dk)]/2 .

PI"'(u) is a Jacobi polynomial and Xt(1+dk ) is another polynomial which is defined in Ref. 11, the first few of which
are Xo=X& ——0, X2 ——v (1+dk)/2, and X3 ——v [7(1+dk) +5]/12.

For dk small, we introduce the first-order approximations a =dA /2 and u =1. Using these we obtain

2F, ( l, i v, 1+iv, a ) = 1+ivd„ /2(1+i v ),
P'" '"'(u) =P'"' '"'(1)= I (l +1+iv)/I (1+iv)(l ~)

1+dk ) =Xt(1)+Xt(1)dt, ——1 —Re[PI ' "(I)]+X(t1)d k

and, by analytic continuation,

2F&( l, iv, 1+iv, 1/a) =
~

I (1+iv)
~

e ""[(k p)/(k +—p)]'"+ivdk/2(1 iv)—.

It has been assumed that k ~p in deriving the latter expression.
Combining the approximate forms, we find

G'+iF'=p(l!)e "
~

I (i +1+iv)
~

' pe —' I (1 iv)[(k——p)/(k+p)]'"e'

+dk(pe "
~

I (i +1+iv)
~

'{(l!)XI(1)+Re[ivt (l+1 iv)/—(1+iv)I (1 iv)] j—) .

The Wronskian of the irregular Coulomb function g' and j is

{W[g'(pr)j (kr)]j„=o[p(l!)e "
~

I (I+1+iv)
~

'](k/p)'+'=p(l!)e "
~

I (i+1+iv)
i

'[1+(1+1)dk] .

Thus, the final result for H' is seen to be

H'(Z, k,p)=G'+iF' {W[g',j—]j„
= —pQ(Z, k,p)e' +dt, [pe"'

~

I'(I+1+iv)
~

']

X {(l!)[X,'(1)—(l + 1)]+Re[tvt (l +1 i v)/(—1+iv)1'(1—iv)] j,
where Q is defined in Eq. (2.10). Note the entirely real contribution of the linear terms.
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