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It is known that the square root of the electron density satisfies I
—,'V—'+ve([n];r)

+v([n]r) ]n
' '(r) =een ' '(r), where u, is the Kohn Sham potential and est is its highest occupied

orbital energy. The Pauli potential Uz is defined as the functional derivative of the difference be-
tween the noninteracting kinetic energy T, [n] and the full von Weizsacker kinetic energy. It has al-

ready been proven that ve([n];r) &0 for all r. By starting primarily with a slightly modified version

of an equation of Bartolotti and Acharya, new exact properties of ve{[n];r) are derived for the pur-

pose of approximating it. The gradient expansion for T, [n] gives a ve([n];r) that is found to violate

several of the exact conditions. For instance, Uz )0 is violated unless the full von Weizsacker term
is employed. A new approximate form for ve([n];r) is proposed.

I. INTRODUCTION

+E„,[n] (2)

where E„,[n] is the exchange-correlation functional of
trial electron density n and T, [n] is its noninteracting ki-
netic energy. The latter may be defined according to the
"constrained-search" formulation by

Consider a system of electrons for which

N N8= g ——,'V';+ g u(r;)+g g ~
r; —r, ~

i j()i)
where, for simplicity of discussion, we shall assume that
N is even. According to the Kohn-Sham partitioning of
density-functional theory, the exact ground-state energy
for external potential v may be obtained from

E=min T, [n]+ f v(r)n(r)dr
n

+—,
' f f n(r, )n(rz)

~
r, —rz

~

'dr, drz

M

T, [n]=2 g fP; ( ,'V )P, dr—.— (6)

The use of the popular Kohn-Sham Euler equations,
Eqs. (4), has been found to yield widespread success in re-
cent years. Moreover, when these equations are em-

ployed, T, [n] is evaluated exactly by means of Eq. (6).
However, since u, ([n];r) is density dependent, Eqs. (4)
must be solved iteratively to self-consistency, which
causes some difficulty for very large molecules with little
symmetry, even though v, is extremely attractive in that
it is a local potential.

As an alternative to the Kohn-Sham equations, there
exists an exact single Euler equation for n ', namely, the
following Schrodinger equation has recently been de-
rived:

ther the occupied [P; } correspond to the lowest M states
of v, or at least one of the lowest M states will be unoccu-
pied. In any case, the P s are eigenfunctions of the same
local potential, v„and the T, [n] of Eq. (3) is given in
terms of the P; by

T, [n]= (3)
[
——,'V +us([n];r)+u, ([n];r)In'~ (r)=sMn' (r),

I ,'V +u, ([n—];—r)IP;(r)=E,P;(r), i =1,2, . . . , M

wtthEt&Ez«. . . s~, (y/
~
yl)=&tl, »d

u, (r)=v(r)+ f n(r2)
~

r —rz
~

'dr2+5E„, [n]/5n(r),

(4)

(5)

where M =N/2. In addition, it has been proven that ei-

where 4„'"is that single determinant which yields n and
minimizes ( T), where f'=g, .

t
——,'V';. (Again for sim-

plicity, we shall restrict each 4„ to consist of only doubly
occupied orbitals, and we shall concern ourselves only
with the density here and not with spin densities. )

The optimum doubly occupied space orbitals in N„'"
satisfy the following Kohn-Sham equations

(7)

where cz is the highest-occupied Kohn-Sham orbital en-

ergy in Eqs. (4). The presence of e'er in Eq. (7) results
from the fact that n '~ (r) decays assymptotically as /sr.
It is assumed in Eq. (7), and shall be assumed for the
remainder of the paper, that v, ( [n ]; ~

r
~

~ ac ) =0 and

vs([n ]; ~

r
~

~ ac ) =0. This may always be accomplished
if

~

n '
( ——,'V )n'

~
& ~ as

~

r
~

~ac. Simply add

constants, if necessary, to v, and v z.
Equation (7) arises from expressing T, as

T, [n]=f n'~ (r)( ,'V )n '~ (r)+To[n—]-
Vn r n 'dr+T& n
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and by noting that

with

—i/2 2 i/2=n ' (r)( ——,'V }n' (r)+vs([n];r),
5n(r)

(9)

M

n ' g 2P,'( ——,'V )P, —n' ( ——,'V )n'/

= g V(P;n ' )* V(P;n ' ))0 . (15)

ue([n ];r ) =5Te[n]/5n(r),

and by utilizing

5T, [n]
+ u, ([n ];r)=EM,

5n r

(10) Comparison of Eqs. (7), (14), and (15) gives the desired
exact formal expression for v&..

M

us([n];r)= g V(g, n ' )" V(iI};n '/
)

which arises from the minimization in Eq. (2). Observe
that the first term in Eq. (8) is the full von Weizsacker ki-
netic energy.

Eq. (7) is attractive, compared to Eqs. (4), because solu-
tion of Eq. (7} requires iteration to self-consistency for
only one equation while Eqs. (4) require self-consistency
for M equations. Moreover, as brought out by Levy, Per-
dew, and Sahni, any commonly employed Kohn-Sham
program may be used to solve Eq. (7); simply extract only
its lowest eigenfunction (n' ) and eigenvalue (eM ). On
the other hand, for practical calculations, Ts[n] must be
approximated as an explicit functional of n, which has
proven a formidable task as far as accurate quantitative
predictions are concerned. In essence, v& must be made
to embody all the effects of the Pauli principle (antisym-
metry requirement). For this reason vs has been labeled
the Pauli potential by March, and T& is aptly referred to
as the Pauli kinetic energy.

In order to approximate T& and v& adequately, it is
necessary to have knowledge of the exact properties of Tz
and v&. It is the purpose of this article to first derive
several of the important properties of Ts and us and then
to examine existing commonly employed approximate
T, [n] functionals in terms of these properties.

M

+ g (eM —s, )2P;P;n (16)

us([n];r)) 0, (17)

with v&([n];
~

r
~

~~)=0. Equation (17) is an impor-
tant result that was obtained previously '" by a different
method than employed in the present paper. Next, Eqs.
(6) and (8) define Te by

M

Ts[n]=2 g f P,'( —,'V )P;dr—

f n i/2( i V2)n i/2dr (18)

or

Ts[n]= g f Vit; VP;dr ,' fVn' —V—n' dr (19)

Equation (16) is a slightly modified version of Eq. (14) of
Bartolotti and Acharaya. ' The us of Eq. (16) is cast here
in a form which renders certain properties of vz quite
transparent.

Since no term in Eq. (16) is negative, it follows that

II. DERIVATION OF EXACT PROPERTIES
OF ve AND te

or
M

Te[n]= g VP; VP; ——,
' f (Vn Vn)n 'dr . (20)

Cotnparison of Eq. (18) with Eq. (15) yields

T&[n]=f te([n];r)n(r)dr,
M M

2 g P,'( ——,'V )P, +u, n =2 g E, P,"P, , (12)
with

Following Bartolotti and Acharya, ' multiply Eqs. (4)
by 2P,

" and sum to get
(21)

where
M

tti([n);r)= g V(g, n '/ )* V(g,n. (22)

n(r)= g 2iI};P; . (13)
so that

Next, divide Eq. (12) by n '/ and manipulate the resul-
tant equation to obtain

,'V +u, +—n—'2gP,*(——,'V )P; n'/ ( ——,'V )n'—

(23)

tg([n];
~

r
~

~~)=0 . (24)

which is a result in the spirit of Tal and Bader. ' Furth-
ermore, Eq. (22) implies

M

+ g(eM —s, )(2$;P, n ') n'/ =e~n'/

Now, with some algebra it can be shown that

(14)
Previously, Tal and Bader' noted the weaker condition,
t (rn)t&([ ];nr}I ~,

——0.
Comparison of Eq. (16) with Eq. (22) gives another key

expression:
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M

ve([n);r)=te([n];r)+ g(eM —e;)2$,*$;n ', (25) Te[n]= —,
' fdrn(r)r Vue([n];r) . (36)

which implies

ve([n ];r) & te([n ];r),

f v e([n];r) n(r)dr& Te[n],

vs([n ];r)—te([n ];r) ((eM —ei }

M

Mel —pe, & oo .

(26)

(27)

(28)

It is also clear that from Eqs. (25) and (28) that

f v (e[n ];r)n (r}dr & DD .

n r ve n;r —te n;r r=2 Mc~ — ci

(30)

Comparison of Eq. (30) with Eq. (28) generates the
desired following form which is equivalent to Eq. (28),
but more useful:

max[vs([n ];r) te([n];r) ]—

(—,
' n r ve n;r —te n;r . 31

As with Eq. (17), Eq. (31) is especially appealing because
knowledge of the exact v, (r), or its eigenvalues, is not re-

quired in order to employ Eq. (31) with a given n

There are important equalities involving ve and te.
For instance, it is obvious that

ue([n];r)=te([n];r)=0, N =2 .

Moreover, Eq. (31) actually becomes

maxI ve([n ];r) te([n ];r)I—
(32)

,' f n(r)[—ve([n];r) te([n];r)]dr —(33)

for N=4 The equality . in Eq. (33), for N=4, arises from
the fact that

M

g (EM —e;)2P;P, n '=Ms~ —g E,.

Equation (28) can be put in a form which is especially
suitable for testing an approximate Te. To accomplish
this, multiply Eq. (25) by n and integrate to get

Equation (36) follows from combination of Eq. (35) with

(BTe[ni, ]BR,)i,——fdrn(r) Vue([n];r) . (37)

Equation (37) is the Ghosh-Parr relation' as applied to
Te and ve.

By the definition of ve, knowledge of Te is sufticient to
give vs. But Eq. (36) reveals that one may actually go the
other way as well; knowledge of ve implies knowledge of
Te. This is a significant point because it is entirely possi-
ble that the universal structure of ve is going to become
clearer, with time, than is the universal structure of Te.

We now reveal an exact local coordinate scaling condi-
tion that is shared by the exact ve, te, t„and v, . The
condition is

ve([ni ];r=ru) =X2ve([n ];r=}(ro),

te( [ni ];r=ra) =A. te([n ];r=kro},

t, ([n i];r=r u)=A, t, ([n];r=kr )0,

u, ([n i];r=r o)=A, v, ([n];r=Aro) .

(38)

(39)

(40)

(41)

In Eq. (38), v (e[n ]i;r=r )0signifies that An(Ar) , is insert-
ed into the universal form of ve, and ve is evaluated at
the point r=ro, while ve([n ];r=h, ro) signifies that n(r) is

inserted into the universal form of ve, and ve is evaluated
at the point r=i.ro. It is straightforward to verify that

Eqs. (38)-(41) arise directly from Eqs. (4) and (7) with

utilization of the fact, as shown by Levy and Perdew, '

that A,
/ P;(}(.r) and A, e; are the Kohn-Sham orbitals and

eigenvalues corresponding to n&. Finally, note that Eqs.
(39) and (40}yield' Eqs. (34) and (35).

We conclude this section by asserting the following
conditions which are so stringent that they would be
satisfied by only the very best approximations to the true
ve and te..

If any n~ is adjusted to be related to any nP by

where Jn (r)dr=p, f n (r)dr=q, and where p=q+2,
then n and n belong to the same v„so that

n
—i/2( 1 V2)n i/2 n

—i/2( ] V2)n i/2(r)
P 2 P

+ve([n„];r) ve([n~];r)=—c, (42)

c)0 (43)

T, [ni, ]=A, T,[n], (34)

where n i (r ) =A, n (r). Equations (34) and (8) dictate that

at the nodes of $2 for N=4.
As far as coordinate scaling equalities are concerned,

we already know that'

by Eqs. (4). Moreover, by Eq. (16}

n (r)[ve([n ];r)—te([n~];r)J

= n (r)I us([n~];r) te([n ];r)I+(n~ —n)c, —

(44)

Te[ni ]=ATe[n] . ,

Equation (35},in turn, implies

(35)
where c is a constant in Eqs. (43)—(44). (The constant c
is, of course, equal to e~ —E~. )
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III. EXACT CONDITIONS
AND THE GRADIENT EXPANSION

+C4 fdrn' V n
2 2

3 Vn

4 n

4 *

13 Vn

768 n
(45)

so that its corresonding tz is

te[n]=CQn +(C2 —1)2/3 1 /Vn /2

n'
'2 2

+C n-2/3 V n 3 Vn

4 n

The Hodges gradient expansion through fourth order,
Ts = To + Tz + T4, is

Vn
T, [n]=CO f n' dr+C2 f —,

' dr

te([n];r))0 is satisfied for all n. However, with these
latter coefficients, the condition te([n];

~

r
~

~ao)=0 is
violated for n =ae ", unless Cz ——1 and C4 ——0. In fact,
observe that the fourth-order contribution to t& actually
goes to ~ as r~~. Moreover, for Cp&0, Cz ~1, and

C4 ——0, u& violates the condition u&)0 at small r when
n=ae '. The condition u&)0 will also be violated for
Cz & 1 when densities other than ae ' are employed.
Hence an argument is made for employment of the origi-
nal full von Weizsacker term (Cz ——1). It should be not-
ed, though, that Cz & 1 arises naturally from the recent
Feynman path integral results of Yang.

The case of Acharya et al. , where C2 ——1, where

C4 ——0, and where Cp is considered as a function of N has
been found to yield fairly encouraging qualitative re-
sults ' and is supported by information theory. This
simple functional actually satisfies ve &0, te(

~

r
~~ ) =0, and fdr nv e )Te[n], for all n. Equation (31),
however, is not generally satisfied. For instance, Eq. (31)
is not satisfied at small r for N & 8 when n =ae

13
768

Vn
4

(46) IV. NEW EXPRESSION FOR v q[n].

and its corresponding v &, as shown through second order,
1s

ve[n ]= 'Con —+(C2 —1) — —— +3/2 1 ~Vn~ 1 Vn
3 8 pgz 4 n

(47)

where Co ———'(3m ), Cz ———', and C& ——[540(3n' ) ]
It is easy to verify that the local scaling conditions for u&

and te, Eqs. (38) and (39), are satisfies by Eqs. (46) and
(47).

To+ Tz and To+ T2+ T4 have been found to give
qualitatively reasonable kinetic energies for atoms ' and
molecules, but these kinetic energies are outside the
realm of quantitative accuracy for chemical binding.
Perhaps these binding energies will be improved by ap-
plying the local asymptotic truncation of Pearson and
Gordon to the gradient expansion of the proper kinetic
energy density as discussed by Perdew et a!.2 It would
also be interesting to test, for binding-energy purposes,
the new functionals of Herring and Chopra, " DePristo
and Kress, and Plumer and Stott.

The exact T, satisfies the conditions of Sec. II for all
valid n. It is impossible, however, to test the conditions
on any approximate T, with respect to all n. For now, it
is instructive to look at just n(r)=ae for illustrative
purposes. With the latter n, the uz corresponding to Eq.
(45) diverges as r ~~ because of the presence of T4. If
T4 is not present in Eq. (45), so that the expansion now
consists of just the Thomas-Fermi Tp 01 Tp+ Tz, then uz
is still not properly behaved; it violates the condition
u) 0, at small r, with n =ae "". Also, tz) 0 is violated.
It is noteworthy, therefore, that the recent nonlocal func-
tional of Herring and Chopra" "does satisfy u& )0.

Let's now free the coefficients in Eqs. (45)—(47). When
Cp & 0, C, & 1, and C4 & 0, then the condition

The analysis in Sec. III on known approximations to
T, reveals that the exact conditions of Sec. II are severe
enough to be quite meaningful and useful. Also, the con-
ditions may be tested with arbitrary n because knowledge
of the exact v, ([n];r), or its eigenvalues, is not required.
In other words, in order to test an n,, we do not have to
know its u, .

Since none of the tested functionals obeyed all of the
conditions, it is reasonable to assume that we should be
able to improve upon existing approximations for T, [n]
by modifying the functionals so that they are forced to
satisfy the conditions as closely as possible.

Perhaps it would be fruitful to investigate working
directly with a universal ve[n) in order to most easily
satisfy the requisites of Sec. II and to satisfy other known
requisites. For instance, a simple form for v e [n] such as

ve[n]= ,'a(N)n +b—(N)n
~

Vn
~
+ (48)

so that

+ ,'b(N) f nr V—[n
i
Vn

i
]dr+ . (49)

2

T, [n]= ,' f dr—+a(N)f n dr

+ ,'b(N) f nr V[n
~

Vn
~

—]dr+ (50)

will obey the local scaling requirement, Eq. (38), and will

satisfy the condition ve([n ];r)&0 for all n, with a(N) & 0
and b(N) )0. (Note that ve in Eq. (48) is constructed so
that ve([n];

~

r
~

~~)=0. It is thus not necessary to
add a constant to this uz in order to make it vanish as

f
r

/

~oo. )
From the ve in Eq. (48), Te may be formed from Eq.

(36). This gives

Te[n]=a(N) f n dr
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