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Threshold behavior of a driven incommensurate harmonic chain
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The dynamics of a one-dimensional harmonic chain in the presence of a strong, incommensurate,
sinusoidal potential and a uniform force F is investigated numerically. A threshold force FT exists
above which steady-state motion occurs. Near threshold, the linear and nonlinear responses of the
system exhibit nontrivia1 critical behavior. Critical exponents describing the transition to a moving
state are calculated, and scaling relations between them are conjectured.

I. INTRODUCTION

Although there has been enormous progress in under-
standing the complex dynamics of systems with a few
dominant degrees of freedom, ' much less progress has
been made in understanding the nonlinear dynamics of
systems in which infinitely many degrees of freedom play
an essential role. One of the simplest class of problems
of this type is the collective motion of a large number N
of interacting particles, each of which moves down its lo-
cal potential gradient. Since this system is equivalent to
motion of a single particle down an N-dimensional poten-
tial landscape, the motion has only trivial bifurcations for
any finite N. However, as we shall see, the thermo-
dynamic limit N~00 can be very nontrivial. Examples
of experimental realizations of this kind of phenomenon
include collective transport of charge-density waves
(CDW's) in the presence of disorder and flux lattice flow
in dirty type-II superconductors.

A. Model

dx QU

dt Bx
(1.2)

and study the behavior as a function of the driving force
F. In particular, we will be interested in the average ve-
locity U—:(dx~ /dt ) as a function of F, where the brackets
denote a spatial and time average. We find that if the po-
tential V is suSciently large, a threshold FT exists such
that v=O in steady state for F &FT. We study critical
behavior near this threshold numerically and by scaling
arguments.

The properties of the model are most interesting for ir-

The model we study is a driven dynamic generalization
of the Frenkel-Kontorova model of a one-dimensional
harmonic chain of particles in a periodic potential. It is
described by an energy

U= —,
' g(x, +, xj) —Vgco—sx, Fgx, , —

J J J

With an average particle spacing 2vra enforced by the
boundary conditions. We take simple relaxational dy-
namics

rational a, since otherwise, if the initial conditions are
periodic, the motion for rational a reduces to a finite
number of degrees of freedom with periodic boundary
conditions. Following tradition, and motivated by a
desire to stay as far as possible from such commensurate
behavior, we will mostly focus on a =/—:(1+&5)/2, i.e.,
the golden mean.

B. Outline

In the remainder of the Introduction, we briefly sum-
marize earlier work on the properties of the model
without a driving force, motivate the present work, and
summarize our main results for the properties of the in-
commensurate system in the presence of a driving force,
in particular, the behavior near the threshold force FT.
In Sec. II we discuss calculational methods, and Sec. III
contains the detailed results. In Sec. IV we propose scal-
ing laws, interpret the results, and compare them to those
for other related models. Finally, in Sec. V we consider
the applicability of the conclusions to experiments on
CDW's.

Some of the work described here has been discussed in
a previous brief communication by one of the authors.

xj =2maj +8+g (2m aj +8), (1.3)

where g is periodic with period 2m and 8 is a phase which
labels the ground state. For rational a, 0 only takes on
discrete values but for irrational a, 0 can take on any
value. Note that as a consequence of Eq. (1.3), xj is a
quasiperiodic function of j. For good irrational a, g is a
smooth function for V less than a critical value V, (a),
which for a =P (the golden mean) is found to be
V, =0.972. As a consequence, for V ( V, (a) the ground

C. Zero driving force

The properties of Eq. (1.1) in the absence of a driving
force (F=O) have been studied in detail by Aubry and
others. In particular, if a is a "good" irrational, the
properties of the ground state change dramatically as a
function of V. For all V, Aubry has proven that the
ground states, defined as having an energy which cannot
be lowered by moving any finite collection of particles,
can be described in terms of a hull function g, via
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state for one value of 8 can be continuously deformed
into that for a different value of 8; we call this region the
unpinned phase .For V & V, (a), on the other hand, the
hull function develops an infinite number of discontinui-
ties. The primary discontinuity corresponds to the max-
imum of the potential, i.e., x. near an odd multiple of m,

so that no particles lie within some distance of these po-
tential maxima. This implies that the ground state can-
not be smoothly evolved from one 8 to another; we call
this the pinned phase. In the pinned phase, there also ex-
ists metastability which is absent for V & V, : a collection
of nearby particles can be moved to a new metastable
configuration with the effects of this change falling off ex-
ponentially at long distances. Thus, in many ways, the
pinned incommensurate phase acts qualitatively more
like the commensurate system, which is always pinned,
while the incommensurate unpinned state acts more like
the system in the absence of the periodic potential. For
example, the spectrum of linear excitations about the
ground state has long-wavelength modes down to zero
frequency for V=0, and in the incommensurate unpinned
phase there are analogous eigenmodes which simply in-

volve slow variations of the phase 8. For the commensu-
rate case and in the incommensurate pinned phase, on the
other hand, there is a gap in the excitation spectrum.

Near to the critical potential strength V„ the system
exhibits critical phenomena as studied in an earlier pa-
per. For V& V„ this is related to the breakdown of
Kolmogorov-Arnol'd-Moser (KAM) trajectories for the
extremal equations of Eq. (1.1) with F=O, considered as a
map with j the time coordinate. ' '" We will not be con-
cerned with this regime in the present paper.

D. Heuristics and summary of results

In the presence of an applied force, ground states are
no longer defined, since the potential [Eq. (1.1)] is un-
bounded below. However, we can hope to adiabatically
follow the metastable configurations which evolve from
the ground states as F is increased from zero. For a com-
mensurate system, it is straightforward to see that as long
as V&0, then for F (Fr(V, a), such metastable
configurations exist, as can be seen for the trivial one-
particle case with a=1. Above Fz, however, no station-
ary solutions exist with average particle spacing 2+a.

As might be expected from the above discussion of the
properties of ground states, the behavior for irrational a
depends crucially on the strength of the periodic poten-
tial. For V( V, (a), no stationary solutions exist for
F& 0, as for the trivial V=O case. The primary reason is
as follows: For commensurate a, there is a gap in the ex-
citation spectrum about the ground state, thus perturba-
tion theory in F can be used to construct a nearby state.
In the incommensurate unpinned phase, on the other
hand, the presence of long-wavelength phononlike modes
causes the perturbation expansion to break down. Physi-
cally, it is clear that, as for V=O, the system will start
sliding for any F&0. In fact, there is a linear response to
the force so that v =oF for small F in the unpinned
phase, as for V =0. '

In the pinned incommensurate phase, on the other

for F &Fz-, where the brackets denote a time average.
Far above threshold the effect of the potential is small
and v =F Fo.r the commensurate system, which is
effectively a finite collection of particles, the behavior
near threshold is just that given by a simple saddle-node
bifurcation:

f 1/2

where the reduced force f is defined as

F—F

(1.5)

(1.6)

As the denominator of a rational a grows, however, the
regime of validity of Eq. (1.5) shrinks. For irrational a in
the pinned phase, it is natural to expect that there will be
a nontrivial critical exponent for the velocity:

v- &, (1.7)

with g(a)& —,
' for irrational a. The hypothesis of non-

trivial critical behavior is supported by the observation
that a perturbation expansion in powers of the potential
strength V for the incommensurate system diverges at
threshold for V & V, because long-wavelength contribu-
tions become very large.

For a=/ we find that with V=4, chosen to be far from
both the critical V, and ~, our numerical data are con-
sistent with Eq. (1.7) with (=0.6720.05. We also find
support for the natural conjecture that the particle posi-
tions in steady state are again described by a hull func-
tion

xj (t) =2naj +vt +g+ (2maj +vt) „ (1.8)

i.e., the same form as Eq. (1.3), but with the phase 8=Vt
(plus a constant which can be removed by shifting the
origin of time). ' For F &Fr, the hull function g+ is
continuous although its maximum derivative diverges as
F~Fz+-. We find that as F~Fz+- the dynamic hull func-
tion g+ becomes equal to the discontinuous static hull
function g for F~Fz .

In addition to the critical behavior of v for F~Fz-, we
have investigated the critical behavior as F~Fz: of vari-
ous quantities, for example, the linear polarizability,
defined as the change in the mean position (5xj(co)) in
response to a small ac applied force 5F(co) added to the
dc force,

(5x, (~) ),
5F (co)

We find that y0—:y(co =0) diverges as F nears Fr as

(1.9)

hand, perturbations about the F=O ground state remain
bounded, and there exist metastable configurations up to
a threshold Fr( V, a), which approaches zero as
V~V,+(a). The point V= V, (a), F=O is thus a mul-
ticritical point.

What happens for F &Fz? As for the V=O and un-

pinned incommensurate phases, we expect that the sys-
tem will have a steady-state time-averaged velocity

(1.4)
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(1.10}

E. Relationship to other models

The driven Frenkel-Kontorova model we study here is
a particular limit of a class of models which have been
studied in the context of sliding charge-density
waves. ' ' These involve the motion of a harmonic lat-
tice through a random rather than incommensurate po-
tential. The simplest variant, which is related to the
more realistic Fukuyama-Lee-Rice model, ' considers the
phase P of the charge-density wave at impurity j which
has a preferred value P [mod(2n )]. If we write Eq. (1.1)
in terms of the deviations from a uniform chain,

~J J ~J (1.12)

with pJ =2naj, then Eq. (1.1) is a special case of the gen-
eral model' with potential energy

U =
—,
' g J; (P; —P, } —g VJ cost PJ PJ ) F—gPJ, —

(1.13)

where the J; &0 represent the stiffness of the CDW and
the V the pinning strengths of the different impurity
sites. Of particular interest are the cases where J, is
short range in d dimensions and the P, are random; how-
ever, these problems are very difficult to treat near the
threshold, which is believed to exist for arbitrarily small
disorder in any dimension. ' However, a limit in which
considerable analytic progress can be made is that of
infinite range J,", i.e., mean-field theory. ' ' In this limit,
there is no spatial structure and thus a pseudorandom in-
commensurate P acts the same as a random P . So
mean-field theory, in the special case that all the V are
equal, is also equivalent to an infinite range incommensu-
rate model. ' ' Although some of the behavior (particu-
larly below threshold) does depend on the distribution of
V., much of it does not.

In mean-field theory, it is found that a threshold F ex-
ists provided that at least some of the V- are sufBciently
large (greater than g,. J,. ). In this pinned phase, the ve-

locity just above threshold obeys Eq. (1.7) with

0MF (1.14)

Thus, for zero dimensions, i.e., a finite number of degrees
of freedom, g= —,', while in infinite dimensions, /= —', .

We would like to determine whether models with
short-range interactions have critical behavior qualita-
tively similar to that of the mean-field theory, and if so,
how the exponents describing the threshold are modified.
In the absence of analytic progress for models of infinite
size with finite range interactions, one is led to consider
numerical investigations.

with y =0.34+0.02, and at threshold,

y(co) -M
with p=0. 33+0.04. Various scaling laws will be suggest-
ed which relate these and other exponents to diverging
characteristic lengths and times as F~F~.

Computer simulations of randomly pinned one-
dimensional chains' ' suffer from three disadvantages
stemming from computational limitations. First, one
cannot distinguish a slowly moving chain from one that is
relaxing into a stationary state in a finite but long time, so
the threshold field cannot be determined accurately from
a dynamic simulation. (This problem is related to the
jerky motion found near threshold, which will be de-
scribed in detail below. ) This complication renders calcu-
lation of the exponent g in Eq. (1.5) extremely uncertain
for random models. Second, finite-size effects are sub-
stantial. Littlewood' has found that in simulations in-
volving 200 impurities, one or two clumps of pinning
sites appear to dominate the response near threshold.
Sokoloff'~ has examined larger systems (up to 5000 im-
purities), but the results still exhibit finite-size effects and
the computations become very slow. Finally, averaging
over different impurity configurations is time-consuming
and it increases the uncertainties.

Incommensurate pinning allows one to avoid these
problems. It is possible to find the threshold field using a
static calculation, since the ground state of the system for
F=O appears to evolve continuously into the last meta-
stable solution that disappears at F =Fz. Also, the regu-
larity of the pinning makes it possible to investigate
finite-size effects in a well-characterized way. No
configurational averaging over different impurity distri-
butions is needed, so only one calculation for each system
size need be done.

Comparison of our results on the one-dimensional in-
commensurate chain with mean-field theory will be made
in Sec. IV.

II. METHODS

The incommensurate limit can be approached numeri-
cally by examining a series of commensurate systems
with mean particle spacing 2+a„, where the a„'s are op-
timal rational approximants to the irrational number a.
The a„'s are chosen in the standard manner using the
continued fraction expansion of the irrational number a.
For a=/=(W5+1) 2/the continued fraction consists of
all 1's and the approximants are ratios of Fibonacci num-
bers: q„/p„= —'„—'„—'„—",, etc. Periodic boundary condi-
tions determine the density for each system of p„parti-
cles.

First, a static calculation was performed to find the
threshold force Fz-, and then dynamic simulations were
done to characterize the velocity just above threshold.
As mentioned above, any finite system is expected to ex-
hibit finite-size behavior close enough to threshold, ' ' '
but by extrapolating the results for the a„ to n ~ 00, reli-
able information about the incommensurate limit can be
obtained. It is necessary to work at V large enough so
that a pinned phase exists; for our choice a = /, the criti-
cal value V, =0.972. Except where otherwise stated, the
work described here was done with V=4, which is much
larger than V, but still of order unity. For this value of
V, the correlation length associated with the pinning
transition at F=O and V = V, is slightly less than the in-
terparticle spacing.
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The determination of the threshold for a given system
size was done in two steps. First the ground state of the
system in zero field was found as in Ref. 9, using
Newton's method to find a solution of the force equations
while slowly increasing the potential strength V. Then
the external force F was stepped by small increments 5F
and Newton's method was used to find static solutions of
the force equations. If no solution was found, 5F was
halved and Newton's method attempted again. As dis-
cussed above, one expects there to be values of F for
which no static solutions exist, and indeed there is a
threshold value FT above which no static solutions could
be found using this technique. It is conceivable that for
F )FT there are static solutions that are not obtained by
adiabatically perturbing the F=O ground state. Howev-
er, the regularity of the pinning potential makes it plausi-
ble that the F=O ground state remains the one of lowest
energy for a given particle density and mean position
even in the presence of a field and hence the one least
likely to be destabilized by the external force. The con-
sistency of the numerical results serves as a check of this
assumption: Dynamic simulations for F decreasing to-
wards FT yield solutions that appear to approach the
same configurations as those reached using static calcula-
tions with F~FT . It is this feature that enables one to
make a quick and accurate determination of the thresh-
old field.

For F & FT the particles move and the dynamics must
be taken into account. In this region the equations of
motion were solved using discretized time and a
predictor-corrector routine to prevent numerical instabil-
ities. The particles were started at equally spaced posi-
tions x =2m(q„/p„) j at time t=O and their positions al-
lowed to evolve until the transients decayed. This neces-
sitates very long times for large systems near
threshold —for instance, the equilibration time for an
89-particle system with F=1.195 (f=5X10 ) exceeded
2000 time units. The steady-state positions of each parti-
cle were then calculated as functions of time. Other
starting positions were found to yield the same steady
state. The calculations were performed for various sys-
tern sizes in order to extract properties of the incommens-
urate limit, p„~oo.

III. RESULTS

A. Behavior belo~ threshold

We first summarize the static results for F &FT. As
the force is increased, the configuration of the particles
evolves smoothly until the metastable configuration
disappears at threshold. For a given value of F, the posi-
tions x. of all the particles are found to be given in terms
of a periodic hull function g(2naj;F) by Eq. (1.3); this
was known to be the case for F=O. The hull function
appears to evolve smoothly as a function of F up to FT.
Just as for the pinned state at zero field, g has an infinite
number of discontinuities for all F FT. This situation is
illustrated in Fig. 1. The behavior at threshold is in strik-
ing contrast to the continuous but self-similar hull func-
tion that is characteristic of the transition between
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FIG. 1. Plot of the hull function g/2m. , defined in Eq. (1.3) to
be (x, /2m. )(mod1), which determines positions of the particles,
as a function of aj(mod1) for V=4 and F=FT= 1.1893.

pinned and unpinned states at F=0 and V = V, .'
The threshold force is remarkably insensitive to the

system size. For a 21-particle system with V=4, Fr(p„)
is equal to within the numerical error (10 ) of that of 89
particles, and the threshold force for a five-particle sys-
tem only differed by 0.2% from that of the largest system.
The finite-size effects at V=4 are so weak that it is
difficult to characterize them. In order to investigate
them further, the threshold forces Fz- for a smaller value
of V=1.5 were found for p„=5, 8, 13, 21, 34, 55, and 89.
For this smaller value of V, the finite-size effects are
larger, and only the difference in FT(p„) between p„=55
and 89 is within the error. Over the range studied, the
deviation BF„=Fr(p„)/FT(~)—1 does not appear to
scale either as a power of p„or exponentially in p„. A
good empirical fit was found to the form AF= A exp

(Bp„), wit—h 2 =14.7, B=0.97, and C=0.75, as shown
in Fig. 2. However, the uncertainty in the parameters is
large, and no particular significance should be attached to
this functional form.

In any case, the determination of the threshold force is
straightforward and accurate since small systems can be
used. For V=4, the threshold force approaches the
asymptotic value FT= 1.189 305 32+10 as p„~~.

For each value of F the particles' positions were
recorded and the spectrum of linearized excitations about
the stationary configuration was obtained by diagonaliz-
ing numerically the matrix of force derivatives. At
threshold the smallest eigenvalue remains of order IO
This uncertainty is consistent with the uncertainty in the
threshold field since the system is approaching a bifurca-
tion point, where the smallest eigenvalue vanishes as dis-
cussed below.

An index m ranging from 1 to p„ labels the eigenvalues
A and eigenvectors u (j). The index m is not simply a
wave vector, although the phonons of the translationally
invariant system ( V=O) do evolve into the finite V excita-
tions, albeit with some sort of singularity at V = V, . The
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FIG. 2. Relative deviation of the threshold field for finite
systems from its asymptotic value, EF„=[Fr(n)

Fr( ~ ) ]/F—r( ar ), for V= 1.5, plotted as a function ofp„=5, 8,
13, 21, and 34 on a log-log scale. The solid line is a fit to the
empirical form b F(n) = A exp[ —(Bp„)], with A = 14.7,
8=0.97, and C=0.75.

eigenmode spectrum A is shown for two values of the
reduced force f on a log-log plot in Fig. 3. We see that
the external force F induces qualitative changes in the
spectrum. As F approaches FT, the lowest eigenvalue A,
appears to vanish as

(3.1)

with p, =0.5+0.005 (Fig. 4), but there is a distribution of
soft modes as the transition is approached. The low-lying
eigenvalues with A(0.3 correspond to highly localized
eigenmodes; Fig. 5 demonstrates the localized nature of
the three lowest eigenvectors of an 89-particle system.
The higher modes do not appear localized, but we have
not investigated them in detail.

As the threshold is approached, we expect the system
to exhibit singular response at low frequencies. We have
calculated the differential ac polarizability y(er, F), which
is the linear response to an additional uniform ac force
5F(co) as defined in Eq. (1.9). In terms of the eigenmodes
and eigenvectors it is given by

10
1

I

10
I

100

FIG. 3. Log-log plot of the phonon eigenvalues A as a func-
tion of m for F=O and F =Fr, where m is an index labeling the
A's in ascending order. The field induces qualitative changes in
the nature of the spectrum. Numerical errors cause the smallest
eigenvalue at threshold to be nonzero.

o (co)—: i ore(co)— (3.4)

3 x10

10 "—

with y =0.34+0.02 as shown in Fig. 6. The polarizabili-
ty plays the role of a divergent susceptibility at the
threshold critical point. These results can be compared
with the behavior for a finite number of degrees of free-
dom, for which y =

—,
' and @=—,'.

Below threshold the polarizability is analytic at low
frequencies so that the ac conductivity

(j) '
y(rrr, F)= lim

n-m
r ( irrr+A )— (3.2) 1O-'

As F~FT, the dc polarizability is found to diverge as

(3.3)

FIG. 4. Log-log plot of the lowest eigenvalue A& for a system
with p„=89 as a function of the reduced force f=(F Fr )/FT-
The line is a fit with exponent @=0.5+0.005.
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FIG. 5. Eigenvectors of the three lowest phonon modes
u (j) of an 89=particle system for F=FT. The modes appear
highly localized even at threshold.

I cr(cu, FT ) I
~ W (3.5)

for m in the range 10 -10 ', with p=0. 33+0.04.
When co is very small, we are limited by the numerical ac-
curacy of the matrix diagonalization routines and devia-
tion from the power-law behavior is found. The results
for the 89- and 144-particle systems were basically identi-
cal in the range of frequency 10 (co(10, so this
discrepancy does not appear to be a finite-size effect.
Therefore, although the results are consistent with
power-law behavior, a firm conclusion cannot be reached
on the basis of the data shown here. At large frequencies,
cr(co) at threshold is not qualitatively changed from its
form at F=O, as can be seen from Fig. 8.

The gaps in the hull function g are associated with re-
gions of the periodic potential in which there are no par-

100

has a real part which vanishes as co and an imaginary
part equal to —icoyo for co~0. At threshold, cr(co) is
singular at low frequencies due to the low-lying eigen-
modes, as shown in Fig. 7. We find that

FIG. 7. Log-log plot of the absolute value of the ac conduc-
tivity at Fr, ~o ~ (co) ~, vs co for small co. The data are consistent

T

with ~crz (c0)i~co with p=0. 33+004 in the range 10 '&co
T

&10 '. For co(10 numerical errors render the data unreli-
able.

6» (F)=&» (FT )+ A
I
fl" (3.6)

D
o 8

3
b

0
0

0
0

D

o

0
0O

0
0

o F =016
0 F a FT= 1.1893

o

ticles. For F=O, the largest gap corresponds to the ab-
sence of particles near the maxima of the potential. As
mentioned above, even at threshold, there are regions
where there are no particles. The size of the largest gap
b,» is plotted as a function off in Fig. 9; asymptotically,
it appears to obey

O
PC

10—

I

10-' 10-4 1O-'
I

10 1O-"

I

10

FIG. 6. Log-log plot of the polarizability yo( f) vs f for f&0.
The data are fit to the power law yo(f) ~ if' ~, with

y =0.34+0.02.

FIG. 8. Plots of the ac conductivity icr(co)
~

vs co over a large
range of frequencies for F=0.16 and F=FT. Although the field
changes the response for low frequencies, the qualitative
features of the two curves are similar.
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FIG. 9. Dominant gap hx (F) of the hull function for F & FT,'

asymptotically, hx appears to approach a finite value

hx(FT)=3.71 with an approximately square-root cusp. The
line on the figure is a fit to this square-root form.

with hx(Fr)=3. 71076+0.00002, A =0.975+002, and
v=0. 5+0.03. The value of 60 in the absence of a field is
4.220 599.

The divergence of the polarizability might have been
expected to be associated with a diverging localization
length of the low-lying eigenmodes. As mentioned above,
this is not the case: the low-frequency modes remain well
localized even at threshold. This is in contrast to the
transition from the pinned to the unpinned phase as a
function of potential strength V at F=O. In that case, as
V~ V,+, the localization length of the lowest eigenmode
diverges.

In the dynamical systems context where the extremal
equations of the energy are interpreted as the "dynamics"
of a particle with position x~ at "time" j, a useful quanti-

ty is the Lyapunov exponent A,i which characterizes the
divergence of trajectories from each other as time j is in-
creased. ' The Lyapunov exponent A,l can be expressed
as the product of the eigenvalues

ln g A
1

S'n m

(3.7)

Here we calculate it using the method described by
Greene. For F=O the Lyapunov exponent has a value
A,L

'=1.5. This value decreases slowly as F increases un-

til F approaches FT, when it appears to approach a finite
value with a sharp cusp. In contrast, for a finite system
the inverse of the Lyapunov exponent must be —00 ex-
actly at threshold, since it is the logarithm of the product
of a finite number of terms, one of which is zero. Figure
10 shows log-log plots of )(,L '(F) —)(,L '(FT ) versus

if~ =(1 F/FT) for a syst—em of 144 particles. The value
of FT was not adjusted but rather it was taken to be the
largest value of F for which a static solution to the force
equations was obtained (Fr=1.18930533). The three
values of Al '(FT) that are shown are Ai '(FT)=0,
A, L '(FT ) =0.661 839 25 (which is the value obtained when
F=FT), and A,L'(Fz-)=0.6517138. It is clear from the
plot that the data is not fit well by the form
A,L '(F) = 2

~f i
. Over more than four decades in if i the

log-log plot of A, L '(F) —
A,L '(FT) versus if' is linear with

a slope very near —,', though deviations are found for

I I I I I I I
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FIG. 10. Log-log plots of the Lyapunov exponent

AL(F) —)LL(Fr) vs the reduced force ~f~ for the three values

A.L(FT ) =0 (triangles), A,L (FT ) =0.651 713 8 (squares), and

XL (FT ) =0.661 839 25 (circles), for a system with p„=144. The
line on the plot corresponds to a slope of 6. These plots indi-

cate that A, L appears to approach a finite value at f=0, as de-

scribed in the text.
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FIG. 11. Log-log plot of the mean velocity U vs the reduced
force f for different chain lengths, demonstrating that U ~f t,
with (=0.68+0.05. The crossover to the one-particle behavior

is clearly visible for the smaller systems very close to
threshold. The dashed lines have slope 0.5 and the solid line has
slope 0.67.

if'(10 . The choice AL '(FT)=0.6517138 improves
the fit somewhat for small if', supporting the view that
uncertainties in FT and A,l '(Fr) could account for some
of the discrepancy. Finite-size effects cannot account for
the deviations, for the data for p„=89 and 144 differ by
more than 5% only for if i

(10, but numerical errors
are hard to estimate and may be larger than this result
would indicate.

Though we cannot absolutely rule out the existence of
a very weak singularity that causes A,l to remain large
even for very small

i fi, the Lyapunov exponent has fallen
by only a factor of 2.27 by the time if ~

is on the order of
10 . Therefore we believe that our data indicate that A, L

is not zero at FT. Thus, in contrast to the transition at
V, for F=O, the Lyapunov exponent does not appear to
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yield a diverging length as F~FT . We shall see later,
however, that there is another length which does diverge.

B. Behavior above threshold

For F & FT, the steady-state velocity of the chain as a
function of f=(F FT—)/FT was calculated for p„=5, 8,
13, 21, 34, and 55. A log-log plot of the spatial and tem-
poral mean velocity v is shown in Fig. 11; the data are
consistent with

(3.8)

wit (=0.67+0.05 for large sizes. As expected, the very
small systems exhibit a crossover to the single-particle be-
havior, g= —,', very close to FT, as seen in the figure. Thus
an infinite number of degrees of freedom appear to induce
a nontrivial velocity characteristic near threshold.

The time dependence of the spatially averaged velocity
v(t) was also examined. Figure 12 shows the (spatially
averaged) velocity of a 21-particle system for F=1.20
(f=0.009) during one period of the motion. For this
finite system close to threshold large oscillations occur,
but they have period 2m. /(p„v) rather than the "wash-
board" period T =2m/u T.he .velocity of each particle
vj(t) appears to be a 2n-periodic function of uj+vt, as in
Eq. (1.8}, and hence describable by a hull function g+.
This description thus appears to be valid for both com-
mensurate and incommensurate systems above threshold,
which is consistent with the perturbation theory for large
F. ' ' To understand this, one can imagine a system
with an adjustable potential strength V moving at a fixed
velocity v. By simultaneously adjusting F and V, one can
increase V from zero while keeping the velocity constant.
The distortion in the position of each particle appears to
depend only on V and on aj +vt, which was the position
of the particle when the potential V was zero. This result
is a continuation of the behavior observed for the station-
ary state at F=FT', thus the hull function defined for

F & Fr (Ref .5) also exists for F )FT, with only the
modification from Eq. (1.3) to (1.8). This result implies
that every particle moves identically except with a shifted
origin of time, as found in our numerical results.

The magnitude of the oscillations in v (t}as a function
of system size were studied for F=1.20 (f=0.9X10 )

and p„=21, 34, and 55 by calculating hv =(v,„—v )/v,
where v,„ is the maximum (spatially averaged) velocity
attained in a period. As Fig. 13 shows, hv decays to zero
approximately as 1/p„as p„ is increased, indicating that
the velocity oscillations vanish in the incommensurate
limit, and are thus a finite-size effect. These results sup-
plement those of Sokoloff and Horovitz and of Sned-
don, who have shown that velocity oscillations are ab-
sent in any finite order of perturbation theory in the po-
tential for both incommensurate and random pinning,
and they are consistent with mean-field theory, for which
velocity oscillations are absent, and with general argu-
ments. ' Recently, Sneddon and Cox have discussed an
instability of the average uniform motion if the system is
driven at constant current. This instability appears to
yield velocity oscillations in the infinite-volume limit.
However, it does not occur in the voltage-driven
configuration that we confine ourselves to here.

In order to further elucidate the form of the motion
near threshold, the velocity of a given particle v (t) was
followed as a function of time and of position. Figures
14(a} and 14(b) show the velocity over one period for one
particle of a 21-particle system with F=1.2 (f=0.009}.
The motion consists almost entirely of nearly discrete
jumps. The largest velocity U

&
is attained when the parti-

cle is hopping over a potential maximum, the next
highest velocities v2 and v z occur when an adjacent par-
ticle is jumping over a potential maximum, and so on.
The u' are each of order 1 and independent off as f~0,
but they appear to decay exponentially with distance
from the particle hopping over the maximum. Although
the jumping motion appears to be localized, the critical

Vmax
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FIG. 12. Spatially averaged velocity v(t) for p„=21 and

f =8.99X 10 '. Large oscillations occur, but they have period
2m. /p„v rather than the "washboard" period 2m. /v.

FIG. 13. Oscillation magnitude of the spatially averaged ve-

locity b v = ( v,„—v )/v for f=8.99X 10 ' and p„=21, 34, and
55. In this range the quantity hv decays approximately as 1/p„
as p„ is increased.
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IV. SCALING LAWS
AND INTERPRETATION OF RESULTS

0
0

(b)

J(
50 100 2m/V

It is clear that the critical behavior exhibited near the
threshold transition is quite unusual. The localization
length and the dominant gap in the hull function both
stay of order unity as the force approaches the threshold
from below. This situation is in contrast to the pinning
transition for F=O and V = V„at which the localization
length is infinite and the gaps in the hull function vanish.
However, it is clear that in spite of the absence of diver-

gences in some of the quantities, the threshold does have
a continuous critical nature, since the velocity goes con-
tinuously to zero at the transition and just above thresh-
old the entire chain moves without hysteresis at a
steady-state velocity.

The dominant feature appears to be well-separated lo-
calized "active" regions that occur on either side of the
threshold. For F &FT these regions correspond to the
low-frequency eigenmodes, and for F &FT they corre-
spond, at a given time, to the jumping regions. The local-
ization length corresponds to the size of each active re-
gion, but another length scale is needed to describe the
typical distance between active regions. Although the
width of the jumping regions remains finite (and quite
small), for F~FT+ the separation between jumping re-
gions diverges as f tends to zero.

The results can be described in terms of two nontrivial
exponents, one for the behavior of each active region and
the other for the density of active regions. For f& 0, the
spectrum can be roughly written in the scaling form

A -f"D(m/f ), (4.1)

POTENTIAL
MINIMUM

Xj (t)
POTENTIAL
MAXIMUM

FIG. 14. (a) Velocity v, (t) of one particle of a 21-particle sys-
tem for one period with V=4 and F= 1.2. The particle attains a
velocity of order unity while hopping over a maximum of the
potential, but most of the time it moves very slowly. (b) Veloci-
ty of the same particle plotted as a function of its location x,.
over one period. This graph demonstrates that almost all the
distance it travels is covered during "jumps. "

where A is the eigenvalue of the mth eigenmode. It is
clear from Fig. 3 that the scaling function D is not
smooth, but this does not preclude the existence of a scal-
ing form. The function D would be invariant under
discrete scale changes, though not continuous ones, and
would thus exhibit self-similarity. Figure 15 shows a plot
of A as a function of m for different values of the re-
duced force f for a system of 144 particles. The eigenval-
ues A are well described (to within about 25%%uo) of the
form

behavior is nontrivial because there are many widely
separated regions jumping simultaneously. The peaks in
the spatially averaged velocity each correspond to some
particle jumping over a potential maximum, and for
small f, the spatially averaged v,„ is very nearly equal to
(v; +uz +u2. )/p„. Since the u' are independent of f as

f tends to zero, v,„decays like 1/p„as p„ is increased,
approximately as observed.

For large enough p„at any fixed f) 0, there will be
several particles each moving fast at any time. This
causes a more rapid decay of the size dependence of AU:
we expect exponential (or faster) decay with p„due to the
smoothness of the hull function g+. The crossover be-
tween these regimes as well as the finite-size effects on the
average velocity are subtle and we wi11 not delve into
them here.

A (f)=A (f =0) [A (f =0)& Afi"]

=Af" [A (f =0)& Afl"],

with A =3.4. The exponent p describes the scaling of the
frequency of the softest modes. Thus the scaling form
holds if the frequencies of the modes exactly exactly at
threshold are described by a scaling form with the ex-
ponent 5 describing the soft-mode density; in one dimen-
sion 5 would correspond to a correlation length ex-
ponent. The numerical results for the phonon eigenval-
ues do not provide convincing evidence that they scale
because numerical limitations of our diagonalization rou-
tines prevent the accurate determination of the eigenval-
ues down to very low values. However, over a fairly nar-
row range of frequencies (roughly two orders of magni-
tude), scaling appears to be obeyed.

For calculating the polarizability and the ac conduc-
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r a:f & is associated with the time it takes to complete a
jump (this behavior is found in mean-field theory' ' ). In
Fig. 14(a) the jump time can be defined as that required to
travel between successive velocity minima, as delineated
by the arrows. As f tends to zero, however, the average
velocity of the chain is reduced so that more and more
minima appear (corresponding to the completion of
jumps of particles that are farther and farther away), so it
is numerically quite difficult to calculate this time scale
accurately. However, in the asymptotic limit (f~0), the
jumping time scale is well-defined to within constant fac-
tors, and we make the natural guess that it follows the
same power-law behavior as the time scale of the softest
mode below threshold. We also assume that the density
of hopping regions scales as f, just as the density of soft
modes scales below threshold. If these assumptions hold,
then the mean velocity of the chain U satisfies U ccf~+s; in
other words,

(4.4)

~ (f(=7.509x10 2

o if' =5.305x10-2
+ ifi=1.518x10 5

'lfl 108

gp-4 I

40
I

100

FIG. 15. Plot of the eigenvalues A vs m for p„=144 and

f= —7.509032X10 ~, —3.3049X10, —1.5180X10 3, and
0 (less than 10 ). This plot is consistent with the scaling be-
havior of the eigenvalues, as discussed in the text.

y=p —5, (4.2)

and the exponent p of the ac conductivity at threshold
should obey

p=5/p . (4.3)

Since p can be measured directly from the lowest eigen-
value, Eq. (4.2) and (4.3) comprise a nontrivial test of the
scaling relations. The observed values p=0. 35+0.05 and

y =0.34+0.02 are both consistent with p =—
—,
' and 5= —,'.

Straightforward application of the scaling argument to
the F dependence of the Lyapunov exponent A, L [Eq.
(3.7)] yields the expectation that A,i ' approaches a con-
stant at F =FT, with the leading correction proportional
to ~f~' in(~f~). The numerical results are consistent
with this expectation.

In the moving phase, a similar but more heuristic argu-
ment can be made. Even though a particle attains a ve-
locity of order 1 during a jump, the time it takes to ac-
celerate should diverge as f tends to zero, so a time scale

tivity, the uniform part of the eigenvectors, g u (j), is
needed [see Eq. (3.7)]. Empirically, g u (j) tends to a
constant for all small m. This observation reAects the
fact that the soft modes correspond to particles that are
about to hop over potential maxima and therefore pri-
marily involve forward motion. If the scaling form Eq.
(4. 1) is correct, the polarizability exponent should satisfy

This argument assumes both that the jumping regions
dominate the asymptotics so that slow drift of the chain
can be neglected, and that the exponents are identical
above and below threshold. The measured value of g is
consistent with this scaling law, but as mentioned above
it is very difficult numerically to evaluate p separately as
was done for f (0, since this would involve separating
the jumping velocity from the drift velocity, a procedure
which is well defined only in the f~0 limit. Therefore,
although the agreement is very suggestive, the applicabil-
ity of this scaling law is by no means certain.

Note that if the scaling laws Eqs. (4.2) —(4.4) are valid,
the number of independent exponents is reduced from
four to two. For a finite number of degrees of freedom
we have 5=0 and p= —,', consistent with all the scaling
laws.

Our scaling postulates are rather unlike ordinary criti-
cal phenomena scaling because of the existence of two
time scales that diverge with different exponents,
U '-f ~ and Ao' '-f ". In addition, some of the
finite-size effects also enter in a rather weak way: the
dependence of the threshold force on system size (Sec.
III) is not a power of p„, in contrast to what might have
been expected. This may be because of the special choice
of the optimal rational approximants to the incommensu-
rate chain. As for the size dependence of the time-
averaged velocity, the crossover between (=0.67, charac-
teristic of the infinite system, and (=0.5, typical of the
one-particle system, can be estimated from the data of
Fig. 11 for systems with 5, 8, and 13 particles. The value
of f at which the crossover occurs shrinks by roughly an
order of magnitude for each succeeding approximant.
This result is roughly consistent with finite-size scaling,
where one would expect the value off at which the cross-
over occurs to scale as p„', yielding a factor of about 17
between successive rational approximants.

A. Comparison with mean-Seld theory

The mean-field theory studied by one of us' *' exhibits
features that appear to be consistent with the scaling
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scenarios discussed above, but there are complications
arising from jumping between various metastable states
as the force is varied below threshold. The simplest
mean-field case is that with identical pinning strengths V
in Eq. (1.13). For this case, it is possible to define linear
response below threshold without jumps between meta-
stable energy minima, and then the scaling postulated
above holds with the exponents p= —,

' and 5=1. Howev-

er, the singularity in the polarizability described by an ex-
ponent of y= —

—,
' from Eq. (4.2) is only a subdominant

singularity. This problem arises because the polarizabili-
ty does not diverge for F approaching FT from below;
rather it jumps discontinuously from a finite value to
infinity at F =FT, which can be described by an exponent
y=O. For any type of bounded random distribution of
pinning strengths, the critical behavior for F )FT is
unambiguously characterized; g= —', and p= —,

' are both
obtained analytically and are independent of details. The
results in the moving phase are consistent with the scal-
ing law Eq. (4.4) and with the picture in terms of jumps,
although the exponent 5 cannot be interpreted in terms of
a length.

The dominant feature of mean-field theory below
threshold is the presence of metastable states and the
nonuniversality of the polarizability because of jumping
between different metastable minima. Our investigations
of the one-dimensional incommensurate system have been
designed to avoid this behavior, although study of the
metastable states is certainly possible in the incommensu-
rate system.

Comparison with mean-field theory can yield insight
into which features of the incommensurate chain will
generally hold for large pinned systems. The localized
nature of the phonon excitations, the hopping just above
threshold, and the absence of velocity oscillations in the
infinite-size limit are all characteristic of both mean-field
theory and incommensurate pinning in one dimension.
However, although metastable states are present for the
chain, in contrast to mean-field theory they do not affect
the linear response of the state that evolves from the F=O
ground state for forces below the threshold value. It is
expected that the threshold forces of the other metastable
states will be lower than the FT calculated here and they
will evolve discontinuously to different metastable states
at their thresholds. As FT is approached, all the metasta-
ble configurations which still exist will be similar to the
state we have investigated on a length scale that diverges
at threshold. We conjecture that this characteristic
length scale will diverge as

~f ~
. For more general pin-

ning distributions, jumps between metastable states as F
is increased are expected to be important for all initial
configurations at F=O, so in this regard the mean-field
theory probably is more realistic. For further discussion
of the mean-field-theory results and their relevance to
real CDW's, the reader is referred to the discussion in
Ref. 18.

V. DISCUSSION

It is clear that an incommensurate harmonic chain
displays unusual critical properties near threshold. The

phonons remain localized even at threshold, yet there is
some sort of long-range coherence, since the entire sys-
tem starts to move at threshold. The velocity charac-
teristic near threshold is markedly different from that of
one particle in a sinusoidal potential (i.e., zero dimen-
sions) and that of the mean-field theory. The motion just
above threshold is dominated by incoherent hops across
maxima in the potential, and uniform velocity oscillations
appear to be absent in the infinite system limit.

The results for zero dimensions, one dimension, and
the mean-field theory (infinite dimension) appear to indi-
cate a trend that g increases as the dimensionality of the
system is raised. This expectation is consistent with ex-
periments on three-dimensional charge-density wave sys-
tems, for which g & 1 is needed to fit experiments, since
dU jdF vanishes as F +FT+— Th. e nontrivial exponent g
characterizing the velocity near threshold reflects the in-
teractions of infinitely many degrees of freedom.

Comparison with previous work on related mod-
els' ' ' indicates that the absence of velocity oscilla-
tions in the infinite limit may be a general feature of the
model Eq. (1.12) in the absence of a commensurate poten-
tial. The jerky motion of individual particles found near
threshold also appears prominently in mean-field theory
as well as in numerical simulations of randomly pinned
systems. ' ' Both these conclusions are relevant to ob-
servations on sliding charge-density waves.

Studies with different incommensurate particle densi-
ties and potential strengths would certainly be
worthwhile, but we expect that the absence of velocity os-
cillations, the unusual polarizability and ac conductivity,
and the nontrivial velocity exponent will be general
features of incommensurate pinning. In analogy to previ-
ous work on the pinning transition of the discrete sine-
Gordon equation, the universality of the exponents as the
commensurability a is varied is an interesting question.
However, the numerical accuracy of the exponents ob-
tained here is insufficient to distinguish differences on the
order of a few percent (the amount by which the ex-
ponents vary for different a in the pinning transition that
occurs as a function of V), so we have not attempted
such a study.

A renormalization-group description of the critical be-
havior of ours and similar models does not appear to be
easy because of the existence of two separate diverging
time scales, as discussed above. In addition, there is a
prominent microscopic length scale, corresponding to the
dominant gap at threshold (the distance the particle hops
when it jumps across a potential maximum). Therefore a
rather subtle renormalization-group description is need-
ed 27

An interesting question concerns the role of inertia in
the threshold behavior of these types of systems, since all
the calculations described here were done using purely
dissipative dynamics. A large mass almost certainly can
drive the threshold transition first order [with a hysteret-
ic U(F)], as can be seen by looking at the one-particle
case as well as perturbation theory for very large mass.
However, if inertia is an irrelevant variable in the
renormalization-group sense, the results obtained here
should apply to the more general case of a system with
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small but finite inertia.
For the one-particle case, a small mass does not drive

the transition first order as long as the potential has a
continuous first. derivative, but for some discontinuous
potentials an arbitrarily small inertia can drive the transi-
tion first order. However, for the many-body case we are
mainly concerned with smooth potentials. Since fast
moving regions become very far apart near threshold, it
is reasonable that, in general, the addition of collective
couplings to the single-particle case does not enhance the
inertial effects. In mean-field theory it has indeed been
shown that small inertia is irrelevant. ' However, no
definitive calculation has been done for the incommensu-
rate case discussed here.

Experimentally, for charge-density waves the inertia,
as measured using the ac conductivity in zero field, has
been shown to be entirely negligible up to frequencies on
the order of 10 GHz. Some nonlinear effects which
might appear to be due to inertia have been observed,
but they have been shown to be compatible with the
purely dissipative equation of motion such as that studied
here. Therefore it is entirely reasonable to neglect iner-
tial terms in the equation of motion for CDW systems.
We note, however, that some samples do exist which ex-
hibit first-order threshold transitions with hysteresis, for
which models such as those studied here are inade-
quate. ' These discontinuities probably reflect tears in
the CDW, and the effects of dislocations must be taken

into account.
Another effect neglected in the modes discussed here is

thermal fluctuations. In one dimension the effects of
finite temperature on the behavior of the incommensurate
chain are expected to be rather large. As in other one-
dimensional systems, thermal fluctuations will always be
relevant. Here they will cause slow creep in the presence
of applied forces of any strength. However, the crossover
between creep and sliding is expected to remain fairly
sharp at low temperatures, as in mean-field theory. ' '
Investigations of finite temperature effects in one dimen-
sion should be very interesting. Although thermal creep
effects have been argued to be negligible in sliding
CDW's, they can play a much larger role in flux lattice
flow in superconductors. '

In conclusion, we have investigated the threshold be-
havior of a one-dimensional incommensurate harmonic
chain. We find that it is described by critical exponents
that are different from both those of mean-field theory
and zero dimensions. We have proposed scaling relations
that are compatible with these results and which further
support the view that the threshold process is a novel dy-
namic critical phenomenon where the nonlinear dynam-
ics of an infinite number of degrees of freedom plays an
essential role. However, full understanding of the thresh-
old critical behavior via the renormalization group is still
needed.
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