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Combining Kramers's energy diffusion (at temperature T) with dissipative quantum tunneling
{through a parabolic potential-energy barrier with curvature frequency cu& and height Ub), a model
for a localized metastable state (with harmonic frequency mo) is formulated and solved exactly for its
quasiequilibrium distribution p(E) and its decay rate I . It is shown that p remains locally extremely
close to (although it essentially differs from) the Boltzmann distribution, unless the Ohmic friction
coefficient A, is extremely small (of order I ). Excluding this latter possibility, the ensuing decay rate
is discussed for various temperature and friction regimes. It is shown to comprise several known re-
sults as special cases. First, an extended version of Bell s formula is shown to be valid in the strong-
to-moderate friction regime. It involves the recently discovered crossover between thermal hopping
and quantum tunneling at temperature To=fuc~b/2nk& (where ~ is Kramers's viscosity correction
factor). At high temperatures and very strong damping the result neatly reduces to Kramers's
Smoluchovsky-limit formula. At zero temperature friction strongly suppresses the decay. Second,
in the very weak friction regime I is shown to reduce to an extended version of Melnikov's formula.
At high temperatures it equals Kramers's small-viscosity result, whereas at zero temperature and
zero damping it attains the expected quantum value, the crossover again being at To. Third, in the
classical limit (h'~0) an extended version of Biittiker, Harris, and Landauer s [Phys. Rev. B 28,
1268 (1983)] result is recovered, now valid for any value of the damping. Finally, some remarks are
made in relation to recent cryogenic measurements on metastable Aux states.

I. INTRODUCTION

Metastable states seem to be the rule rather than the
exception in nature. In any case, they can be said to be
involved in a variety of interesting phenomena such as
chemical reactions, ' nuclear fission, ' the dynamics of
Josephson junctions, and the possible decay of our
own physical universe. ' '" In many cases it will be possi-
ble to indicate one specific "reaction" coordinate, such
that the decay process can be described as the motion of
a particle in a one-dimensional potential U(x). The par-
ticle is initially caught in a local potential hole which is
separated from another lower-lying region by a high but
finite potential-energy barrier, as shown in Fig. 1. The
height of this barrier is typically taken to fulfill
Ub »max(ks T, trito), where co is a characteristic local fre-
quency in the problem, e.g., the harmonic-oscillation fre-
quency coo in the potential hole. Under the —often
implicit —assumption of a sufficiently strong dissipative
coupling of the reaction coordinate to the environment
(the thermal bath), the particle will essentially be caught
in its local equilibrium Boltzmann distribution. Howev-
er, this can, in fact, only be a quasiequilibrium state in
view of the particle's finite chance to escape from the hole
either by (classical) hopping over or by (quantum-
mechanical) tunneling through the barrier.

Much effort has been spent on the escape phenomenon,
from the early hours of modern notions about either clas-
sical stochastic processes' and statistical mechanics' or
quantum mechanics, ' until today. ' The basic struc-
ture of the decay rate is that of a very small exponential
factor (a Boltzmann factor in the thermal regime and a

Gamov factor in the quantum regime} which sets the or-
der of magnitude, multiplied by a prefactor (the so-called
attempt frequency to, }. The general dependence of the
decay rate (and, in particular, of the prefactor) on such
properties as the nature and strength of the dissipation,
the temperature, and the properties of the potential is not

Ub-
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FIG. 1. Typical potential for a metastable system.
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yet fully understood. And, despite some recent progress
with metastable Josephson junction devices, ' ' the
experimental data often involve insufficiently known pa-
rameters. Evidently, a better theoretical framework
could stimulate further experimental effort.

The classical theory of noise-activated rate processes
essentially dates back to the seminal 1940 paper' by
Kramers, providing a dynamical framework for the origi-
nal concepts of Arrhenius for chemical reactions. Kra-
mers studied the problem of Brownian motion in a meta-
stable potential and calculated the escape rate (i.e., the re-
action velocity) I from a stationary diffusion current at
the top of the barrier. For a high barrier (Ub»kttT)
this typically yields a result of the form

CO —pUI= e b,2'
where P= 1/k~T. The attempt frequency to, can be in-

terpreted as the frequency with which the particle strikes
the potential-energy barrier. For a smooth barrier, with
a frequency cob defined by the parabolic nature of the
peak region, Kramers found co, =shoo where

a=[1+(A,/cob) ]' —
A, /cob,

being the Ohmic friction coefficient. ' ' For
strong damping (A, /cob ))1) this result neatly reduces to
the correct Smoluchovsky-limit (easily obtained from an
inverse friction expansion' ) expression to, =cootob/2A, .
On the other hand, in the zero damping limit one would
end up with co, =coo, which is the value given by simple
transition state theory ' ' and which implies the —as
noted earlier, au fond incompatible —assumption of full
equilibrium even up to barrier peak energies.

Kramers solved this latter paradoxical situation by
considering the very weak damping regime
A, /cob «1/pUb «1 as a separate case. Studying the
problem as Brownian motion alang the energy coordinate
he found co, =2AcopIb, where Ib is the classical action in
the potential well at (or at least close to) the barrier peak
energy. In fact, this result was reached only for a sharp-
edged barrier (e.g., a sharply cut off perfectly parabolic
potential hole). Nevertheless, Kramers's strongly sug-
gested it to be a very reasonable result also for other cases
even though, strictly speaking, near a smooth barrier's
peak energy E=Ub the classical oscillation frequency
co(E) through the potential hole becomes very small, so
that even a slow rate of dissipation may have a significant
inliuence. Fortunately, the result for the escape rate is
practically insensitive to these details of to(E), as will be
clear from the model to be discussed in the present paper.
Not only will the correctness of Kramers's intuition be
confirmed, but his cautious treatment of energies ap-
proaching Ub will be seen to provide the insight for the
mechanism connecting weak and strong damping re-
gimes.

Perhaps Kramers's "anyhow somewhat less exact" and
rather special treatment of the extremely weak damping
case explains why the result was not appreciated ' until
it was rediscovered as late as in the 1970s. An interest-
ing variety of theories —and, hence, formulas for the de-

cay rate —then surfaced in order to describe the inter-
mediate friction range. ' ' ' ' ' lt is important to
note that these theories are entirely classical and that for
most of them it is by no means obvious how they can be
generalized to include quantum effects. For that matter,
here it suffices to mention only the theory of Biittiker,
Harris, and Landauer, which does allow such an exten-
sion as will be shown in the sequel.

If the temperature is decreased (i.e., P increasing), the
classical decay rate (1.1) rapidly decreases. On the other
hand, quantutn-mechanical tunneling will begin to play a
role. Above a characteristic crossover temperature
To=fuctob/2n. ktt the quantum effects mainly provide a
correction to the exponential prefactor, the attempt fre-
quency co, . Below To, however, the tunneling decay will

be dominant and the escape tends to settle for its nonzero
vacuum value. The result becomes typically of the form

—s rab

2' (1.2)

where Sb is the mechanical action ' under the barrier (i.e.,
in the classically forbidden region), and where, in general,
the attempt frequency to,'&to, . The rate (1.2) is nonzero
even at strictly zero damping A, =O, although as men-
tioned earlier (see also Sec. III A 2) in that case the initial
energy distribution inside the well requires careful con-
sideration.

The earliest interest in (1.2}occurred in nuclear physics
and Coulomb field scattering. ' Reference should be
made to a famous 1928 paper by Gamov. In order for a
quantity such as (1.2} to exist properly for an isolated
(i.e., nonthermal nondissipative) quantum system, one
needs running outgoing waves at the exit side of the bar-
rier. ' ' It is then easily understood how I appears as
a small imaginary part I = —(2/R)lmE to the pertinent
energy eigenvalue, usually for the local ground state (but
see Refs. 21 and 57). An apparently natural extension of
this notion to the quantum-statistical regime is the re-
placement of the mechanical energy E by the free energy
F= —(I/P)lnZ, where Z is the system's (quasiequilibri-
um) partition function. This intriguing idea, originally
put forward by Langer in his important 1967 paper on
classical nucleation, ' paves a way to treating tunneling
systems at elevated temperatures' and more recently in-
cluding dissipation 20, 25, 32, 58 —m The method involves
instanton-type theoretical techniques' "" to evaluate
the path integral for the partition function. ' ' ' It ap-
pears to be quite powerful, but above the crossover tem-
perature To—in the classical limit —it yields Kramers s
moderate damping result for I. That is, with A, =O it
reduces to the incorrect transition state theory value.

In his 1981 Letter' Affieck pointed out that —within
the omnipresent semiclassical approximation —the I as
obtained following Langer's "imaginary part method" is
essentially identical to a Boltzmann distribution average
of the tunnel current I (E). Affieck's text does not refer
to any dissipation whatsoever, but from the involved ex-
act equilibrium distribution (and the resulting transition
state value at high T) it is clear that his original con-
siderations in fact only apply in the moderate damping
regime. Similar remarks apply to the work of Bell. '
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Nevertheless, the notion of the decay rate as an appropri-
ate energy average of a quantum-mechanical probability
current across the barrier is physically at least as plausi-
ble as Langer s definition. Fully exploiting it, however,
requires a self-consistent dynamical calculation of the ap-
propriate deviations from the exact Boltzmann distribu-
tion as they arise ipso facto from the very existence of
the decay process.

Fortunately, when viewed in this manner the problem
becomes close to being the quantum generalization of
Buttiker, Harris, and Landauer's mold' of Kramers's
classical weak damping analysis. Apparently indepen-
dent first steps in this direction were done by Melni-
kov, ' who formulated an energy integral equation for
the distribution function (see further Refs. 49 and 50),
and by Rips and Jornter. This has yielded the very
weak damping result of Kramers plus tunneling correc-
tions; however, it still fails in both the strong damping
classical and quantum-mechanical low-temperature lim-
its.

In the present paper an exactly solvable model will be
presented which does extend the Buttiker, Harris, and
Landauer theory into these two directions. That is, apart
from containing Melnikov's result as an approximate spe-
cial case, it (i) correctly describes the Kramers-
Smoluchovsky strong damping limit plus quantum
corrections and (ii) properly includes the pure quantum
limit. By virtue of the self-consistent dynamical nature of
the model it also allows us to show that —with quantum
effects being there (i.e., fr&0)—letting the dissipation go
to zero ultimately (if A. « the quantum decay rate I'0)
prevents the system from reaching or maintaining a local
Boltzmann-like distribution even for energies at the bot-
tom of the metastable well. Of course, the theory also
has its limitations, e.g. , (i) it cannot yet accommodate
dissipative cases other than Ohmic ones and (ii) the exact
solvability is restricted to a perfectly parabolic barrier.

In Sec. II the model will be formulated, in Sec. III it
will be solved both for its quasiequilibrium energy distri-
bution and for the decay rate, and in Sec. IV it will be
d&scussed.

II. THE MODEL

The model basically consists of three interrelated
dynamical ingredients: First, energy diffusion inside the
potential well; second, deterministic classical barrier peak
dynamics; third, dissipative quantum-mechanical
transmission.

2AI(E) «E with I(E) being the classical action in-

tegral. For instance, for a perfectly parabolic well one
has I=2rtE!coo, which would imply 4vrilco, o «1. For-
tunately, as far as the decay rate is concerned it will be
seen that this condition can be relaxed considerably.

Then, following Kramers' (see also Refs. 19, 22, 44,
and 64), transforming the classical bivariate Fokker-
Planck equation for p(x,p ) to x and E coordinates and
averaging along the x coordinate over one oscillation
period, one obtains

B Bp Bp=u,v(E)I, P +k, T P —r(E)p(E),
Bt BE BE

(2.1}

where v(E)=dE jdI, where advantage has been taken of
the property that (at least for a parabolic barrier) I= Ib is
almost constant in the classically important energy range
near E= Ub, and where the as yet unspecified escape rate
I (E) represents the metastable character of the system.

It may be noted that the attempt rate v(E) goes to zero
at the barrier peak energy —at least for a smooth
barrier —but using its above-given definition the explicit
occurrence of v(E) in (2.1) can easily be avoided by con-
sidering the diffusion current along the action coordinate
instead of the energy coordinate. The subsequent
analysis for p(E) must, however, be done entirely in

terms of the energy variable. Actually, in Sec. II B it will

become clear that the steady-state energy density is essen-

tially independent of v(E). See also Sec. II B.
Another comment on (2.1) concerns the undetermined

factor a multiplying the outgoing flux I (E)p(E), intro-
duced by Biittker et al. ' (see also Refs. 45, 49, and 50)
in order to account for the fact that the density in phase
space near the barrier peak differs in general from the
density averaged along an orbit in the well. Although
such a factor should indeed exist, it is not included here
since —even in the classical domain —it will be a rather
complicated function (not only of the friction A, and the
temperature but also of the energy E) which cannot be
determined within the context of the present simple mod-
el. Therefore, actually in line with the global findings of
Ref. 19 (see also Ref. 46 and 48), the current value of this
factor a will be set equal to 1.

In the weak damping limit the main role of the
diffusion terms in (2.1) is to provide the correct classical
particle current for the escape process. On the other
hand, in the strong damping limit their principal conse-
quence will only be to enforce the local equilibrium
Boltzmann distribution

p, (E)=13fmoe (2.2)

A. Energy difFusion

If the (Ohmic} damping rate A, is sufficiently small such
that the phase-space density p(x, p)—x being the
particle s position, p its momentum —is practically con-
stant along trajectories of given energy, then the leading-
order effect of (thermal) Brownian motion will be
diffusion along the energy coordinate. By a sufficiently
small A. is meant here that the energy loss per
(semi)classical round trip through the potential minimum
should be much smaller than the energy itself, i.e.,

with increasing precision. In the heavy damping regime
the actually important dynamical properties will —in
Sec. II B—be seen to be those of the dissipative ballistic
barrier dynamics rather than any details of the energy
diffusion. In fact, in the high friction limit the result for
the decay rate will not depend any more on lb. It is these
features which allow the extended use of (2.1) far into the
Smoluchovsky regime.

The prefactor in (2.2) arises from the (semi)classical
normalization fdx f dp p(E}=1 taken in the local har-
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monic approximation, so that tJidx (dp ldE) =r(E)
representing the classical oscillation period —equals
r(E)=2m/coo See further Sec. IIIB, where it will be
shown that the above replacement of the actual g„by
the (seini)classical energy integral with measure r(E)dE is

particularly fit for the averaging of I (E), since I (E) is
proportional to v(E) according to (2.3), while always
v(E)r(E) = l. In (2.2)—and also in Sec. III—one easily
reinserts, however, the true partition function expression,
i.e., Zo '=2sinh( —,'Pficoo) in the harmonic-well approxi-
mation, in lieu of its semiclassical liinit Pficoo. See also
Refs. 18 and 21. Of course, any semiclassical analysis
fails if A'coo!Ub is not small (see, e.g., Ref. 3, especially
Sec. 3.6.3 and Ref. 66, especially Sec. I).

B. Classical barrier dynamics

In the classical (semiclassical) case the escape process
takes place mainly within a relatively narrow energy
range above (around) E= Ub, roughly of the order of
~5E~ &max(kit T,ficob), which in terms of distance away
from the barrier peak amounts to a

5x a max(Qkii T/Ub, +Acot, IUb ),
where a is typically the spatial distance between the top
of the barrier and the potential minimum, while
throughout k~TIUb &&1 and ficob/Ub && l. It is this
small energy range

~
5E

~
into which the diffusion

process —as described by the first contribution on the
right-hand side (rhs) of (2.1)—should properly supply
particles coming from the potential minimum. However,
as already noticed by Kramers, close to the barrier max-
imum the assumption of weak damping implied in (2.1)
becomes moot for a smooth barrier peak. For instance,
for a perfectly parabolic barrier one easily calculates
co(E) =2m v(E) to be co(E)=cob/In( Ub/~5E ~ ) when

5E~O, so that the requirement 1,/co(E) &&1 leads to
~5E~ && Ubexp( —cob/i, ). Clearly, if A, /cob & 1 the energy
diffusion supply into the above-mentioned barrier peak
region has to be reconsidered.

On the other hand, it will be shown self-consistently
(en passant confirming recent findings from Grabert and
co-workers ' } that (i) in the strong damping limit the
classical escape regime extends ever deeper into the quan-
tum range of low temperatures, while (ii) the classical
strong damping escape rate is basically determined by the
Boltzmann distribution at E= U„ together with
deterministic —but essentially dissipative —dynamics in
the parabolic barrier peak region. Fortunately the pri-
mary consequence of the Brownian motion in (2.1) in the
large friction limit precisely is the enforcement with
sufficient accuracy of the required equilibrium distribu-
tion up to and including the energy range near E= Ub.
Therefore it makes sense to keep it as it stands even in
the heavy damping limit, on the premise that the barrier
dynamics is properly incorporated in the escape rate
r(E).

The (semi)classical escape rate r(E) can —at least if
the damping is sufficiently small —be taken to equal the
attempt rate v(E) inultiplied by the escape probability

P(E) at each attempt. Obviously, in the classical limit-
as originally studied in Ref. 19—P(E)=0 if E & Ub and
P(E)=1 if E & Ut„ i.e., p(E) is the unit step function in

that case. Let us more generally set

I (E)=zv(E)P(E), (2.3)

where ~ is an as yet unknown coefficient which incorpo-
rates the intended dissipative (classical) correction to the
escape current. Since the escape current is mainly deter-
mined by a very small range of momenta (of order
Qk iTi) near E=Ub, let us —in order to learn about
~—consider the ballistics of a particle in the barrier peak
region where U(x}=Ub

—
—,'cobx, for convenience taking

xb =0 here. Consequently, for the exact inverted parabo-
la the following analysis is exact.

The separatrix 4 is defined as the curve in phase space
which separates the domains of attraction of the spatial
regions on the left- and right-hand sides of the bar-
rier. ' ' ' Using Hamilton's equations of motion with
U'= —

coax, 4 is easily seen to follow from the ordinary
differential equation

dp!dx = —2A, +cobx /p, (2.4)

p(x ~'T) —[(co&+A. )'~ —
A, ]x =0, (2.6)

which tells us what momentum will be gained by a parti-
cle starting infinitesimally close to the top of the barrier
with an infinitesimally small momentum. Since it is pre-
cisely these momenta (taken to the exit side of the bar-
rier) which are involved in the escape process in the weak
noise (or deterministic) limit, the leading-order effect of
dissipation on the exiting current will be to decrease it by
the ratio

~=p(x
I V;~) lp(x I V;o),

so that

K —( 1+A, /co )' A/co— , (2.7)

which equals Kramer s's correction factor for large
viscosity. In the weak damping limit its influence on the
classical decay rate I will be seen (in Sec. IV C} to disap-
pear completely in a somewhat subtle manner. It is fur-
ther interesting to note that the above-given ballistic
weak noise arguments leading to Kramers's correction
factor ~ in the decay rate (2.3} also give the correct
answer for the diffusive motion in the heavy damping
limit. The understanding of this feature hinges on (i) the
linearity of the motion in the parabolic barrier region to
the effect that the propagator will be a Gaussian centered
at the classical ballistic trajectory (see, e.g., Refs. 44 and

where p =p(x ~4') denotes the value along 4', and where
p(0~4')=0. This yields

p(x iS)+[(coi, +A, )' +A, ]x =0 . (2.5)

Obviously, this result for 4 tells us what momentum is re-
quired, for a given value of x near the barrier peak, in or-
der to precisely wind up at the top. The second solution
arising from (2.4) defines another curve '7, perpendicular
to 4'. Namely,
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68, and Ref. 69, especially Sec. IV); (ii) the definition of I"

as the expectation value of the momentum for a value of
x at or beyond the barrier peak (see, e.g. , Ref. 12) which
essentially makes I proportional to p„; and (iii) the insta-
bility of the pertinent motion which —e.g., following a
particle, starting near the barrier peak with some x0,p0,
down the exit hill —is easily shown to imply that p, &

tends towards the value Kcobx, 1
for any x0,p0. It may fur-

ther be remarked that K should also be c;xpected to play
its role in the quantum regime as it is basically the linear-
ity of the dynamics which maps the average quantum
motion precisely onto the classical limit. Finally, notice
(and see further in Sec. II C) that for the marginally exit-
ing classical- particles the barrier appears as having an
effective dissipatively renormalized curvature frequency
K 69 71
KCOb .

S [x(r) I
= J dr[ ,'x—+U(x)]

8 0
+2 d7 d7k 7 7 x 7x 7

0 0
(2.9)

where the dissipative influence kernel may be given as

k(r)=g K(v )e™~, (2.10)

with m running from —~ to + ~ and with v =2m.m /0
representing the Matsubara frequencies conjugate to the
thermal period 8. For a perfect Ohmic environment
K(v )=(2A. /8)lv I, with the same classical friction
coefficient as before. For the parabolic barrier
U(x) = Ub

—
—,'cobx, and with

C. Quantum-mechanical tunneling

In the quantum-mechanical regime the nonzero value
of Planck's constant A basically modifies the escape prob-
ability P (E) per attempt. In the semiclassical (WKB) ap-
proximation the general expression for P (E) may be writ-

a$37 5$ 18$ 227 547 577 72/ 73

x(r) =gx(v )e

(2.9) is transformed into

S[x(v )/ =8Ub+8+( ,'co—b+——,'v +A, lv~ I)

Xx(v )x(v ) .

(2.11)

(2.12)

P(E)=1/(1+e ' ' ") (2.8)

where W(E) is the "classical" (Euclidean) action integral
under the (inverted) potential-energy barrier. In what
follows an expression for W(E) will be obtained for the
dissipative, exactly parabolic barrier. The derivation is
based on the low-temperature Ohmic version of Langer's
theory. ' Following Refs. 20, 25, 32, 58-60, 75, and 76
the system's Euclidean action (i.e., the nonextrernal time
integral of its thermodynamic action) reads

For energies below the barrier peak (temperatures
below the crossover To) the pertinent extrernal —saddle-
point —trajectory starts at 7=0 from a position in the
metastable well corresponding to energy E, such that
xb(0)=0 and xb(0)=+2(Ub E)/cob. S—ome time later
it reaches its exit point on the other side of the barrier,
from where it bounces back so as to return to its initial
position and velocity again at 7=8. Clearly, in view of
(2.11) one has

Q2( Ub E)—
xb(v )=

~b v ~b+2&l v

1

~ —~'b+ulv
I

(2.13)

It may be worth noticing that the actual physical ener-
gy E is defined in terms of the "true" barrier —namely,
E—

Ub =
—,'x b(0) —

—,'cobxb(0) —whereas the tunneling
motion, in fact, takes place in the "upside-down" barrier.
It is then easily seen that for energies above the barrier
peak there exists another valid extremal trajectory, name-
ly, with xb(0)=0 instead of xb(0)=0. Formally in that
case one can just analytically continue (Ub E)'~ as-
+i(E —Ub)' in (2.13) for the Fourier amplitudes [in ad-
dition, just in order to achieve the proper value of xb(0),
one divides by v rather than cob]. The remainder of the
analysis will not be changed.

Inserting then (2.13) into (2.12) the ensuing extremal
action Sb takes on the significance of Hamilton s princi-
pal function. Defining W(E) as the associated charac-
teristic function, ' ' i.e., W(E)=Sb E8, one-
obtains

2

W(E)=(Ub E)8 1+1—
~b+u Iv

(2.14)

I

Finally, the appropriate period 8(E) can be found self-
consistently now from the usual requirement that
8(E)= —BW/BE, which by (2.14) yields

1 g(v —cob+2A, lv I ) '=0 . (2.15)

8(E)=2m /[(cob+ A, )' —
A, ] . (2.16)

Recalling the definition (2.7) of I~, this can also be written
as 8(E)=2'/Knob It is, of course, r.eassuring that this
confirms the conclusion of Sec. II B. With (2.16) one thus
has

W(E) =
KCOb

(Ub E) . — (2.17)

Recalling that v =2m m /8( E), this condition can only
be satisfies if 8(E) is such that v —cob+2A, lv I

=0 for
some m =0,+1,. . .. Since at A, =O one should recover the
nondissipative value 8(E)=2m /cob, it is readily clear that
m = 1 is the correct choice. Hence
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Our model is now complete. It is defined by the energy
diffusion equation (2.1), with the escape rate being given
by (2.3). The dissipative factor v can be found in (2.7),
while the escape probability P(E) is specified by (2.8) and
(2.17). In the steady state dp/dt =0 (2.1) reduces to

tion reads

p=c, F(a, b;1+@;z)+c2(—z) "F( b—, —a;1—JM;z) .

(3.4)

Bp Bp2AI„+ks T =aP(E)p(E),aE ' aE' (2.18)

Near the bottom of the well one has E=O so that
—

y0 =2~U„/%~cob &&1, which implies

—z0 =exp( —2~ Ub /A'@co& ) && 1 .
with

P(E)= 1/[ 1+exp[2m( U~ E)/—Pi~cob] ) . (2.19)

III. EXACT SOLUTION

The feature P( U& ) =—,
' arises (i) because of the parabolic

nature of the barrier and (ii) since Ohmic friction is a
linear damping mechanism. If, e.g., the barrier were not
perfectly parabolic, then this feature would only be valid
within the WKB approximation (see Ref. 3, especially p.
33).

In order to study the behavior of p at large energies
E~~, i.e., ~z~~~, one invokes the pertinent linear
transformation formula (e.g., Ref. 79, formula 15.3.7}.
The two linearly independent solutions in (3.4) then corn-
bine into two new linearly independent solutions near
z= —~, one of which is seen to diverge ultimately like
(
—z) —having noticed from (3.2) that always b &0.

By an appropriate proportionality relation between c,
and cz the contribution from this exploding solution can
be set identically equal to zero. Redefining the remaining
constant as c0, one is left with

A. The quasiequilibrium distribution
p =ca( —z) 'F(a, b; 1+a—b; 1/z—), (3.5)

Let us consider the steady state dp/dt=0. Defining
the new variable y =2m(E —Ub)/%~cob, and the parame-
ters e=2AI~ /a and p=Pk~co~/2n, one h.as

—p" +p' =p/(1+e «),e 1

p p

a =
—,'p(1+ v'1+4/Pe),

b =
—,'p(1 —v'1+4/pe),

and putting p(z) =p(y (z) ), (3.1) becomes

z(1 —z)p" +(1+@)(1—z }p' abp=O . —

(3.2)

(3.3}

The general solution of this Gauss hypergeometric equa-

where a prime denotes differentiation with respect to y
and which must be solved subject to the boundary condi-
tion p(y ~ 00 )~0 sufficiently fast at least to ensure nor-
malization. Next setting z = —expy, introducing

which at high energies always vanishes faster than the
Boltzmann distribution. The coefficient c0 is determined
by normalization and can be expressed in a formally ex-
act way in terms of a generalized hypergeometric func-
tion (Ref. 80, formula 7.527.1), namely,

3F2(a, b, a;1+—a b, 1+a—;1/z0) .

However, for all practical purposes it suffices to require
that p(E) be equal to the local equilibrium Boltzmann
distribution (2.2) near E =0, apart from exponentially
small corrections [i.e., of order exp( 2n'Ublfuccob )]—. The
prefactor pfico0 in (2.2) is recalled to arise from semiclassi-
cal normalization, e.g. , letting g„p(E„)= 1, replacing the
sum by an integral and noticing that following WKB
theory ' ' dn /dE=(2rn6) 'dI/dE=r(E)/2M with
r(E) =2m. /co0 in the parabolic-well approximation. Final-
ly, transforming (3.5) back to the low-energy region z =0,
one obtains

p(E)=Phco0 (z/za) "F( b, —a;1 —p—;z)+( —za)" F(a, b;1+p;z)„I (a)I (1+a )I ( —p) F( b, —a;1—p—;za) .

(3.6)

1. Zero-temperature limit

From the occurrence of the quantity pe in (3.2) for a and b it is clear that the zero-temperature limit (p—+ ~ ) and the
zero-damping limit (e~O} are opposing one another. Since, however, it is generally suggested that quantum-
mechanical tunnel rates exist at zero temperature even for zero damping (i.e., for an isolated system), it is clearly of in-
terest to briefly investigate these two limiting regimes from (3.6}.

Let p~ ~, keeping all other parameters in the system fixed at nonzero finite values, so that a =p+ v while b = —v,
where v=hco~/2vre. This requires at least pe&&4, i.e., k~ T &&(A./2a)Ib. Since p=pfuao&/2n, if p~ ~ then a ~ ~ bu. t
b remains finite. Invoking Stirling's asymptotic formula for the pertinent gamma functions one then finds from
(3.6) that

F(@+v, —v;1+p, ;z0)
p(0)=Pfico0 1+(—z0)"

sinn@ pvl ~(v) F(v, —p —v;1 —p;z0)
(3.7)
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2. Zero-damping limit

If A, ~O, keeping all other parameters fixed at nonzero
finite values, then a =—,

' p+ g and b =—,
' p —g with

i) =p/&Pe —+ &a. To begin with this requires that Pe «4,
i.e., A, «2kii T/Ib. The pertinent asymptotic formula for
the hypergeometric function has been given by Watson
[Ref. 78, formula 2.3.2(17)]. The evaluation is slightly la-
borious but elementary. All occurring gamma functions
precisely cancel and the result reads

p(0)=Piricoo 1—1 —P, /2i)
1+@ 2rl

(3.8)

which is written as such in order to still recognize the
unit contribution from the genuine Boltzmann term and
the usually small corrections to it. Clearly, since with
Pe « 1 one has p/2i) « 1, the correction terms now scale
up to the same order of magnitude as the Boltzmann con-
tribution and precisely cancel it. What will be left is easi-
ly found to be a distribution proportional to ( —z}

I

If p ~ ao through a sequence of values excluding
p=1,2, ... and upon using the property

F(+p, + v;+p;zo) =(1—zo) +—"=1,
since ~zo ~

&& 1, one easily concludes that the nonequilibri-
um contribution near the bottom of the metastable well
always remains small of relative order ( —zo )"/p, i.e.,

( 2ir /Pfuccob )exp( —PUb )

if P—+00. In other words, local thermal equilibrium is
guaranteed down to zero temperature on the premise that
there exists at least some dissipation (i.e., e&0).

The excluded cases where p is an integer require a
more subtle analysis, but it is readily seen that the zeros
of sin(ir}Li) will be compensated for by poles in

F(v, —p —v;1 —p;zo) .

This again produces a finite result, typically applying in
exponentially small bands of p values of the order of
(
—zo ) around p =m, and which therefore clearly

represents a subset of measure zero. Rather than sad-
dling the analysis with the full details of these exceptional
cases (apart from the case p=l in some places), we as-
sume the pedestrian attitude (see also Ref. 3) that in mak-
ing actual calculations it will be more practical to avoid
values of p which are exponentially close to an integer
(note that in realistic cases 2nUb lficob.~ 20 so that

~ p —m
~

& 10 ) and to simply smoothly interpolate the
results in these regions.

the metastable system as described by (3.1) does not
maintain the proper local equilibrium distribution. Actu-
ally, this could have been expected as in that case the lo-
cal equilibration rate becomes much smaller than the glo-
bal decay rate I . Such exceptionally small friction values
will be disregarded throughout the sequel.

B. The decay rate

The decay rate is basically defined by

I = g I (E„)p(E„),
n=0

(3.9)

corresponding to the average value of the escape term in
(2.1). Within the semiclassical approximation the suin in
(3.9) is replaced by an integral in the usual manner.
Noticing that dn /dE=(2M) 'dI/dE on grounds of the
standard WKB analysis ' ' (see also Sec. IIIA) and
that dI /dE =r(E) represents the (semi)classical period of
the system's local dynamics, one obtains

I = f "r(E)r(E)p(E)dE/2m'�. (3.10)
0

Introducing (2.3) for I (E) and realizing that always
v(E)r(E) = 1—which as noted before is the crucial prop-
erty that makes the result for I practically insensitive to
the (semi)classical approximations —one has

r =f "~~(E)p(E)dE/2W, (3.11)
0

which is evidently equal to the integral over the right-
hand side of (2.18), divided only by 2iriii. But then it is
slightly simpler to do the equivalent integral on the left-
hand side of (2.18), which readily yields

A,Ib dp

E=0
(3.12)

Finally, invoking the explicit solution (3.6) for p(E} and
using the standard formula for the derivative of a hyper-
geometric function, the general result may be writ-
ten as

rather than to ( —z ) ". However, strictly speaking
Watson's formula applies in fact only under the condition
(compare with Sec. IV B}rl+ —zo ))1, i.e.,

e «(p /P)exp( —2m. Ub/A'cob ) .

That is to say, for exponentially small values of the fric-
tion, such that

A. /co, «(pirico„/2ir)(iii/2irI„)exp( 2' U—, /fico, ),

I =cop
ficob 1 —P

e F(1 b, 1 —a;2 —p;zo)—

I (a)I (1+a}I( —p, ) py, ab x,F 1+ 1+b 2+F 1+,1+b;2+@;

pF(a, b;1+p;zo)—F( b, —a;1—p;zo—) . (3.13)
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The parameters a and b have been defined in (3.2), while zo = —exp(yo }wiggy = —2~U /~co so that &y = —pU

IV. DISCUSSIGN

It turns out that all previously known pertinent formulas for the escape rate in separate parameter regimes are con-
tained even in a further simplified version of (3.13). Considering the underlying distribution p(E) from (3.6), it appears
that —in view of (3.12)—all cases of practical interest are still included even if the argument z =zo is set equal to zero
in the already relatively small nonequilibrium terms in the numerator —so that F(a, b; 1+pal ) = 1—and also setting z
equal to zero in the denominator —so that F( b,——a;1—pro) =1. That is, the subsequent discussion will be based
upon

p(E) =13&~0[e F( b, ——a;1 —p, ;z)+e I (a)I (1+a )I ( —p)ll (p)l (1—b)l ( —b)],
which implies the reduction of (3.13) to the most useful result

(4.1)

E'

I —670
ficob 1 —p

e F(1 b, 1——a;2 —p, ;zo)+e I (a)I (1+a )I {1—p)/I {p)l (1—b)I ( b)— (4.2)

Notice the general structure (see also Ref. 16 cited in Ref.
26) of this result in the sense that I = I (quantum tunnel-
ing with thermal corrections)+ I (classical hopping with
quantum corrections).

A. Strong damping

The regime of strong damping is bounded from below
by the requirement Pe »4, which in the original parame-
ters amounts to A, /co~ &&2«ks TII&co&. For instance, for
the typical case of a quartic barrier It, = —", Ut, lco& so
that one should demand that A/co& ». (3a/8)ksTIU~.
Notice that since always ks TIUI, « 1 this case can very
well accommodate the intermediate (or moderate) damp-
ing range where I, /co& =1. If Pe is sufficiently large, then
following (3.2}a =p. And if Pe »p [which for the quar-
tic potential requires A, /co& »(3«/64m )fu. u&IU&, and
which is obviously implied in the previous condition if
p&4], one may also neglect b relative to unity. Using
some elementary properties of gamma functions
[e.g., I (p)I'{1—p)=n/sin(np)] and noticing that always
ab = p /Pe—, (4.2) then becomes

C00 yI = —
Kyp e'2m (4.5)

at p=1. This particular value of p defines the crossover
temperature Tp between thermal activation and quantum
tunneling. Noticing « from (2.7}one obtains

T = [(1+1Ico )' A, A)]-'RCOb

7T
(4.6)

I =K e
C00

2m p —1
(4.7)

Clearly, Tp significantly depends on A.. The stronger the
dissipation, the more the classical hopping regime ex-
tends down to lower temperatures. The result (4.6) is in
full agreement with recent findings by means of a dissipa-
tive version of Langer's "imaginary part of the free ener-
gy" method (see the Introduction and Refs. 13, 32, 59,
and 81). Below To [i.e., if p & 1+8(expyo)] the formula
(4.3) yields a finite result even at the integer values
@=2,3,.... A simple limiting procedure shows that the
expression

0 7TP»0I =K e
2n sin(~p}

+ e 'F(1, 1 —p;2 —p; —e ')
p —1

(4.3)

If, moreover, one only considers the moderate damping
regime A, /co&=1 such that «=1, then (4.3) reduces to
Bell's result for the parabolic barrier. ' It is now evi-
dent that Bell s original, damping-independent expression
is strictly speaking valid only in the range

max[2ks T/II, m, ;A/4m. I, ] «)(, lco, «1 .
600»

I =K e2' (4.8)

also contains the precise integer p ~ 2 values as given by
(4.3). Fortunately, if p & 1+6(expyo) this is just the ex-
ponentially leading contribution in the simplified formula
(4.4). The result (4.7) will be compared with some recent
experimental data from metastable Josephson junction
devices in Sec. IV D.

In the classical high-temperature regime (where p « 1)
it is of course the first term in {4.4) which is exponentially
leading contribution. At suSciently high temperature
(and/or friction) it reduces to Kramers's result'

As long as p & 2, (4.3}further simplifies to
T

COpr=K ~p, »0+ P,yo

2n sin(m p) IM
—1

which —like (4.3), and with ~yo~ &&1—implies

(4.4)

which connects the transition state value (where ~=1)
with the correct value in the Smoluchovsky limit (where
K =cog /2A, ). The validity of this latter result is now seen
to be restricted to values

A, /co~ &&max[1;Plica~/2'] .
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B. %'eak damping

The weak damping regime is defined by Pe «4. Under
that condition, following (3.2) one has a= —,'p+ri and

b= —,'p —ri, with rj=p/v'pe»1 if pe«p . In contrast
with the considerations of Sec. IIIA2, however, ex-
ponentially small —local equilibrium violating —values
of the friction will presently be excluded by requiring
ri+ —zo «1. In that case the hypergeometric function
in (4.2) remains essentially equal to unity, and using
Stirling's formula to give

C

C

20-

10

-10

0-5

it is straightforward to reduce (4.2) to

0 Iz yo+(p )) q I (1—p} zq pyo

2n ju
—1 I (1+@)

(4.9)

-20

The first term in (4.9} again represents the quantum
(p » 1}limit value (4.7). The second contribution in (4.9)
now precisely equals the quantum mechanically corrected
version of Kramers's classical (p, « 1) weak damping re-
sult"

COp ~yI'= Psae2' (4.10)

as found previously by Melnikov ' from an integral
equation which, however, connected neither with the
pure quantum limit nor with the heavy damping regime.

The result (4.9) is easily seen to be valid in terms of the
original variables only if

(Pfi cps /SHIs )expyo « A. /cob

«min[2/PIb cob ,PA' co '/s2Ib ],
recalling that yo = —2n Us/fuccob. At the crossover tem-
perature To [see (4.6)] defined by @=1, (4.9) again yields
the finite value (4.5). Notice finally that at low tempera-
tures the friction range of validity of the Melnikov term
in (4.9) shrinks to zero like 1/p, but that for p »1 this
part of I is always exponentially smaller than the quan-
tum contribution (4.7).

-30-

/eh wb/2a

FIG. 2. Logarithm of the decay rate I'(P, A, ) as a function of
inverse temperature for three dissipative cases. I 0= I ( 00, +0),
while arrows indicate To following (4.6).

Pe fixed. Let p«1 so that following (3.2) both a «1
b «1. With I'(p)= 1/p, and similarly for a and b, the
second contribution in (4.2) then immediately reduces to

~o v'1+ 4/pe 1 pyo—
eK e

2m v'1+ 4/Pe+ 1
(4.11)

1.0

which for ~=1 becomes equal to the original result of
Buttiker, Harris, and Landauer. ' In the weak damping
limit it reduces to Kramers's pertinent formula (4.10),
whereas in the strong damping limit (4.11) improves upon
the original formula (see also Refs. 46 and 50) as it now

C. Classical limit

There is another interesting special case contained in
(4.2), namely, the classical limit A'~0. Letting Planck's
constant go to zero is obviously a simple theoretical de-
vice. Experimentally, however, one should be cautious
concerning the validity of the ensuing formulas. For in-
stance, although at first glance it would appear from the
expression (2.19) for the tunnel probability P(E) that the
classical limit can be reached by letting ~b~O, a con-
sistent application of that procedure would always make
A, /cob ~~, necessarily implying the strong damping
Smoluchovsky result. On the other hand, the frequent
suggestion that the classical limit is strictly identical to
the high-temperature limit finds a counterexample in the
present theory because letting Pe~0 would always imply
the extremely weak damping Kramers result.

Let us then consider the limit A~O, keeping A, /cob and

0.8-

0.2-

0.0
0,1 0.2 0.3 0.4 0.5

T (K)

0.6

FIG. 3. Lifetime v = 1/I of a metastable flux state as a func-
tion of temperature. The experimental dots are according to
Refs. 83 and 84; the straight line is following (4.7).
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neatly connects with the Kramers-Smoluchovsky result
(4.8). The validity of (4.11) is clearly restricted to not too
low temperatures T &&T0, i.e., well above the crossover
temperature (4.6).

In Fig. 2 In[I /I (p= ao, )(,=+0)]has been sketched as
a function of p/tt=13fitob/2m (i.e., proportional to I/T)
for three cases of the dissipation. Following (4.9):
case 1, A, /cub =10 so that ~=1.000, with the assump-
tion of a quartic potential, i.e., Ib= —", Ub/cob, so that
for try —

p =2~Ut, /fitob =20 one has 2sre/fmb =0.002;
and, with the same value for ttyp, following (4.4): case 2,
A. /cob =0.1 so that it=0.905 and case 3, A, /cob =1.0 so
that it=0.414. Arrows indicate Tp (i.e., )u= 1). Notice
the influence of friction on the classical rate at both weak
and strong damping via the prefactor and the enormous
effect on the quantum rate at strong damping via the ex-
ponential (which agrees with recent findings from
Langer's theory. ' ' ' ' Also note the rather slow ap-
proach to the final zero-temperature value (see further
Sec. IV D and Fig. 3).

D. An experiment case

If one applies (4.7) to the most recent experimental
data of de Bruyn Ouboter and co-workers ' (see also

Refs. 6 and 26) on metastable flux states —in supercon-
ducting rings interrupted by a Josephson weak link —one
arrives at Fig. 3, where v= 1/I . The theoretical straight
line has been found —with only cob as a variational
parameter —for cob =0.98co0, whereas the device calculat-
ed ratio (not measured in situ) would have been
coy /cop=0. 80. The quantity rp used in Fig. 3 in order to
normalize the lifetime ~ is just the zero-temperature value
of (4.7). The present theory fits the data at least as well as
other theories 8,20, 32, 83—85

V. CONCLUSIONS

In this paper an exactly solvable stochastic quantum
model is discussed for the escape process of a particle in a
metastable local potential hole coupled with arbitrary
strength to an Ohmic thermal environment. Both the
system s quasiequilibrium distribution p(E) and the ensu-
ing decay rate I are obtained. With the exception of ex-
ponentially small values of the rate of dissipation (i.e.,
A, ~I p) the distribution remains locally exponentially
close to the Boltzmann distribution. The decay rate is
shown to include earlier results of, e.g. , Bell, Biittiker
et al. , Kramers, and Melnikov as special cases.
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