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Shear viscosity of the Lennard-Jones fluid near the triple point: Green-Kubo results
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The long-standing disagreement over the shear viscosity coefficient of the Lennard-Jones fluid

near the triple point is reexamined through a series of very extensive Monte Carlo molecular-
dynamics calculations of this transport coefficient based on the Green-Kubo theory. The stress au-
tocorrelation function is shown to exhibit a slow decay, principally in the kinetic-potential and the
potential-potential terms, which is large compared with the kinetic-kinetic long-time tail predicted
by simple mode-coupling theory. Nonetheless, the viscosity coefficient, exclusive of any correction
for this tail for times greater than are accessible numerically, is found to agree with that of Schoen
and Hoheisel (who discounted the existence of such a tail) as well as nonequilibrium molecular-
dynamics calculations. The large value of the viscosity coefficient found by Levesque and co-
workers for 864 particles is brought into statistical agreement with the present results by a modest,
but not unrealistic, increase in its statistical uncertainty. The pressure is found to exhibit an anoma-
lous dependence on the size of the system, but the viscosity as well as the self-diffusion constant ap-
pear to be linear in the inverse of the number of particles, within the precision of our calculations.
The viscosity coefficient, including a long-time-tail contribution based on the extended mode-
coupling theory is (3.796+0.068)cr(e, /m)' ' for the Lennard-Jones potential, fitted to a cubic spline,
and (3.345+0.068)0.(c,/m)' for the potential truncated at 2.5'.

I. INTRODUCTION

The Lennard-Jones (LJ) fiuid has been studied over a
broad range of temperature and densities using the nu-
merical methods of statistical mechanics —Monte Carlo
and molecular dynamics. While rather extensive calcula-
tions of the equation of state have been made, transport
coefficients have been evaluated in far less detail, at least
in part because of the relative difficulty of these calcula-
tions.

One particular state point, near the triple point, has ac-
quired special importance with regard to transport prop-
erties, because it was chosen as a point of comparison be-
tween Green-Kubo (GK) and nonequilibrium molecular-
dynamics (NEMD) calculations. The former include the
equilibrium molecular-dynamics calculation by Levesque,
Verlet, and Kurkijarvi which, at least by 1973 standards,
was very extensive by virtue of the relatively large num-
ber of particles, N=864, and the length of the trajectory,
100800 time steps. As a result, with the advent of
NEMD it was regarded as the standard by which to com-
pare other calculations, at least for nonsingular poten-
tials.

When used to study shear viscosity, NEMD refers to a
series of methods, originating in the early 1970s in the
work of Hoover and Ashurst, ' Gosling, McDonald, and
Singer, and Lees and Edwards. These calculations
aimed to obtain the viscosity coefficient by subjecting the
fluid to nonequilibrium boundary conditions, somewhat
in the manner of a laboratory experiment, but using the
computer to follow the development of the "flow" by
solving the N-body equations of motion. However, spa-
tial inhomogeneity and system heating made these calcu-
lations difficult to analyze for the transport coefficients.

Methods have more recently been developed to over-

come these obstacles. Hoover, Evans, and co-workers '

have generalized the early Lees-Edwards' calculation for
the shear viscosity through the use of non-Hamiltonian
equations of motion, including the imposition of the con-
straint of constant temperature. While a number of dis-
tinct methods have been suggested and while these
methods do not yield results which agree in all cases,
nonetheless at high densities and in the limit of vanishing
shear rate, the methods appear to yield indistinguishable
results.

In the interest of establishing the efficacy of NEMD, at
least in the limit of vanishing shear rate, a number of
studies have been made of the shear viscosity coefficient
of the triple-point LJ fluid. The aim of these studies was
to ascertain that NEMD yielded correct values for the
shear viscosity coefficient and did so more efficiently than
other numerical methods. Two sources for comparison
have been used, namely, the experimental value for argon
and the GK calculations, including the Levesque, Verlet,
and Kiirkijarvi study referred to above.

In the Hoover et al. comparison two facts were re-
ported: (I) The NEMD result, which was reported to be
independent of the number of particles in the system, was
in good agreement with the experimental argon value;
and (2) the NEMD results seems to differ sharply with
the GK estimates, which included the N=864 results of
Levesque, Verlet, and Kurkijarvi, in addition to the re-
sults of Leveseque and Verlet for N=108, 256, and 864
and of E. L. Pollock for 256 and 500 particles. (The
latter have not been otherwise published. ) If, however,
one considers only the N ~ 500 results, then there appears
to be essentially no disagreement. That is, if the two
N=864 results of Levesque and co-workers' could be
dismissed as outliers, the problem would vanish.

Schoen and Hoheisel took note of the discrepancy in
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their study of the shear viscosity of the Lennard-Jones
fluid. They studied the behavior of the GK value for the
viscosity coefficient, considering both the dependence on
the size of the system (studying systems of 32 to 2048 par-
ticles) and on the extent of the GK time integral which
formally extends to infinity. While there appears to be a
number of inconsistencies in their results, they report a
final estimate for the triple-point state which is in excel-
lent agreement with the NEMD result.

Finally, Levesque and Verlet returned to the question
in the publication of the calculations reported by Hoover
et al. Taking cognizance of the Schoen-Hoheisel study,
they attempted to isolate the source of the discrepancy by
extending the earlier calculation in a number of ways so
as to appraise the accuracy of the GK estimates. The re-
ported results include values for 108, 256, and 864 parti-
cles, as well as results for the so-called WCA potential
(LJ potential truncated at its minimum) for systems up to
4000 particles. Because their new 864-particle result
agreed rather well with the Levesque-Verlet-Kurkijarvi
value, they were unable to resolve the mysterious
discrepancy but concluded that their 864-particle system
was in some sort of a long-lived glassy state. One partic-
ularly germane item which emerged in this paper was the
fact that the "new" 864-particle calculation was actually
an extension of the earlier one to 139000 time steps, rath-
er than a completely independent trajectory, as had pre-
viously appeared to be the case.

The existence of a long-lived state, as proposed by
Levesque and Verlet, appears rather unlikely for at least
two reasons. First, the density under study is that of a
liquid and the number of particles in the system is rela-
tively large. A metastable state has not been observed in
any of the other calculations thus far reported, even for
smaller systems. Second, the equation of state found for
the 864-particle system is in fact that of the liquid, which
argues that the trajectory has adequately sampled phase
space.

Inasmuch as the extant N= 864 result has not been in-
corporated into a coherent picture of the triple-point LJ
viscosity, it seems clear that a serious discrepancy
remains. Moreover, from the point of view of the GK re-
sults, the N dependence of the viscosity coefficient gen-
erally, and particularly the contribution from a possible
long-time tail of the autocorrelation function, have not
been addressed adequately.

It is our purpose to shed further light on this disagree-
ment by undertaking an extensive GK calculation of the
viscosity coefficient g. In particular, we attempt a com-
plete characterization of the dependence of g on the
number of particles N. In addition to the contributions
considered by Levesque and Verlet, we have also taken
special care to assess the limit for the long-time contribu-
tion to the GK result arising from the so-called long-time
tail of the stress autocorrelation function.

In an extensive study of the viscosity of the hard-
sphere fluid at high density, Erpenbeck and Wood' con-
cluded that it was not possible to accurately assess the
long-time-tail contribution without further theoretical ex-
planation of the observed stress autocorrelation function,
which did not appear to agree with the predictions of the

mode-coupling theory. " ' Now, however, Kirkpa-
trick, ' van Beijeren, ' and de Schepper et al. ' have
made notable progress in the necessary theoretical exten-
sions through extended mode-coupling theory. We esti-
mate a long-time correction based on this theory, even
though our method is somewhat ad hoc.

Finally, it is important to take cognizance of the anom-
alous N dependence of the equation of state which has
been found for hard disks, ' hard spheres, ' ' and the LJ
fluid at similar high densities. Moreover, a high-density
LJ system at a temperature well above the triple point
was found to exhibit a similar anomaly in the N depen-
dence of the self-diffusion constant. In both cases
(equation of state and self-diffusion), a nonmonotonic
dependence on system size was observed, the effect of
which was to limit the 1/N linear extrapolation to values
of N larger than 500. Schoen and Hoheisel studied
larger (as well as smaller} systems and within their statist-
ical uncertainties observed no similar anomaly. In fact,
except for systems of 32, 108, and 256 partic1es, they
could find no dependence of the viscosity on the system
size. Indeed, their N=32 system, which would be expect-
ed to exhibit unusual equilibrium and nonequilibriurn
properties because the cutoff distance for their interac-
tion potential was much greater than half the length of
the (periodic} unit cell, yielded a viscosity which fit well
with the results for larger systems.

The present calculations are similar in spirit to the ear-
lier ones. However, in addition to being rather more ex-
tensive, we concentrate on the accurate appraisal of the
statistical uncertainty of the results. This is particularly
straightforward for the present calculations which em-
ploy averaging over the canonical ensemble through the
Monte Carlo method in addition to extensive time
averaging over individual trajectories. While we find
good agreement of our results with most of the previous
work, we find a very serious, large discrepancy with a
256-particle result of Pollock in addition to a sizeable
discrepancy with the 864-particle result of Levesque and
Verlet. awhile the former is inexplicable in the absence of
publication of any detail of the calculation, the latter can
be ascribed to a rather modest underestimation of its sta-
tistical uncertainty.

Finally, the present calculations include results for
both the usual LJ potential, truncated at 2.50., as well as
very extensive calculations for the cubic-spline
modification of the LJ potential introduced by Holian
and Evans. ' For the present state, we find that the
spline version introduces a 14% increase in the viscosity
coefficient, at least to a first approximation independent
of the value of N. The existence of such a significant
change would tend to indicate that the effect of trunca-
tion of the LJ potential may also be quite significant.
Therefore, the apparent agreement between the (truncat-
ed) LJ result and the experimental argon value could be
somewhat misleading.

II. THEORY AND METHODS

While the calculations reported here are generally fa-
miliar, it is important that the details of the present con-
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tribution be made clear. As a result, we recite the neces-
sary details in this section.

A. System

The system consists of N interacting particles, each of
mass m, contained in volume V at temperature T. The
particles interact through a pairwise-additive central po-
tential P(r) W. e designate the positions and velocities of
the particles by r = [r„.. . , rz j and u = [u„.. . , uzj.
A point in phase space is specified by x = [r,u j, so
that a complete trajectory is given by x (t)

In the present calculations, we chose a Lennard-Jones
interaction potential, modified with a cubic spline, '

u(r) if r &r,

P(r)= a(r r) +—b(r r—) if r, &r &r

0 if r (r
where u (r) is the Lennard-Jones potential,

'12 ' '6
CT

u (r) =4@
r

(2)

The crossover distance r, is defined to be the point of
maximum attraction,

—
(

z6 )1/6
C 7 (3)

of the LJ potential. The parameters a, b, and r of the
cubic spline are defined by requiring that P(r) and its first
and second derivatives be continuous at r„whence

r, —r~ =3uo/2u,

=u&/(r, r)—
= —u, /3(r, r)—

in which u„ is the nth derivative of the LJ potential u (r)
at r =r, .

While our modification of the LJ potential has been
used in a number of studies, previous work on the viscosi-
ty of the LJ fluid has, for the most part, used an LJ po-
tential truncated at a fixed cutoff of 2.5o, beyond which
the potential is taken to be zero. While this difference in
the potential does not appear to lead to any qualitative
difference in results, it does have important quantitative
effects which will be discussed further. Some results for
the truncated potential will also be presented in order to
demonstrate these differences.

At least from the point of view of numerical calcula-
tions, the potential including the cubic spline seems
preferable to the truncated potential in that the discon-
tinuity in the interatomic force is thereby eliminated,
which seems to be advantageous in minimizing the trun-
cation error in the numerical integration. Moreover, for
the cubic-spline modified LJ potential, there are no
"truncation" corrections. On the other hand, no attempt
has been made to calibrate the cubic-spline-modified LJ
potential as an effective potential for various monoatomic
systems, as has been done for the full LJ potential.

The system is subject to periodic boundary conditions,

eqr )= y' y(lr;, +vLI),

T =T T.ij

where the v sum is over all three-vectors v of signed in-
tegers. The system is cubic with length L so that L = V.
The prime on i,j sum indicates that the i =j term is to be
omitted for v=0.

B. Ensemble: Thermodynamic properties

The present calculations differ in another important
respect from those discussed in Sec. I. Typically those
calculations obtain observations of quantities of interest
as time averages over a single trajectory of the system.
Because energy and momentum are conserved, the latter
observations are regarded as equivalent to averages in the
so-called "molecular-dynamics ensemble, " i.e., the submi-
crocanonical ensemble characterized by zero total
momentum. Here, however, the standard Metropolis
Monte Carlo method is used so that our estimates are for
the canonical ensemble.

To obtain the thermodynamic pressure p we use the
virial equation of state,

,v
Nktt T (Ek )

in which kz is the Boltzmann constant, 8'z is the virial,

W~= —
—,
' g g' (r,, +vL) F(r„+vL), .

v ij~1

Ek is the kinetic energy, and the angular brackets denote
the canonical ensemble average. Finally,
F(r )= dP(r )/dr —is the force. The average kinetic ener-

gy in the canonical ensemble yields the temperature,

(Ek ) =3Nktt T/2,

but it is not necessarily advantageous to use this exact re-
sult in numerical calculations.

C. Green-Kubo theory

The GK formula for the shear viscosity coefficient is
conveniently written as a sum of kinetic, potential, and
cross terms,

KK+ 2 Kp+

where

g" = lim tlimq" ( t),
t —+ oo

g "~(t)= j'ds p„"s(s),

p„" (t)=—(J„"(0)J„(t)),

(10)

so as to minimize the effects of the finite size of the sys-
tem. Thus, the potential energy 4(r ) of the system con-
tains contributions from the various "images" of the pri-
mary cell,

4(r )= g4gr ),
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where A, BE[K,PI, P=l/kBT, and tlim denotes the
thermodynamic limit of large system size. The micro-
scopic currents are

J A (t) —TA [~N(t)]

D. Long-time behavior

It is well known that the time-correlation functions for
fluid transport coefficients typically decay algebraically at
long times. Indeed, mode-coupling theory" ' pre-
dicts that

in which T is the stress tensor, having kinetic and poten-
tial contributions,

T~=m y u, u, ,

pD(t)-&Dt

AB( t } ABt 3/2
7

(19)

dP(r;t+ vL)
Tt'= —

—,
' g g (r,, + vL)

d(r; +vL)

(12) with

aD = [4m(D +v)]
3n m

in which u; is the velocity in the center-of-mass frame of
reference,

KK 1 7 1

120~3~&p2 (2 )3~2

u;=v; U

1U= —QU l

KP 0p

(20)

Subscripts x and y refer to tensor components. We ob-

serve that the center-of-mass velocity u is independent of
the time.

In addition to the calculation of the stress autocorrela-
tion function, we have also computed the time-dependent
transport coefficients rt" (t} directly from the second of
Eq. (10), by rewriting the equation in the form,

where

v= rtlnm,

(y —1)A, + 4v +
nC 3 nm

y=C~/C, ,

(21)

rl" (t) =—(J„(0)G„(t)), (14)

D = lim tlimD(t),
7~ oo

D (t)= f ds pD(s),
0

pD(t)=( JD(0)JD(t) ),
in which the microscopic diffusion current is

in which

G„"(t)=f ds J„"(s) . (15)

While the 6 „"are not known functions of the phase, they
can easily be evaluated numerically by including their
definitions as differential equations to be integrated in ad-
dition to the equations of motion. In this way we avoid
the problem of integrating the stress autocorrelation
function itself to obtain the viscosity coefficient.

We also compute the self-diffusion constant,

in which n =N/V is the number density, )(, is the thermal
conductivity, g is the bulk viscosity, and C and C„are
the specific heat capacities at constant pressure and
volume, respectively. Because of this slow decay, care is
required in estimating the long-time limit of the rt" (t)

In addition, there is both numerical ' and theoreti-
cal"' evidence that the cross and potential contribu-
tions to the stress autocorrelation function have long-
time tails which, for dense fluids, dominate the kinetic
contribution out to rather larger values of the time. If
indeed present, these anomalous tails could severely com-
plicate the estimation of the viscosity coefficient.

E. Method

Our calculations combine the Monte Carlo method
with the equilibrium molecular dynamics to evaluate the
time-correlation functions introduced above. The
reader should consult the earlier papers for details of the
analysis, especially for information on the determination
of the estimates of the statistical uncertainties.

F. Reduced variables
JD(t)=u„;(t) . (17)

A time-dependent self-diffusion constant is also readily
obtained in the form

D (t) = (JD(0)GD(t) ),
GD(t) =R, (t)—R, (0),

in which we introduce the position R, of particle i in the
so-called infinite-checkerboard, center-of-mass frame of
reference, i.e., R,- is the integral of u,

In order to express our results in dimensionless form,
we introduce the usual scales of mass, length, and time,

mo=m,

lo=~

to =cr(m /e)'~

(22}

We notate reduced variables by the use of an overhanging
caret. The state of the system is then specified through
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the reduced density and temperature,

Ncr

V

T=k~T/e .
(23)

(24)

with the corresponding reduced autocorrelation function,

The values for the present calculations, n=0.8442 and
f'=0.722, specify a liquid state near the triple point of
the LJ system.

The self-diffusion constant is readily obtained in re-
duced variables from Eqs. (16), (17), and (22),

time origins for that trajectory.
The calculation of the pressure was based on the virial,

Eq. (6), using both a time average of the Wz, calculated
at every time step, as well as the overall Monte Carlo
average. In forming the latter average, it proved to be
slightly advantageous (statistically) to average the ratios
of the time-averaged values of W'~ and Ek. The pressure
obtained in this way was in good agreement with that
based on using the exact Eq. (8) for the kinetic energy but
had a somewhat smaller standard deviation. Thus the re-
ported values of the pressure presumably contain a small
but quite tolerable bias. The Verlet "leap-frog" integra-
tion procedure was used because of its ease of use and,
more importantly, because the algorithm is symplectic.

PD(t)= PD(t—) . (25)
III. RESULTS

The viscosity coefficient is, from Eqs. (9)—(12) and (23),

(26)

with the corresponding reduced autocorrelation function,

p„(t)= 3 pq(t) . (27)

Observe that the relation between reduced transport
coefficient and reduced autocorrelation function becomes

lifop(t)= f dsp„(st, ), (28)

for p, E I D, riI.

G. Numerical details

Because this state point is near both the liquid-gas and
the liquid-solid coexistence lines, some care is required to
assure that the calculations, both .the Monte Carlo and
the molecular dynamics, correctly traverses the fluid re-
gion of phase space. The danger of the system becoming
"locked" in an ordered region is particularly acute for
the smaller values of N. Both the pressure and the self-
diffusion coefficient are expected to be valuable in assess-
ing the presence of such effects.

In order to initiate the system in the liquid, the initial
configuration was taken in most cases from a preliminary
run for a state which lies well into the liquid, typically
T=1.08 with the density 8'=0.8442. The latter run was
initiated in the fcc lattice and consisted of the usual alter-
nate Monte Carlo and molecular-dynamic sections.
Observations of the pressure (by means of the virial)
showed the rapid transition to the liquid phase.

Because of the high density, the length of the individu-
al Monte Carlo sections consisted of several hundred at-
tempted moves for each particle, assuring that each tra-
jectory was virtually independent of its predecessors. For
the calculation of the various time-correlation functions,
the phases x (t) at times t=0, to At, 2' ht, . . . (where ht
is the integration time step) were chosen as time origins,
with the observation of a time-correlation function for a
given trajectory then consisting of the average over all

We have studied systems of 108 to 4000 LJ particles
for the selected state point. In Table I are listed the pa-
rameters of the calculations, including the number of at-
tempted Monte Carlo moves per particle between trajec-
tories (NMC), the number of trajectories (N,„),number of
time steps (N„), for each trajectory, each step of length
bt, typically 0.002to, and the time-origin spacing ~ (in
time steps). The longest time tf for which the various
time-correlation functions were calculated is also given; it
is roughly 1.6510 in each case. Finally, we list the
acoustic-wave traversal time t, for each system,

t, =L/c, (29)

based on the sound speed c =5. 81o /to reported by
Levesque and Verlet. Typically for time-correlation
functions, finite system effects can be expected to become
important for times greater than t, . The table includes
calculations both for the cubic-spline-modified LJ poten-

108 s
108
256 s
500 s
864 s
864 t

1372 s
4000 s

800 300
400 54
800 72
200 108
400 176
400 29
400 122
400 104

8000 0.002
16 800 0.004

8000 0.002
8000 0.002

11 200 0.002
11 200 0.002

8400 0.002
2800 0.002

2
10
2
2
4
4
6
2

1.652 0.869
1.680 0.869
1.652 1.158
1.652 1.448
1.656 1.738
1.656 1.738
1.656 2.072
1.656 2.896

TABLE I. Parameters for the Monte Carlo, rnolecular-
dynamics calculations of the equation of state and time-
correlation functions for self-diffusion and shear viscosity at re-
duced density 0.8442 and reduced temperature 0.722. N is the
number of particles, P denotes the interaction potential
modification, s for cubic spline or t for the 2.50. truncation, NMC
is the number of Monte Carlo moves per particle from one tra-
jectory to the next, N, „ is the number of trajectories, each of
N, tp time steps ht, co is the number of time steps per time origin,
tf is the largest time for which the time-correlation functions
were evaluated, t, is the acoustic-wave traversal time, and to
specifies the time scale, Eq. (22). The total number of time steps
for a given realization is the product N„N„,.

N P NMc N(~ N~(p kt Ito co tf It() tg Ito
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TABLE II. Equation of state and transport coefficient results for the Lennard-Jones liquid at reduced density 0.8442 and reduced
temperature 0.722. N is the number of particles, P specifies the interaction potential modification, s for the cubic spline or t for the
2.5o truncation, f is the statistical degrees of freedom for the observed mean values: p is the pressure, V the volume, N the number of
particles, k& is Boltzmann's constant, T is the temperature, and 4 is the potential energy. The transport coefficients include D, the
reduced self-diffusion constant, g "",g ~, g ~~, and g, the kinetic, cross, potential, and total reduced shear viscosity coefficients eval-
uated at time tI (see Table I). Each statistical uncertainty, given in parentheses in units of the low-order digit of the mean, is 1 stan-
dard deviation of the mean.

108
108
256
500
864
864

1372
4000

96
53
71
94
87
28
60

103

p V/Nk~ T

2.687(17)
1.323(51)
2.855(21)
2.867(15)
2.874(8)
1.419(29)
2.878(6)
2.867(5)

4/Nk~ T

—6.1426(42)
—7.8220{94)
—6.1225(55)
—6.1212(38)
—6.1194(20)
—7.8209(53)
—6.1183(16)
—6.1219(13)

D(tI )

0.0245(2)
0.0288(4)
0.0265(3)
0.0273(2)
0.0280(1)
0.0320(3)
0.0283(1)
0.0284(1)

0.048(1)
0.047(1)
0.048(4)
0.051(2)
0.052(1)
0.049(3)
0.053{2)
0.049(3)

0.024(6)
0.024(6)
0.014(14)
0.011(11)
0.025(8)
0.039(14)
0.033(9)
0.036(21)

3.308(63)
2.816(73)
3.746(170)
3.693(140)
3.552(79)
3.074(160)
3.637(110)
3.787(270)

3.404(63)
2.912(71)
3.822(170)
3.761(130)
3.654(81)
3.200(160)
3.756(110)
3.909(270)

tial as well as for the truncated LJ. For the present sec-
tion we will only be concerned with the former. For each
system, we have evaluated the pressure, and the time-
correlation functions for self-diffusion and viscosity.

Except for the N=108 system, there was no evidence
for the systems locking into a solid phase. During the
N=108 run, the system appeared to spontaneously freeze
for roughly nine trajectories, after which the system
again became liquid. The transition to the solid was
marked by a rapid decrease in both pressure and the self-
diffusion constant, the latter being essentially zero for
these trajectories. Because this calculation did not show
any other such transitions, the overall average could not
be expected to sample the solidlike region of phase space
very well. Therefore, we eliminated these nine trajec-
tories in computing the averages. Their inclusion would
not have greatly affected the averages, but would lead to
a pronounced increase in the statistical uncertainties, at
least of the pressure and the self-diffusion constant.

magnitude of the full LJ correction the difference is not
unexpected.

As a check that our computer calculations are correct,
we generated realizations for 108 and 4000 particles for
the state ft=0.7, f'=2.75, in order to compare with the
results of Holian and Evans ' for the same interaction po-
tential. Our compressibility factors, 3.20+0.06 and
3.13+0.05, are in satisfactory agreement with theirs,
3.15+0.01 and 3.11+0.003, for N= 108 and 4000, respec-
tively. (Note, however, that the lat ter are for the
molecular-dynamics ensemble, rather than our NVT en-
semble. )

As an additional check, we generated a 108-particle
realization for R'=0.82, 1=1.06 for the truncated (2.5cr )

3 0 I I I I

A. Pressure

pV
Nk~ T f dr r P'(r)g (r), (30)

The observed values of the compressibility factor
pV/Nk&T are listed in Table II. These are plotted as a
function of 1/N in Fig. l. As previously observed for
high-density hard disks' and spheres' as well as the LJ
Quid, the pressure is not a monotonic function of N
over the range of these calculations. The effect appears
to least qualitatively similar in that the apparent max-
imum in the pressure occurs near N= 500.

It is also noteworthy that the pressure for the present
potential is much higher than pV/Nk~T=0. 25 reported
by Levesque et al. ' for their truncated (2.5o ) LJ poten-
tial, corrected (presumably) for distances beyond that.
The standard correction for a potential truncated at dis-
tance r 27

2.9—

W 2.8—
CL

2.7—

I i i i I i i i I i i i I

0.0 0. 2 0.4 0. 6 0.8

100/N
1.0

yields [in the g ( r) = 1 approximation] —1.25 for
r =2.5o.. The present potential energy function re-
quires no tail correction, of course, but in view of the

FIG. 1. Compressibility factor p V/Nk& T as a function of the
inverse of number of particles N for the (cubic-spline-modified)
Lennard-Jones liquid near the triple point. The error bars
represent +1 standard deviation about the mean.
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LJ potential, in oder to compare with the Monte Carlo
results of McDonald and Singer. Applying the tail
correction, Eq. (30), of 0.83 to our result, we compare our
1.89+0.07 with their 1.82+0.05, which is quite satisfacto-
ry.

Finally, we fit our results for the compressibility factor
for the four largest system sizes through linear least
squares to obtain

0. 2 & I l I
i

t I I I
l

I I I I

0. 1

=2.8639+0.0058,pV
B

for the thermodynamic limit.

(31) c 0.0

B. Self-diffusion -0. 1 —

The time-dependent self-diffusion constant, evaluated
at the longest time considered, tf, is also given in Table II
and plotted against 1/N in Fig. 2. In contrast to our re-
cent study of self-dilfusion at h=0.85, f'=1.08, there is
little to suggest anything other than a linear dependence
on 1/N. An estimate for the self-diffusion constant in the
thermodynamic limit can be made through a linear least-
squares fit to the results in Table II, yielding

8(tf ) =0.028 521+0.000062 . (32)

The theoretical long-time tail, Eqs. (19) and (20), can be
evaluated using the transport coefficients and heat capaci-
ties of Levesque and Verlet. Evaluated at time tf, it is
found to be quite small ( —10 ), but is in statistical
agreement with the observed time-correlation function,
Fig. 3, which turns positive just before tf, following a
rather long negative piece which is similar to the negative

0 2 I I I I I I I i I I I I I I I

0.0 0. 5 1.0 1.5

t/'tp

FIG. 3. Reduced autocorrelation function for self-diffusion
(the velocity autocorrelation function) pD(t) as a function of
time t, relative to the time scale to, given in Eq. (22), for a sys-
tem of 4000 (cubic-spline-modified) Lennard-Jones particles
near the triple point. The solid curves shows the prediction of
mode-coupling theory. The error bars represent +1 standard
deviation about the mean.

piece of the velocity autocorrelation function for hard
spheres at high density. ' Therefore we add the integral
of the tail to infinite time, yielding a contribution
0.001 914 to D, whence we obtain as a final estimate

2. 9 I & I
i

I I I
i

I I i
i

1 I I
l

I I 8 =0.030435+0.000062 . (33)

2. 8

It is perhaps worth noting that, although this value is
small, it is clearly positive and characteristic of a Quid.

C. Shear viscosity

C)
2. 6

2. 5

Il

4
0.00 0.20 0.40 0.60 0.80 1.00

100/N

FIG. 2. Self-diffusion constant from the Green-Kubo integral
out to the longest observation time tf as a function of the in-
verse of the number of particles N for the (cubic-spline-
modified) Lennard-Jones liquid near the triple point. The error
bars represent + 1 standard derivation about the mean. The line
is the least-squares fit to the data, weighted by the inverse of the
variance of the individual datum.

Here we consider in greater detail both the time-
dependent viscosity coefficients ri" (t) and the corre-
sponding time-correlation functions p „" (t) for values of
the time out to roughly 1.65to. We first discuss the be-
havior of the time-dependent viscosity coefficients and
their extrapolation to the thermodynamic limit.

I Time depende. nt viscosity-coe+cient

Included in Table II are the observed values of the
three contributions to the g(t) (as well as the total shear
viscosity) for the latest time for which observations were
made, viz. , t =tf. The total viscosity g(tf) is plotted
against 1/N in Fig. 4. Clearly these results are consistent
with a linear dependence of q(tf ) on 1/N, although the
anomaly observed for the equation of state would perhaps
lead one to expect a similar anomaly here. While there is
perhaps some slight suggestion of that, at the current lev-
el of statistical precision a linear least-squares fit is indi-
cated, which leads to the infinite-system result

ri( tf ) =3.773+0.064, (34)
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FIG. 4. Reduced shear viscosity g(t) from the Green-Kubo
integral out to the longest observation time tf as a function f the
inverse of the number of particles N for the (cubic-spline-

modified) Lennard-Jones liquid near the triple point. The error
bars represent +1 standard deviation about the mean. The line

is the least-squares fit to the data, weighted by the inverse of the
variance of the individual datum.
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FIG. 5. Reduced shear viscosity autocorrelation function

p„(t) as a function of time t relative to the time scale to, Eq. (22),
for systems of 108, 864, and 4000 (cubic-spline-modified)
Lennard-Jones particles near the triple point. The full range of
time investigated is displayed.

with a nominal goodness-of-fit value. To extrapolate us-

ing only the N~ 864 results would yield a value some-
what larger, but in statistical agreement.

Despite the small magnitude of the N dependence
which we observe, it is nonetheless interesting to consider
the origin of the differences in greater detail. We consid-
er, therefore, the behavior of the p„ time autocorrelation
function.

18

16—

~ N 108
o N 256
o N~5QQ

N 864
N 1372

o N-4000

2. Stress aucorrelation function

In Fig. 5, we show the (total) stress autocorrelation
function as a function of time for systems of 108, 864,
and 4000 particles. The statistical uncertainties (one
standard deviation) are smaller than the plotting symbols,
so that the visible differences between the data for the
various values of N are statistically significant. Nonethe-
less, the N dependence exhibited here is clearly not large.

The differences at small times is shown in greater detail
in Fig. 6, which includes results for all six values of ¹

The most striking feature of the data is the apparent lack
of a monotonic dependence on N. The N=108 curve is
shifted upward for N=256 and 500 but sharply down-
ward for N=864. Further increase in N leads to a fur-
ther upward sweep of the curve toward the N= 1372 and
4000 curves. The latter pair show no further N depen-
dence on the scale of the figure.

Nonetheless, is it important to realize the p„(t) data for
a given N are rather strongly serially correlated over the
times shown in Fig. 6, as is evident from the smoothness

12
0.00 0.02

t/tp

I

0.04 0.06

FIG. 6. Reduced shear viscosity autocorrelation function

p„(t) as a function of time t relative to the time scale to, Eq. (22),
for systems of 108, 256, 500, 864, 1372, and 4000 (cubic-spline-
modified) Lennard-Jones particles near the triple point. Short
times only are displayed. The error bars represent +1 standard
deviation about the mean.
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of the data compared to the statistical uncertainties.
Therefore, while one can draw conclusions based on the
error bars for a fixed value of the time, one can also be
easily misled in the belief that a trend is present which is
not supported by the data. To obtain an accurate ap-
praisal of the implications of the stress autocorrelation
function data at early times, we plot in Fig. 7 p„against
1/X for a fixed value of the time, near the middle of the
interval covered by Fig. 6. Clearly, there is little evidence
that the dependence is other than monotonic.

The behavior of p„at times between 0.3to and 0.9to is
shown in Fig. 8. Again, there is perhaps a suggestion
that the dependence on N is not monotonic, but that con-
clusion is not supported by the data in light of the serial
correlation.

3. Long-time tail

The existence of a long-time tail for the viscosity of the
triple-point LJ fluid has been a subject of conflicting evi-
dence in the literature. In particular, Evans reported
the existence of an "enhanced" tail, based on his NEMO
calculations using an oscillatory shear technique. Schoen
and Hoheisel, however, concluded that no significant
long-time tail exists, based on their direct (equilibrium)
molecular-dynamics calculations.

In Fig. 9, we plot the long-time data for the stress auto-
correlation function against (t ltp) for the three sys-
tems for which our calculations are most extensive,
N=108, 864, and 1372. For the smaller two systems, the
suggestion of a t decay is similar to that seen for
hard spheres. ' While we do not display the kinetic,
cross, and potential parts separately, it is true here, just
as in the hard-sphere case, that these three contributions
have rather different magnitudes, with the potential con-
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FIG. 8. Reduced shear viscosity autocorrelation function

p„(t) as a function of time t relative to the time scale to, Eq. (22),
for systems of 108, 256, 500, 864, 1372, and 4000 (cubic-spline-
modified) Lennard-Jones particles near the triple point. Inter-
mediate and long times only are displayed. The error bars
represent +1 standard deviation about the mean.
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FIG. 7. Reduced shear viscosity autocorrelation function p„
for a fixed value of the time, 0.012to [to is time scale, Eq. (22)] as
a function of the inverse of the number of particle W. The error
bars represent +1 standard derivation about the mean.

FIG. 9. Reduced shear viscosity autocorrelation function
roA„(t) as a function of time r relative to the time scale to, Eq.
(22), for systems of 108, 864, and 1372 (cubic-spline-modifie)
Lennard-Jones particles near the triple point. Long-time data
only is displayed. The error bars represent +1 standard devia-
tion about the mean. The curve is the extended mode-coupling
theory, with amplitude fitted to the 4000-particle data.
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tribution dominant. The %=1372 data suggest a more
complicated decay, with considerable dependence on the
number of particles even for this rather large system and
even though the time is less than the acoustic traversal
time (Table I).

To compare with the predictions of simple mode-
coupling theory, Eq. (19), we evaluate a„, Eq. (20), using
the transport coefficients and heat capacities of Levesque
and Verlet. The resulting tail is indistinguishable from
the p„=0 axis in Fig. 5. At time tf, the mode-coupling
prediction

p„(t)-3.17 X 10 (r lto) (35)

pEMc(&)=(2riE/& )A (8)exp[ —2z„(kG)&], (38)

in which gE is the Enskog value of the viscosity,
t =(Pm)' a/2, A is an amplitude, known in terms of
the structure factor, and zI, (kG) is the extended
hydrodynamic-mode eigenvalue for the heat mode, evalu-
ated at the "de Gennes minimum, " given approximately
as a function of density by

zI, (kG ) =4. 18(1.056—& )!t (39)

To obtain our estimate, we replace the hard-sphere diam-
eter by the Lennard-Jones cr to evaluate z&, and obtain an
empirical value for A through a least-squares fit of our
4000-particle data to Eq. (38},yielding

pEMc(t)=(9. 84+1.66)exp[ 3 009tlto] —. . (40)

This result is also plotted in Fig. 9. The resulting incre-
ment to the viscosity coefficient is

6'ri= f ds pEMc(s)
tf /fo

=0.0228+0.0038,

yielding our final estimate,

g=3.796+0.068 .

(41}

(42)

For comparison, we note that the simple mode-coupling
correction is hgMc=0. 0008. Again we stress that this re-
sult applies to the cubic-spline-modified LJ potential,
rather than the full or truncated potentials.

is indeed small compared to the observed value, say, for
N=4000, viz. , p (tf )=0.44+0.18. If we fit the data of
Fig. 9, say, for N= 864, to the form,

(36)

then we find that

g =820~ (37)

a result not unlike that found for hard spheres. '

The extended mode-coupling theory of Kirkpatrick, '

van Beijeren, ' and de Scheper et al. ' appears to pro-
vide quantitative agreement with the long-time stress au-
tocorrelation function for hard spheres. We might well
anticipate that similar agreement would be obtained for
the LJ Quid. In order to estimate an extended mode-
coupling (EMC) contribution, we proceed by using the
hard-sphere form'

IV. COMPARISON WITH PREVIOUS RESULTS

To compare with earlier work, it is necessary to esti-
mate the effect of the different potential energy functions.
For the equation of state, we have seen in Sec. III that
the effect of this difference is quite substantial, but entire-
ly in line with the magnitude expected on the basis of
corrections to the virial, Eq. (30}.

For the stress autocorrelation function, we are not
aware of any attempt to correct for the truncation of the
potential. This is true with respect to both the GK and
the NEMD calculations. (In view of this neglect, it seems
that the comparison of molecular dynamics (MD) results
with the experimental argon viscosity coefficient is not
entirely germane. } From the present point of view, how-
ever, it is important that we assess the difference between
the viscosity coefficients which can be attributed to the
difference in the interparticle forces. Indeed, we might
also regard this difference as a measure of the difference
which could reasonably be expected to arise from the
truncation of the LJ potential itself.

In order to assess the effect of the details of the poten-
tial, we have repeated our calculations using the truncat-
ed (2.50 ) LJ potential for 108 and 864 particles. These
realizations are also described in Table I and the major
results given in Table II. In both cases, the time-
dependent viscosity coefficient at time tf is decreased for
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FIG. 10. Reduced shear viscosity g(t) from the Green-Kubo
integral out to the longest observation time tf as a function of
the inverse of the number of particles N for the truncated (at
2.5a) Lennard-Jones potential liquid near the triple point, in-

cluding the present results, corrected for the di6'erence in the in-

teraction potential, as well as results by other authors. The
closed symbols show the results of extrapolation to the thermo-
dynamic limit. To facilitate the comparison of the results, some
points have been displaced a little to the left or right. The error
bars represent +1 standard deviation about the mean. The line
is the least-squares fit of the present results.
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the truncated potential, by roughly 0.5 (in reduced units)
for the smaller system and 0.4 for the larger, although
both changes are in statistical agreement. In lieu of any
substantial dependence of this difference on system size,
we chose the average of these two differences, viz. , 0.451,
as a crude estimate for all values of N. Applying the
same correction to our estimate, Eq. (42), we obtain our
estimate for the truncated potential,

g=3.345+0.068 . (43)

In light of this, we compare our results for r)(tf ) with
those of previous workers for various values of N in Fig.
10, including the Schoen-Hoheisel estimate g =3. 18
+0.15 for the thermodynamic limit. Only the single 864-
particle results presented by Levesque and Verlet is plot-
ted, inasmuch as it is an extension of the earlier calcula-
tion. '

With two notable exceptions, it is evident that there is
rather good agreement among the various results. In ad-
dition to the much publicized Levesque-Verlet outlier at
N=864, the Pollock result at N=256 appears even more
exceptional, lying 6 standard deviations from the least-
squares line. In the absence of any details of the Pollock
calculations, one could only speculate concerning the
source of the discrepancy.

The Levesque and Verlet result for 864 particles
remains something of a mystery. Their hypothesis that it
represents a long-lived glassy state seems untenable in
that the density is that of a liquid and the observed equa-
tion of state agrees so well with that observed in the
present work. Finally, such a long-lived state has not
been observed in any other study.

It is important to realize that the point is nearly 3 stan-
dard deviations removed from the least-squares line.
Among the 15 data points shown in the figure, one would
not expect any of them to be that far removed. The most
ready explanation of this circumstance is provided by
questioning the quoted statistical uncertainty. While the
authors provide some detail on the calculation of statisti-
cal uncertainties, there is not sufficient detail to assure,
for example, that the individual observations used to ob-
tain averages and standard deviations are uncorrelated.
The presence of such correlations would lead to underes-
timation of the uncertainty. Moreover, the estimation of
the standard deviation by Levesque and Verlet was based
on the assumption that their sample variance was in-
dependent of the number of particles. It was, then, com-
puted from their results for 108 and 256 particles as well
as for 864 particles. Our results indicate that the sample
variance (for a fixed spacing of time origins) increases
rather substantially with N. Again, the effect would be to
underestimate the error bar for 864 particles. Even a
50% underestimation of the standard deviation would re-
sult in a deviation of not unreasonable magnitude.

The agreement between our result for the thermo-
dynamic limit and that of Schoen and Hoheisel can also
be seen in Fig. 10. The difference is not statistically
significant. Because their calculations typically extend to
times of 1.3to, it seems likely that their calculation does
not adequately account for the long-time contributions to
the viscosity, particularly in that they fit their stress auto-

correlation function data with a pair of Gaussians in the
time. The long-lived contributions seen, for example, in
Fig. 9 would most certainly be underestimated by that
procedure.

The NEMD estimate, g=3. 15+0.1, for the viscosity
coefficient, based on 108-particle calculations, is similarly
in reasonable agreement with our results, both for 108
particles and for the thermodynamic limit. In view of the
small dependence on N seen here, it would indeed be
surprising if the NEMD calculation were to show a
larger effect.

V. DISCUSSION

We close this paper by drawing the reader's attention
to the following points.

(I) In the absence of a correction for the enhanced
mode-coupling tail, the present value for the viscosity
coefficient is similar to that of Schoen and Hoheisel.
However, the small (but large compared to the simple
mode-coupling tail) but significant long-time tail needs to
be taken into account to complete the calculation of the
viscosity.

(2) In view of the insensitivity of the viscosity
coefficient to the number of particles, it is not surprising
that the NEMD calculations show a similar insensitivity
and that the NEMD viscosity coefficient for 108 particles
is in substantial agreement with the Green-Kubo result in
the thermodynamic limit. However, that agreement may
well be somewhat fortuitous, inasmuch as the NEMD re-
sult is based on an extrapolation to zero shear rate using
a square-root dependence which is almost certainly
wrong, ' leading then to an overestimate of g. Wheth-
er NEMD, at least through the large shear-rate calcula-
tions used by Hoover, Evans, and co-workers, can actual-
ly yield an accurate value remains to be seen.

(3) It should be recognized that much of the long-
standing controversy over the Green-Kubo and the
NEMD calculations has arisen because of uncertainties
concerning the precision of the values obtained by either
method. The tendency to recognize the evaluation of the
mean value as important but regarding the variance of
the mean as incidental has strongly influenced the contro-
versy discussed here.

(4) The large difference in the viscosity between the
cubic-spline-modified LJ system and the truncated LJ
system suggests that the correction to the truncated LJ
result for the full LJ potential may also be important.
The agreement of the result for the truncated potential
with the experimental argon value may well be something
of an accident.
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