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The recently introduced Gaussian ensemble involves a sample (of size N) thermally connected to a
finite heat bath (of size N') with specific properties. Treating N’ as a parameter, we use a leading-
order analysis of the 3 (inverse temperature) -versus-E (energy of sample) curves to show how static
properties of finite samples become ensemble dependent. Inflection points in B(E) at phase transi-
tions, however, appear as nontrivial fixed points with respect to N’ and are defined as the transition
temperature of the sample. By developing a fluctuation relation for the heat capacity C we show
that, for small N’, states with C <0 are accessible at first-order transitions resulting in van der
Waals loops in B(E). Monte Carlo studies of phase transitions in Potts models on two- and three-
dimensional lattices confirm the finite-N’ and finite-N effects. We find that the method significantly
reduces computer time (sometimes by a factor of 100) compared with canonical-ensemble simula-
tions and is effective in diagnosing the order of phase transition. Specific-heat data at second-order
transitions reveal a new phenomenon; the peak in C sharpens as N’ becomes smaller, leading us to

DECEMBER 15, 1988

speculate on sharp transitions in finite samples.

I. INTRODUCTION

Statistical calculations of equilibrium properties of
physical models involve closed systems consisting of a
sample, whose properties we are seeking, in contact with
a heat bath. If N and N’ are the number of particles in
the sample and heat bath, respectively, there are two
broad classes of ensembles: those where N’ is infinite
(such as the canonical ensemble) and that where N'=0
(microcanonical ensemble). Computer simulations ex-
ploiting both classes of ensembles have been in vogue for
over three decades now; well-known examples are the
Monte Carlo method of Metropolis et al.,"? using the
canonical ensemble, and the molecular-dynamics method
of Alder and Wainwright® and Rahman,* involving the
microcanonical one.

It has been known for some time that systematic
differences can arise between results using different simu-
lation methods. The most dramatic of these occur at
first-order transitions when we examine, for example, the
temperature 1/B versus energy E curves. An isolated
(i.e., microcanonical) system can go through a first-order
phase transition by means of a succession of intermediate
coexistence states, the only constraint being the constan-
cy of E. If the system is finite, it will exhibit a negative
specific heat due to interfacial tension (a simple argument
is given for this in Sec. II) and van der Waals loops would
show up if B(E) is evaluated in the microcanonical en-
semble (Fig. 1). It is known that such loops sometimes
occur in molecular-dynamics simulations.>® The coex-
istence states, however, have very low probability in the
canonical ensemble so that energy distributions are dou-
ble peaked and B(E) simply possesses an inflection point
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like that at a continuous transition;”*? one then resorts to

accurate extrapolations as N — o to diagnose the order
of the transition.”% 10

Since molecular dynamics is restricted to Hamiltonians
where equations of motion can be constructed and is
inapplicable to the stochastic models of order-disorder
theory, there is a need for Monte Carlo methods which
can approach the microcanonical limit. Apart from the
obvious application to the study of phase diagrams, such
techniques could lead to new insights into the nature of
intermediate states at first-order transitions. Further, mi-
crocanonical Monte Carlo methods can provide indepen-
dent verification of molecular-dynamics calculations.
This would be useful, for example, in simulations of ar-
gon microclusters where the molecular-dynamics results
of Jellinek et al.!' show that the loops of Ref. 6 could be
observed only during short runs and disappeared when
long-time averages were taken.

A recent development in this respect was made by
Creutz,'? who considered a sample connected to a finite
number of Ising (“demon”) variables. Since the number
of demons is a parameter, his method is an ensemble
which interpolates between the microcanonical and
canonical ensembles and one can approach the micro-
canonical limit in a controlled fashion. The only real
problem with this method is that, except in some special
cases, the entropy of the heat bath is an unknown func-
tion so that an extended analysis of the method is not
possible. In particular, it is not possible to obtain a fluc-
tuation result for the specific heat in Creutz’s method.

The subject of this paper is the Gaussian ensem-
ble,"*~'7 which is a novel Monte Carlo technique intro-
duced primarily to sample the coexistence states at first-
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FIG. 1. Schematic diagram of a van der Waals loop in in-
verse temperature 3 vs energy E curves or pressure p vs volume
v curves. The region of interest is BD and corresponds to states
of negative specific heat and/or compressibility. AB and DE
are described as regions of “superheating” and “supercooling”
in an infinite sample. AE is Maxwell’s equal-area construction.
Note that we are referring to finite samples with finite-ranged
interaction between the particles.

order transitions where it has been shown to produce the
loops in B(E). Operationally, the method consists of sub-
stituting the Boltzmann factor

e PE
in the canonical ensemble with the factor
exp[—a(E —E,)],

where a is a positive constant; the average temperature is
then given by (B8)=2a({E)—E,). Thus the canonical
ensemble, which imposes a definite temperature from
which (E) is calculated, is replaced by a factor which
specifies a linear combination of B and E. In brief, the
theoretical basis of the method is as follows. Let S and E
be the entropy and energy of the sample in the Gaussian
ensemble and let primes denote the corresponding quanti-
ties of the “thermometer” (a small heat bath) (Fig. 2). All
quantities are extensive unless otherwise stated. The to-
tal energy of the closed system is E,=E +E’, the total
entropy is S,(E)=S +S’ and this ensemble is obtained'?
by specifying S'= —a(E’)>=—a(E,—E)? where a is a
positive constant. We adopt the view that the static
properties of the sample are described uniquely by its
density of states, p(E)=exp[S(E)], and that the ther-
mometer is a tool for probing the derivatives of S(E) by
measuring the moments (E), (E?), etc. This is
equivalent to a microcanonical approach in that we
characterize the sample by a set of energy levels and then
derive the statistical properties from p(E). To within an
additive constant, the entropy is then defined, through
S(E)=In[p(E)] and B is obtained through B=4aS /JE.
(This is, in fact, the approach taken by some modern au-
thors such as Reif, !® Kittel,!® and Pathria.?®) Postulat-
ing equal a priori probabilities, the energy distribution is
given by P(E) < p(E)p'(E') < exp[S,(E)].

SAMPLE BATH
Number of
particles N N'
Energy E E'
Entropy S S'= —aE"?
Temperature [T = 1/8 T™=1/8
g = 8S/8E g' = —2aFE’
Heat capacity |C=—pg%/(8°S/8E%)| C' = 2aE?
E,=E + E'
Sg;=S+ 8

FIG. 2. Closed system in the Gaussian ensemble showing the
notation used. The sample and thermometer can exchange heat,
and equilibrium is determined by B=pf'. The ensemble is
defined by the form of S’ shown.

In this paper we present a comprehensive study which
combines analysis and simulation to understand and vali-
date the method. We find it fruitful to identify a «c 1 /N’
in the entropy of the bath and to use the method as an in-
terpolating ensemble by assigning to a values from O to
©.!7 By developing a fluctuation relation for the heat
capacity C, we show that the loops are permitted for
small N'. This ties in nicely with an explanation for the
loops given by Alder and Wainwright,”> who attributed
them to the constraint on the density imposed in their
molecular-dynamics simulations. (This has since been
verified by Hansen and Verlet?! and da Silva et al.?2 who
have been able to obtain the loops in their canonical-
ensemble Monte Carlo simulations by restraining the
fluctuations.) The presence of the loops for small N’ can
indeed be interpreted in this fashion because the fluctua-
tions vanish as N'—0. The merit of the Gaussian ensem-
ble is that the fluctuations can be parametrized through
N’ in a continuous manner; a new result is we can show
that for large (but finite) N’ the loops disappear. There is
another important benefit to viewing the method as an in-
terpolating ensemble: we can thereby systematically ac-
count for N'-dependent effects in finite systems. It has al-
ways been appreciated, of course, that statistical averages
of finite systems are ensemble dependent.?>?* However,
we find no evidence in the literature of any studies of
these effects. Our analysis shows that, although (B,
(E), etc. are ensemble independent for N = oo, they are
generally functions of N’ for finite samples with the result
that the averages obtained from the ensemble inevitably
contain less information than the density of states itself.
We present a convolution theorem on Gaussian integrals
which also stresses the fundamental nature of p(E) for
finite samples: if the {(B)-versus-( E ) curve is known for
a given value of N’, the corresponding curve for any
larger value of N’ can be predicted. Other things follow.
It turns out that the N'-dependent deviations from the
microcanonical values are prominent near phase transi-
tions due to sizable fluctuations. However, inflection
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points in B(E) at phase transitions, denoted (8*,E*), are
independent of N' to leading order in the energy fluctua-
tions and thus constitute nontrivial fixed points with
respect to N'. In this paper we shall use B* as the transi-
tion temperature in a finite sample which will be extrapo-
lated appropriately to obtain the infinite sample value.

We validate the analysis by comparing it with simula-
tions of first- and second-order phase transitions in Potts
models on “cubic” lattices in d=2 and 3 where d is the
lattice dimensionality. Potts models are ideal for our
purpose since many of their properties, such as the order
of the transition are exactly known for d=2 and several
approximate treatments of the models exist for d=3.
Thus the emphasis is on the method and not on Potts
models, although some of our results agree with the con-
jectures of other workers. We examine effects due to
both finite N’ and N and show that this is an effective
method for diagnosing the order of a transition and
would be very useful in investigating phase diagrams. We
find that the sampling of the intermediate states drastical-
ly reduces the computer time at first-order transitions
vis-a-vis canonical-ensemble simulations. Specific-heat
data at second-order phase transitions reveal a novel
phenomenon; although C is always found to be positive,
the peaks in C for a given N sharpen remarkably as N’
becomes smaller. This generates a discussion about sharp
transitions in finite samples if the microcanonical ensem-
ble were used to study the properties.

The rest of the paper is organized as follows. Section
IT is devoted to an analysis of the method. Section III
deals with Potts models and the data from simulations.
Section IV highlights the computational advantages of
the method. Section V summarizes our findings and
discusses future research.

II. ANALYSIS OF THE METHOD

A. Second-order Taylor’s expansion of S,(E)

We first demonstrate that the expression for the entro-
py of the bath, S'=—a(E")% is not as unphysical as it
appears. Consider a bath of N’ identical noninteracting
classical Heisenberg spins in a magnetic field h. p'(E’)
and hence, S’, will be continuous functions because of the
classical nature of the spins. If o is the magnetic moment
of each spin, the allowed values of E’' are
—N'ho ZE=<N'ho. At both these extreme values of E’
the degeneracy of the energy level is 1 so that S’ is O
there and will therefore have a maximum at some E| .
Shifting the origin of both E’ and S’ to this point and ex-
panding up to second-order, we obtain the form
S'=—a(E')%.. Note that

a’s’
aEIZ

1

2

>0
E'=0

because S’ has a maximum at the origin. Since these are
noninteracting spins, both S’ and E’ are extensive and we
can identify a < 1/N’. We shall sometimes refer to a in-
stead of N’ as a parameter.

For a given set of input parameters {a,E,,N} let the
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most probable energy for the sample be E [i.e., where
S,(E) is a maximum]. Expanding S,(E) about E we ob-
tain, up to second order in small fluctuations of energy,

N P U R
SUE)=SEV+ S5+ 50 | (E=E)
2 2Q _
+1]9s oS (E—EP+--. ()
2 aEZ 3E2 E=F

We define the inverse temperature 3 and the heat capaci-
ty C through f=3S/dE and C = —f?/(3S/dE?), thus
extending the usual thermodynamic definitions to the
case of finite N. The condition that S, is a maximum, i.e.,
(3S,/3E); =0, yields B=B', which is the usual deriva-
tion of the equality of temperatures of systems in thermal
equilibrium. Thus the second term in (1) vanishes and
the probability of a sample of energy E,

P(E)xexp[S,(E)],

is a Gaussian centered on E when only terms shown in (1)
are retained. We obtain

(E)=E, (2a)
(B)=B=2a({E)—E,), (2b)
and
.. PG,
(Cy=C= 124G, ’ 3)

where we have introduced the notation G, =((E
—(EY)?), n=2,3,4,... . The tildes indicate that the
quantities are the true (microcanonical) values and are to
be evaluated at E.

We can verify that (3) is equivalent to (C)
=—(B)2(E) /3{B) as follows. We define Q,(E,), the
analog of the partition function, through

Q,= 3 exp[—a(E,—E,)*], 4)

where the subscript @ denotes that we are considering a
given bath. All quantities are now functions of E, so that

dInQ,
ar;Q =(B)=2a({E)—E,), (5
t
%g)—=2a02, ©)
t
and
aa(EB> =2a(2aG,—1) . (7
t
Using (6) and (7) in
_ o |3E) 78(B)
(C)=—(B) 3E, 3E,

recovers (3). Note that Eq. (3) recovers the usual
canonical-ensemble fluctuation formula for {C) in the
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limit @a—0. As another example of the interpolating
properties of the ensemble, we see that Q,(E,) reduces to
the density of states p(E)=3;8(E —E;) for a— o,
E,—~E, and to the npartition function Z(B)
= 3, exp(—BE;) in the limit a -0, —2aE, —f; thus the
Gaussian ensemble interpolates smoothly between the
two extremes.

Equation (3) also is a form of the fluctuation-
dissipation theorem. The fluctuation G, can be written

G,B*=CC'/(C+C"),

where C’ is the heat capacity of the primed system. In
our case where S'= —a (E’)? we have

C'=B*/2a .

This shows that for the purposes of the fluctuation
theorem the heat capacities of the two systems in equilib-
rium add like capacitors in series.

A graphical interpretation of the method is given in
Fig. 3. Define S”"=—S'=a(E’')? or S"=a(E—E,)~.
For a given E,, E is then defined by the maximum in
S,=S —S8", i.e., the point where the slopes of S and S"
are equal. Since dS''/9E is a single-valued function of E,
we can evaluate B at any point on S(E) by a proper
choice of E,. In the canonical limit, S’' is characterized
only by its constant slope B and coincides with the
tangent. The probability of any state is then given by
P(E) < exp(S —BE) < exp( — BF) where F=E —(S/B) is
the free energy of the state.

Figure 3 also explains the efficiency of the method. Ifa
is large, the probability of the fluctuations away from E
falls off much more rapidly under this Gaussian sampling
then under the canonical ensemble since P(E)xexp(S

Entropy

So

E, E
Energy

FIG. 3. Graphical interpretation of B in the Gaussian ensem-
ble. Sis the entropy of the sample and S"’= —S’ where S’ is the
entropy of the bath. E, the most probable value of E, is the lo-
cation of the maximum in S,=S —S". S’ has been shifted
through a constant S, to make S and S” touch at E. J is the
slope of the straight line and is simultaneously tangent to S and
S§"”. a < 1/N’ is the curvature of S"" and the canonical ensemble
is recovered when a —0, keeping B= —2aE, =const; S"' then
coincides with .
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—S8""). [This is also reflected in Eq. (3) where, if we keep
B and E fixed, G,—0 as a— ».] When a becomes very
large, however, S’’ becomes narrower, limiting the fluc-
tuations, and considerably more computing time is neces-
sary to achieve ergodicity.

B. Intermediate states at first-order transitions
and negative specific heats

One is not completely unexposed to theories which
look into the interphase region. Elementary texts contain
p-V diagrams for the van der Waals equation of state.
The isotherms are smooth functions which go through
the interphase region and the transition pressure is to be
calculated by an equal-area construction involving an in-
tegral over the interphase region. Nevertheless, most of
us were taught not to attach any physical meaning to this
region. Indeed, for several reasons the van der Waals
theory is not very physical in that neighborhood. Mean-
field theories (of which the van der Waals theory is an ex-
ample) usually give loops in thermodynamic functions
within the interphase region of a first-order transition®®
and these loops are an artifact of the mean-field ap-
proach. Nevertheless, one does not need to treat this re-
gion as taboo, since physically meaningful statements can
be made.

Is it in fact possible to describe the interphase region in
terms of equilibrium statistical mechanics? As shown in
this section, it is certainly missed if “equilibrium” means
“equilibrium with an infinite heat bath.” On the other
hand, real systems are often not in contact with an
infinite heat bath but are more or less energetically isolat-
ed. For example, heat-capacity measurements are always
made with the sample-calorimeter combination in equi-
librium with each other but as isolated as possible as a
whole. “Equilibrium” then means that the sample has
the same temperature as the thermometer and that the
sample is at a uniform temperature throughout. With
this geometry there is no difficulty obtaining two coex-
istent phases in accord with ordinary experience, al-
though as will be argued below, it is not possible for a
pure substance when rigorous equilibrium with an infinite
heat reservoir is maintained.

There are two very easily confused theorems implying
that the second derivative of the entropy must be less
than or equal to zero. If this is so, then temperature will
rise or remain constant as energy is added to a system,
that is, a system must have a positive heat capacity.
Since we propose that negative heat capacities are possi-
ble, we must explore these theorems carefully.

Theorem 1. A sample in thermal equilibrium with an
infinite heat bath will never be found to have an energy
where 3%S /3E? is positive.

Notice that the theorem does not say that S does not
have positive curvature; just that it will never be found
with an energy where that is true if it is in contact with a
heat reservoir.

Sketch of proof. If two systems are in contact so that
they share energy E,=FE,+E,, then the probability of
energy E| is

P(E,)=P,(E,)P,(E,—E,)
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or
S,(E,)=S,(E,)+S,(E,—E,) .

The most probable energy will be when S,(E,) is a max-
imum, i.e., when

(3%S,/0E3)<0
or
(3%S,/0E?)+(3%S,/3E%)<0.

If system 2 is an infinite reservoir, then 3S, /dE3=0 and
we require 3°S,;/0E2>0 at the equilibrium energy
E,=E,. ]

Notice that only the sum of the second derivatives
must be less than zero in the proof. In the case of the
Gaussian ensemble this is equivalent to

2
2a+%20. (8)

We see immediately that for N finite and C <0 we can
find a large enough to stabilize the system. Thus the
loops are permitted for small N'. In the limit of an
infinite bath, however, =0 so that ?/C >0 is required
and we have theqrem 1.

Theorem 2. A system consisting of an infinite but iso-
lated pure substance will never have the second deriva-
tive of entropy positive because it could always break up
into two phases such that the sum of the entropies is
larger.

Sketch of proof. This can be derived by the following
construction. Suppose to the contrary that S(E) is posi-
tively curved as shown in Fig. 4. Consider two energies
which are the extremes of a line which forms the convex
hull of the curve S(E), shown in Fig. 4 as £, and Ejy.

Entropy

Energy

FIG. 4. Schematic diagram of the entropy at a first-order
transition. The notation is that of Fig. 3. The ACB portion of
the curve in S is due to the interface effects in a finite sample.
B.(N) is the slope of the dashed line AB which denotes the en-
tropy of an infinite heat bath. S.(N) is defined as the transition
temperature of the sample if the canonical ensemble were used
because of the equality of the free energies at this temperature.
As the size of the sample increases, ACB approaches the line
B.AN). The curve S’ shows that it is possible to sample the
states near C using large a in the Gaussian ensemble.
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Because the energy and the entropy are extensive (and
implied by this is the fact that the surface energies and
entropies are negligible) it is possible to re-form the sys-
tem out of two phases of energy per particle E , /N and
Eg /N. The total entropy will be given by a similar com-
bination of the entropies S, and Sy:

S(E)=N 4(S4/N)+Ng(Sp/N)
=[S4(Ep—E)+Sp(E —E )1/(Ex—E,) .

But this is just the equation for the straight line 4B in
Fig. 4. Thus in the infinite sample limit the S/N curve
versus E /N curve will be convex, always curving down-
ward or having zero curvature. |

As hinted in the proof, however, the entropy of a finite
system may be slightly below the convex hull derived for
an infinite system because of the interface between the
phases. Although the part of the entropy which goes like
N is maximized by splitting the system into two phases,
there are additional terms which go like the number of
atoms in the interphase surface (that is, proportional to
N(@~1/d) The effect on the entropy is negative or the
surface area would maximize and the two phases would
become one foglike phase. (And indeed, the effect on the
entropy would be proportional to N because the surface
area would increase until all the atoms were involved.
This is, in fact, what happens in a one-dimensional sys-
tem where the surface entropy is positive, thus prohibit-
ing phase transitions.) We know therefore that because
of this surface entropy, the total entropy of a two-phase
system will lie slightly below the straight line implied by
the derivation above. The size of the surface effect will be
proportional to the area of the surface, which will depend
in turn on the system energy because the amount of each
phase is to first order just given by the argument above.
Since this surface entropy effect is negative, it has the
effect of causing an upward curvature when added to the
linear two-phase line of theorem 2.

The existence of states with C<O0 can also be under-
stood through free-energy concepts using the following
oversimplified argument. Consider the situation depicted
in Fig. 5, where we have a sample on the verge of a first-
order transition, and a small amount of the high-
temperature phase nucleates upon adding some heat
AQ =AE. Using the notation in the figure, the change in
the free energy of the sample is AF=F—F
=N,(f;,—f_) where f is the surface free energy per
particle and is proportional to the surface tension. Now
fs>f_ or else the sample would have spontaneously
broken up into a foglike phase by maximizing the area of
the drops. An observer for whom the sample is a black
box and who wishes to use thermodynamics will find that
AF/AE =—S/C>0 so that he will conclude that C<O0.
At a second-order transition, on the other hand, the sur-
face tension vanishes so that C> 0. For infinite systems,
N, is negligible compared to N, and N_ so that
F'=N,f.+N_f_. But f,=f_ so AF=0, resulting
in an infinite specific heat (latent heat). This 8-function
singularity in specific heat has also been verified through
simulations.’
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N_f_
Nf_ . N,
AQ
F=Nf N=N,+N_+N,

F'=N,f,+N_f_+NJ{,

FIG. 5. Schematic diagram of nucleation at a first-order tran-
sition. The subscripts — and + refer to the low- and high-
temperature phases, respectively, and the subscript s refers to
surface quantities. f denotes free energy per particle. N is the
total number of particles in the sample. F and F’ are the total
free energies before and after receiving the heat AQ. See text
for discussion.

C. N’ dependencies in { E ) and (B)

Equations (2), which result from a Gaussian approxi-
mation to P(E), are good when the sample is far from a
phase transition. However, the third-order term in (1) be-
comes appreciable at phase transitions due to the large
fluctuations and we consider its effects approximately as
follows. Define

~2__ C
y Of= T,
E=FE 2GC+B
Now approximate exp[S;(E —E)*]=1+S;(E—E)} in

P(E). This retains the Gaussian form of P(E) and we
obtain readily

a’s

dE?

< _ 1

3_5 Z=3§364.

(EY=E+z, (%a)

(E?)=E’+0&*+2Ez, (9b)
and

(E3)=E*+3E%2+3E&*+55 %z . (9¢)
Solving (9) for z yields

2°+2(G,/2)—(G5/4)=0 . (10)
The discriminant of (10), A, is given by

A=(—G,/4)*+4(G,/6)*>0 and yields only one real
root for z. Specifically, if u> and v? are roots of
t’+(—G4/4)t —(G,/6)’=0, thenz =u +v, i.e,,
_ Gy /4)+VAL  [(Gy/4)—V A
= 2 2
Note that G, and G; are “measurable” quantities so that

z can be estimated from simulations. We may express the
temperature deviations as

(B)=B+2az . (12)

Equations (9a) and (12) then show that z is a measure of
the deviations of ( E ) and () from the true values.
We may write

(1n
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‘CV2

1 3’8
2 (B*+2aC)?

JE?

where C is of order N and 8’8/3E? is order N ~2. In the
limit @ —0, z is of order unity with the result that
(E)/N—(E/N)+0(1/N) and {B)—{B); this is, of
course, the canonical result. Since z—0 in the micro-
canonical limit, we find that the true values are obtained
for a — . Finite-N effects in the Gaussian ensemble are
investigated by treating N as a parameter while maintain-
ing A=N/N'c<aN=const. Then, a—0 as N— o so
that (E)/N—E /N and (B)—p. But this result is in-
dependent of the value of A, showing that statistical aver-
ages of properties of macroscopic systems are indepen-
dent of the ensemble used.

One of the useful features of Eq. (10) is that G; =0 im-
plies z=0 and vice versa. But

9’8
JE?

z= s

E=E

Z

E=FE

and hence inflection points in B(E) are independent of
N’. The curves of {8) versus ( E ) for various a cross at
these points, denoted by (B8*,E*), which are thus non-
trivial fixed points with respect to N'. =0 and o then
represent trivial fixed points since P(E) approaches a 8
function at these extreme (G;—0). In this paper we take
B* as an alternate choice for the transition temperature
even at first-order transitions where it is an alternative to
the equal-area construction. (We noticed significant a
dependencies in 8* only at highly asymmetric first-order
transitions; the equal-area'® construction then provides a
better definition of the transition temperature.)

Equations (9a) and (12) also allow a form of scaling.
From (B) versus (E) for a given a we can estimate E
and B and thus all the curves for various a (N fixed)
should collapse onto a single curve, the microcanonical
one. Of course, in view of the approximations made in
obtaining these equations, we expect the results to be
good only for large values of a (small fluctuations). This
is confirmed by the simulation results which will be
shown in Sec. III.

The preceding arguments show that, for finite, nonzero
N and N’, information is inevitably lost during statistical
averaging. [By complete information we mean a
knowledge of B(E)]. This fact is also illustrated by the
following theorem.

Theorem 3. Let B,(E,) denote the curve (B) versus
(E) for a given a. Then if we know B,(E,), we can find
B.(E,) for any other a’ <a.

Proof. Rewrite (4) as

0.(E)= [ " “p(Edexp[—a(E —E, ?1dE . (13)
Then
31nQ, (E,)
L 14
B.(E,) 3E, ; (14)

and we can write

EI
0.(E)=exp | [ 'B,(EDE! | . (15)
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Consider the integral
= _’“:exp[ —b(E,—E)*Q,(E}dE! (16)
which becomes, by (13),
I=[""p(B)E [ " "dE/exp{ —[b(E,—E;
i i +a(E —E))*]}

=(m/a +b)1/2f_+°°p(E)exp

—ab . o
—2H(E—E,) ldE.

(17)

Defining a’=ab /(a +b), the integral is simply Q,(E,) so
that (16) and (17) may be combined into

Q. (E,)=[a’/m(a —a")]'?
Xf_+°°exp

XdE] . (18)

Q.(E/) can be numerically evaluated through (15)
and thus B,(E,) can be predicted using (14) and (18).
Apart from requirements of convergence of integrals, we
need that a >a’ in order that Q,(E,) be a real
quantity. ]

Therefore it is not possible to reconstruct the density of
states of a finite system using canonical-ensemble aver-
ages, while it is always possible to obtain the canonical-
ensemble averages from the Gaussian-ensemble averages
through

—aa’

_we —F')2
o E—E])

Q,(E/)

Z(B)=(a/m)"*e F/% [ Q,(E)e PEdE .

III. SIMULATIONS

A. Potts models

We illustrate the validity of the method by simulating
g-state Potts models?® on square and simple-cubic lattices
of side L with periodic boundary conditions (N =L¥9). In
a g-state Potts model the spin at the ith site, o;, can take
one of g different values, say the numbers 1-g. The fer-
romagnetic Hamiltonian used in our simulations is given
by

H=—J36,,—h358,,, (19)
apy i
where 8 is the Kronecker 8 function. The first term in
(19) is a sum over all the nearest-neighbor pairs with J
(>0) being the interaction strength. The second term is
the interaction of the spins with a field, 4, which couples
only to spins with 0 =1. We shall mainly be concerned
with models where A=0. We shall use units where ener-
gy is in units of J, B is in units of J~!, and 4 is in units of
J. The following notation is used. SB,( ) is the inverse of
the infinite-lattice transition temperature. Energies per
site at the transitions in the infinite lattice are denoted by
E_ () if the transition is second order and by E_ and
E , if the transition is first order. The notation B*(L)
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emphasizes the L dependence of B*.

The advantage of Potts models is that the nature of the
transition is g dependent: for g <g, the transition is
second order, while for g > g, the transition is first order.
For d=2 and h=0, Baxter’’ has shown that q.=4.
Baxter’s results for the transition temperature and the la-
tent heat are

B.(x)=In(14+V7yq) (20)

and

tanh(6/2) [] [tanh(n6)]?,

n=1

1+

E,—E_=2 e

(2D

where 2 cosh@=V'q. We can obtain E + and E _ sepa-

rately by combining the above with the result of Kihara
et al.:*

E,+E_=-2(1+1/Vq). (22)

The situation is not exactly known for d=3, h=0, al-
though approximate calculations?® suggest that g, =2.

Monte Carlo realization of the Gaussian ensemble is
straightforward. Phase space is sampled by going to each
spin on the lattice in turn and then testing it for “flip-
ping” from a configuration {u} to a new configuration
{vi. If P, and P, are the probabilities for two
configurations of energies E,, and E,, their relative prob-
ability is given by

P, exp[—a(E,—E,)*]
P, expl—a(E,—E,7]

, (23)

and the process is implemented on the computer by com-
paring the ratio to a random number as usual.> One pass
over all the spins in the lattice constitutes a Monte Carlo
step per site (MCS), and is taken as the unit of computer
time. An important difference from canonical-ensemble
Monte Carlo is that E,, E,, are now the total energies of
the lattice and not just the energies of the particular spin
in question. In Appendix A we describe how to choose a
and E, conveniently when using the method for the first
time.

B. Simulations of first-order transitions

Figures 6-9 deal with data from simulations of the
d=2, ¢g=10, h=0 model which has a strong first-order
transition. Figure 6(a) shows the (B)-versus-( E ) curves
for various a for L=8 and we see that the loops appear
for large a (>0.001). The disappearance of the loops for
small a coincides with the appearance of double-peaked
energy distributions where the specific heat correspond-
ing to the two peaks is positive; this has been explicitly
shown in Ref. 17. The horizontal dashed line in this
figure is the equal-area construction'’ and this agrees
with the value of B* obtained from the fixed-point con-
cept. The curves in Fig. 6(a) are predictions based on the
data for a=0.05 (not shown) and using theorem 3 of Sec.
IIC; the good agreement with the data supports the
analysis. Figure 6(b) presents the specific-heat data ob-
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tained from Eq. (3) for the curves in Fig. 6(a) and
confirms the negative values for large a. Note that we
have plotted {E) as the ordinate since {C) is a mul-
tivalued function of (S8).

Figures 7(a)-7(c) pertain to the analysis of the third-
order terms in S,(E) discussed in Sec. II C. Figures 7(a)
and 7(b) show the behavior of G; and z, respectively, for
various a and confirm that they vanish near E* and also
at the extreme values of the energy. Thus they validate
the qualitative features of our analysis. The analysis is
quantitatively tested by the scaling plot of Fig. 7(c),
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FIG. 6. (a) Typical {B)-vs-{E)/N curves for N=64 and
various a at a first-order transition. The symbols are Monte
Carlo data for the ¢g= 10, =0 model on an 8 X8 lattice and are
averages over 200000 MCS each. The curves are predictions
based on the data for a=0.05 (not shown) and using Eqgs. (14)
and (18). The loops are clearly seen as the microcanonical
(large-a) limit is approached. The horizontal dashed line is the
equal-area construction for a=0.01. (E*,8*) is the fixed point.
B.(), E_, and E , are the infinite-lattice characteristics at the
transition. (b) Specific heat as a function of energy at the first-
order transition of (a). {(C) is obtained from Eq. (3). (C) data
for a=0.001 have been divided by 15 to include all the data in
the figure. The horizontal dashed line represents {C)=0.
Some data have been omitted for clarity. The curves are
straight-line interpolations between data points. The loops in
(a) for =0.005 and 0.01 give rise to regions with { C ) <0 here.

where we have plotted E and 8 obtained from Egs. (9a)
and (12). Although data for a=0.05, 0.01, and 0.005 fall
on a single curve, the microcanonical one, significant de-
viations are seen for a=0.001 and 0.0005. This illustrates
that the analysis is valid only for small fluctuations (large
a).

Figures 8 and 9 present the finite-N effects at the above
first-order transition which were investigated keeping the
ratio N/N'«<aN=const. As shown in Sec. IIC, the
properties of macroscopic samples are independent of N’
so that we expect the loops to flatten out to a horizontal
straight line as N— oo. This indeed happens in Fig. 8.
Using L=38, 10, 12, 14, and 20 we determined B*(L) as in
Fig. 6(a). Figure 9 shows the extrapolation of B*(L)
versus L~ in the manner of Ref. 7 to obtain B,( ). As
is evident, the fit is very good and our value of S,( )
agrees well with the exact result.

C. Simulations of second-order transitions

Figures 10-12 deal with the second-order transition in
the d=2, g=3, h=0 model. It has been shown in Ref. 17
that no loops are seen in {(B) versus (E) at this transi-
tion and thus the method provides a clear distinction be-
tween first- and second-order transitions. The scaled data
are shown in Fig. 10 and we once again see that the data
collapse onto the microcanonical curve for large a. The
data for G, and z are similar to those at first-order transi-
tions [Figs. 7(a) and 7(b)] and thus are not presented here.

B*(L) was found in this fashion for L=8, 10, 12, 20,
22, and 26 and B,(« ) was found by extrapolating 3*(L)
versus L ~!/¥ in Fig. 11 using v=2 in keeping with den
Nijs’s conjecture?® for g=3. (v is the critical exponent
for the correlation length &; thus £~[B,()—B]"". See
Ref. 9 for a discussion of the finite-size effects).

The specific-heat data pertaining to Fig. 10 are plotted
in Fig. 12 and show remarkable N’-dependent effects. As
a increases, we find that the peak in {C) /N grows and
simultaneously sharpens, giving the impression of a cusp
in the specific heat for large a. By verying that there
were no significant changes in the data for a>0.05, we
ruled out the possibility of a diverging specific heat. To
confirm that the sharpening of {C) is linked to critical
behavior, we also studied the ferromagnetic Ising model
(g=2) in d=3 and the paramagnetic Ising model in a
magnetic field. The results are presented in Figs. 13 and
indeed, while the second-order transition in the d=3 Is-
ing model does give rise to the “cusp,” no such behavior
is seen in the (noncritical) paramagnetic model.

Note that the arguments of Yang and Lee’® prohibiting
phase transitions in a finite sample are based on the
(grand) canonical ensemble whereby the partition func-
tion is required to be analytic for finite N. [Indeed, Figs.
12 and 13(a) show correctly that any singularity is
smeared out as the canonical ensemble is approached.]
The same arguments hold for the Gaussian ensemble (for
finite a) since

Q,(E,)= 3 exp[ —a(E;,—E, 1

is an analytic function of E, in the entire complex plane
and is nonzero and positive for E, on the real axis.
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Therefore (5) shows that S is analytic as well for real E,.
However, B(E,) determined from the Gaussian ensemble
can be much less smooth than that from the canonical en-
semble because, as shown in Sec. II C, the canonical re-
sults can be obtained by smoothing the Gaussian results.
In the limit @ — «, Q,(E,) approaches p(E) and the re-
sults are quite singular since p(E) is a series of § func-
tions for any finite sample. The interesting question is
whether one can give mathematical justification for the
concept of a sharp phase transition in a finite sample even
though the limit a — <« is very irregular while a finite is
technically analytic. There are other difficult questions
when the notion of sharp transitions in finite samples is
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introduced. Thus we may ask: is there a lower bound on
N such that for smaller samples there does not exist a
sharp transition? If not, are there sharp transitions for,
say, N=2? What is the meaning of B for such small sam-
ples? What are the roles of space and spin dimensionali-
ties in determining critical behavior? We hope to answer
some of these questions in future work.

Another important matter to investigate is the exten-
sion of finite-size scaling to the specific heat in the Gauss-
ian ensemble. We have been unable to do this at present
mainly because of the numerical difficulties which arise as
the system approaches the microcanonical ensemble.
These are evident in Fig. 12 where large errors in (C)
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FIG. 7. (a) Behavior of G;=((E —(E))*) at the first-order transition of Fig. 6(a), confirming that G vanishes at E*. The hor-
izontal dashed line represents Gy =0 and the curves are straight-line interpolations between data points. G, data for a=0.005 and
0.01 have been multiplied by 10 and 20, respectively, to enhance clarity. The fluctuations increase as the canonical ensemble is ap-
proached (a —0). G5 also vanishes in the wings, =0 and «, where the energy distribution approaches a & function. (b) Behavior of
the third-order quantity z at the first-order transition of Fig. 6(a), confirming that it vanishes at E*. z is obtained from Eq. (10) and
represents the deviations of (E ) and (B) from the microcanonical values. The horizontal dashed line represents z=0 and the curves
are straight-line interpolations between data points. z data for =0.005 and 0.01 have been multiplied by 3 and 5, respectively, to
enhance clarity. (c) Scaled data at the first-order transition of Fig. 6(a), confirming that the values for large a collapse onto the micro-
canonical curve. E and f are estimates of the microcanonical values and are obtained through Eqgs. (9a) and (12). The curve is from
straight-line interpolations between data points for 2=0.05. Symbols have been omitted for a=0.05 to maintain clarity.
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FIG. 8. Finite-N effects at the first-order transition of Fig.
6(a). N (=L XL) is the number of particles and aN=0.64 was
maintained for all data. Each data point represents averages
over a minimum of 200000 MCS. The curves are straight-line
interpolations between data points. As N grows the loops ap-
proach the horizontal straight line which characterizes the en-
ergy discontinuity. Data for L=10 and 14 have been omitted
for clarity.

are present even after 105 MCS were used to compute the
averages for only an 8 X 8 lattice.

IV. COMPUTATIONAL ADVANTAGES

The main advantage of the method lies in its ability to
approach the microcanonical limit. Apart from making
the diagnosis of the order of the transition easier, this
also saves computer time at first-order transitions be-
cause, by using a sufficiently large value of a, we can
directly sample the two-phase states. As shown in Ref.
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FIG. 9. Extrapolation of B*(L) vs L ~? to obtain B,.( ) for
the first-order transition of Fig. 6(a). For each L, B*(L) was
defined as the fixed point as shown in Fig. 6(a). The straight line
is the least-squares fit and yields B.(« )=1.4247. The arrow
denotes the exact result of B,( o« )=1.426 606. . . .
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FIG. 10. Scaled (B3)-vs-(E) data at a second-order transi-
tion showing that the data collapse onto the microcanonical
curve for large a. The data are for the g=3, h=0 model on an
8X 8 lattice. Each data point in the transition region represents
averages over 10° MCS. As in Fig. 7(c) there are significant de-
viations for small a. The curve is from straight-line interpola-
tions between data points for a=0.05. (E*,3*) is the fixed
point. E.() and B.() are infinite-lattice characteristics at
the transition.

17, this avoids the double-peaked distributions and the
resulting hysteresis which are characteristic of
canonical-ensemble simulations. Since the maxima of
P(E) grow with N, this feature becomes particularly at-
tractive when large lattices are involved. For example,
Fig. 14 shows the results for the g=10, A=0 model on a
50X 50 lattice using a=0.01. We have deliberately limit-
ed the computing time to 5000 MCS per data point to
emphasize the efficiency. The loop is clearly visible and
we find that our estimates of B,(» ), E,, and E_ com-
pare favorably with the exact values. Similar results us-
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FIG. 11. Extrapolation of B*(L) vs L™ !/* at the second-
order transition of Fig. 10. den Nijs’s conjectured value of 2
was taken for the critical exponent v (Ref. 29). B*(L) was ob-
tained from the fixed points such as in Fig. 10 using L=38, 10,
12, 20, 22, and 26. The straight line is the least-squares fit and
yields B.(0)=1.0043. The arrows denotes the exact result of
1.00505. .. .
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FIG. 12. Specific-heat data as a function of B at the second-
order transition of Fig. 10. The data for L=8 and various a are
shown. The curves are smooth guides to the eye. The second-
order transition is remarkably sharpened as one moves away
from the canonical ensemble. See text for discussion.

ing the canonical ensemble on the same sample required
over 106 MCS (Ref. 7). The problem there was that, due
to the strong first-order transition, the 50X 50 lattice in
Ref. 7 spent as much as 5000 MCS in just one peak of
P(E) before flipping to the other.

While finite-N extrapolations are unavoidable for a
conclusive diagnosis of the order of a transition, the fact
that finite-N’ effects are more prominent for small N in
the Gaussian ensemble means that the method is very
useful in the preliminary investigation of phase diagrams.
As a first example we show in Fig. 15 results for the d=3,
g=3, h=0 model which is believed to have a first-order
transition. (See Ref. 29 for references to several approxi-
mate calculations for this model.) While Fig. 15 confirms
this, the noteworthy point is that the entire computer run
for producing the loop in this figure took up only 15 min
on a fast scalar computer.

Figures 16 show the results for the g=4 and 5 models
on 8X8 lattices. Figure 16(a) shows the data for the
q=5, h=0 model and the first-order transition is evident.
However, the size of the loop suggests a strong first-order
transition, whereas the actual discontinuity is very small.
This discrepancy is probably related to pathologies in the
g=>5 model, since extensive canonical-ensemble Monte
Carlo simulations of the same model by other work-
ers’"32 using large lattices (up to L=240) and simulation
times up to 10° MCS have revealed acute metastabilities®!
and extremely large correlation lengths.’> We must em-
phasize that the method does not replace extrapolations
to large N and what our calculation for the ¢g=5, h=0
model shows is that for small N there is a wide region (in
energy) in which In[p(E)] is concave. The exact results
for E, —E _ indicate that this region narrows consider-
ably as N— . We have found in the case of the d=2,
q=10, >0 model that what appears as a first-order
transition for small N can disappear for larger N. There-
fore, although the diagnosis is usually quite unambiguous
for finite N, there is no way to avoid the process of extra-
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polation to N — co. Figure 16(b) shows the results for the
g=>5 model in the presence of a large negative field. One
of the states is thus suppressed [see Eq. (19) for a
definition of the Hamiltonian] so that the g=5, h = — »
model is identical to the g=4, h=0 model which has a
second-order transition. This indeed happens in Fig.
16(b) where the data for the g=35 model superimposes on
the corresponding data for the g=4 model. We show this
for two different values of a to demonstrate that the coin-
cidence is not fortuitous.
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FIG. 13. (a) Specific-heat data for N =4 at the second-order
transition in the d=3 Ising model in zero field. The behavior is
similar to that in Fig. 12. The curves are straight-line interpola-
tions between data points. Each data point represents averages
over 100000 MCS. (b) Specific-heat data for an N=10 Ising
paramagnet, a noncritical model. There is no indication of the
cusplike behavior characterizing Fig. 12 and (a). The spins
{o;==*1} in this model interact with a unit external magnetic
field and the Hamiltonian is H=— ¥, 0,. The symbols are
data from exact calculations since the density of states is known.

The curves are straight-line interpolations between the data
points.
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FIG. 14. Data for a large (50X 50) lattice at the first-order
transition of Fig. 6(a) using aN=0.01. The curve consists of
straight-line interpolations between data points which are aver-
ages over 5000 MCS each. The horizontal dashed line is the
equal-area construction and yields E_ =—1.672, E, = —0.938,
and B.=1.424. The exact results are —1.663, —0.9682, and
1.4261, respectively.

V. SUMMARY AND FUTURE WORK

We have shown that the Gaussian ensemble is inter-
mediate to the canonical and microcanonical ensembles
which are the limiting cases of this method. Q,(E,), the
analog of the partition function, defined through Eq. (4)
and the fluctuation formula for the specific heat, Eq. (3),
show this analytically, while the interpretation of the
temperature in Fig. 3 provides a graphic demonstration
of this interpolating property. The stability criterion (8)
shows that, by reducing the size of the bath, states with
negative specific heat can be sampled at first-order transi-
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FIG. 15. {B)-vs-(E)/N curves for the d=3, ¢g=3, h=0
model. Data are for N =4° and a=0.05. Each point represents
averages over 50000 MCS and the curves are straight-line extra-
polations between data points. The dashed line is the equal-area
construction. The loop confirms the first-order transition diag-
nosed by other workers.
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tions leading to van der Waals loops in B(E). This
feature has proven useful in distinguishing the first- and
second-order transitions in Potts models in both d=2 and
3. In particular, we have shown in Sec. IV that the
method confirmed easily that g. =4 and 2 for d=2 and 3,
respectively. Note that these are significant results; for
example, the canonical-ensemble simulations of Binder*?
could not distinguish the weak first-order transition in
the d=2, h=0, g=5 model even after a relatively sub-
stantial computational effort. It would be interesting to
see whether the method is equally successful in diagnos-
ing the order of the transition in more complicated mod-
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FIG. 16. (a) Results at the first-order transition in the d=2,
g=35, h=0 model on an 8 X8 lattice using ¢=0.1. The dashed
line is the equal-area construction. The arrows indicate the lo-
cation of E_ and E ., the infinite-lattice energies at the transi-
tion. The exact value of B.( ) is 1.174359. . . and lies outside
the scale of the figure. The size of the discontinuity, E, —E_,
as suggested by the data for L=8 is an order of magnitude
larger than the true value. (b) Equivalence of the g=5, h <<0
model and the g=4, h=0 model in d=2. The data are for an
8 X 8 lattice using two different values of a and 500 000 MCS per
data point in the transition region. The curves are for the =4
model and are straight-line interpolation between data points.
Symbols for g=4 have been omitted to preserve clarity.
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els such as frustrated Ising models on cubic lattices.**

The simple expression for the entropy of the bath facil-
itated the analysis of the N'-dependent effects in the
(B)-versus-{E) curves and is an advantage over
Creutz’s method.'? By means of theorem 3 we have
shown the fundamental nature of the microcanonical
curve, B(E), for finite samples and have verified this
through the curves in Fig. 6(a). The leading-order devia-
tions from B(E) for N’ >0 have been shown to be due to
third-order terms in the energy fluctuations and the
correctness of the analysis was demonstrated by obtain-
ing the microcanonical curves in Figs. 7(c) and 10. The
vanishing of the third-order quantity G, irrespective of
N’ at the inflection point in B(E) at a phase transition
provided a novel definition for the transition temperature
B*(N) in finite samples. We have shown that B*(N) ex-
trapolated correctly to the exact value of B,() at the
first-order transition in the d=2, ¢=10 model and also
the second-order transition in the d=2, g=3 model. The
latter also confirmed den Nijs’s conjectured value?® of &
for the critical exponent v in the d=2, ¢=3 model.

It is straightforward to apply the Gaussian ensemble to
obtain intensive quantities other than the temperature.
Thus, by using an ensemble where S and the total magne-
tization of the bath and sample are constants, Stump16
could obtain the magnetic field # using the definition
0S/0m =—h /B where m is the magnetization of the
sample. Similarly, keeping B and the total volume of the
bath and sample constant, one can deduce the pressure p
through S /dv =fp, where v is the volume of the sample.
In Appendix B we show a novel way to apply the idea of
a finite bath with known entropy to the simulation of
classical systems of the type investigated in molecular dy-
namics but without actually doing the dynamical calcula-
tions.

There are some points about the method which remain
to be clarified. At first-order transitions, it would be in-
structive to analyze the loops along the lines of Mayer
and Wood*® and extract information on the surface ten-
sion. This should prove useful in applying the method to
the study of nucleation phenomena®® and melting of mi-
croclusters.’” As regards second-order transitions, we
need to explain the sharpening of the specific-heat peaks
for large a. Finally, whether the cusps are present or not,
it is necessary to extend finite-size scaling to incorporate
the N'-dependent effects.
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APPENDIX A

We demonstrate here how to choose the parameters E,
and (especially) the value of @ which would yield the
effective microcanonical curve. Note that a and E, speci-
fy a linear relation between 8 and { E ) through the equa-
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tion

B=2a(E—E,), (A1)

and the calculation determines the location of 8 and E on
this line.

Choice of a. If nothing is known about the sample’s
thermodynamics, the following criterion may be used.
Let AE be the typical allowed change in the sample’s en-
ergy in one “spin flip.” Then a may be chosen as

a=(AE)*/N .

Once the approximate form of the B-versus-E curve is
known, it is possible to experiment with a. This is best
done by plotting the linear equation for 3 above on top of
the B(E) curve and adjust a, remembering that if B(E) in-
tersects the straight line more than once, there is a
double-peaked probability distribution with its attendant
metastability. Therefore a should be kept large enough
so that the line has a greater slope than the largest posi-
tive value of dB/dE.

Choice of E,. Once a is chosen, E, can be swept
through a range of values producing the B-versus-E
curve. Keeping in mind that we are referring always to
negative energies, E, will always be less than E and can
be adjusted to cover the range of 8 and E desired. As
more information is obtained about the B(E) curve, Eq.
(A1) may be used in reverse to determine the range of E,
required to produce data for a different value of a.

APPENDIX B

Simulation of classical systems is possible by treating
the kinetic energy K as a heat bath connected to the po-
tential energy V through the equation E =K +V. The
thermodynamics of the kinetic energy can be done
analytically and we find that the density of states of the
“bath” is given by

S ptKIaK =0(vamK ) ,

where Q(r) is the volume of a 3N-dimensional sphere of
radius r. Therefore
dQ _
K)= =BKN-2/2
PE)="0g

where B is (for us) an uninteresting geometric constant.
Therefore we propose to do the Monte Carlo procedure
on V(r), calculating the probability of a step being ac-
cepted on the basis of the ratio

(3N —2)/2
E—V(r)

R=1F—vin

instead of the more familiar e "A£'~E), Temperature is
given in the same way as is usual for microcanonical cal-
culations:

g=_L 3pK) _ (N-2)
p(K) 3K  2AE—(V)) "~

Thus if we want only thermodynamic information about
an isolated classical system, it is not necessary to imple-
ment Newton’s equations of motion—the whole process
can be carried out by sampling the potential energy itself.
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