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Propagators for driven coupled harmonic oscillators

DECEMBER 15, 1988

Kyu-Hwang Yeon
Department ofPhysics, Chungbuk National University, Cheong Ju, Chung Buk 360-763, Korea

Chung-In Um and Woo-Hyung Kahng
Department of Physics, College ofScience, Korea University, Seoul 136 70-1, Korea

Thomas F. George*
Department of Chemistry and Department ofPhysics &Astronomy, 239 Fronczak Hall, State University ofNew York at Buffalo,

Buffalo, New York 14260
(Received 29 July 1988)

Propagators for coupled and driven coupled harmonic oscillators are evaluated exactly by the
path-integral method. The propagators for coupled harmonic oscillators are used to obtain explicit-

ly the energy expectation values.

I. INTRODUCTION

Although the Feynman path-integral formulation'
offers a general approach for treating quantum-
mechanical systems, only several problems can be solved
exactly. Two of these are the driven harmonic oscillator
with a quadratic Hamiltonian and the time-dependent
damped driven harmonic oscillator. A number of situa-
tions such as superconducting quantum-interference de-
vices, quantum-nondemolition measurements, magne-
tohydrodynamics, etc., can be described by driven cou-
pled harmonic oscillators. Introducing the Caldirola-
Kanai Hamiltonian, one can obtain the time-dependent
Schrodinger equation for the damped harmonic oscilla-
tor. However, it has been a matter of debate as to wheth-
er or not this Schrodinger equation represents the
quantum-mechanical dissipative system. Some workers
claim affirmation while others' object to it. This prob-
lem has been critically reviewed by Greenberger" and
Cervero and Villaroel. '

The purpose of this paper is to derive the propagator
for a driven coupled harmonic oscillators (DCHO) sys-
tem from our previous work' for both coupled and cou-
pled driven harmonic oscillators by means of the path-
integral method. We introduce two harmonic oscillators
that are coupled together with another spring. We re-
view the classical case and construct the form of the
propagator for DCHO, respectively, in Secs. II and III.
Section IV gives the exact derivation of the propagator
for the coupled hartnonic oscillators (CHO), and in Sec.
V we evaluate the exact propagator for DCHO by using
the results obtained in Sec. IV. The energy expectation
values of CHO are evaluated in Sec. VI, and finally we
give results and discussion in Sec. VII.

—fz(t)xz, (2.1)

where co =k/m. Hamilton's equations of.motion for Eq.
(2.1) are

x, =p, /m,

xz =pz/m,

p, =mco (xz —2x, )+f, (t),
pz=mco (xt —2xz)+fz(t) .

Equations (2.1)—(2.5) yield the Lagrangian

L =(p, x, +pzxz) H—

(2.2)

(2.3)

(2.4)

(2.5)

=—(x f+x z) —mco (x, —x,xz+x z )+f, (t)x,

+fz(t)xz,

with the corresponding equations of motion

x, +co (2x, —xz)=f, (t)im,
+xz(2toxz —x, )=fz(t)/m .

(2.6)

(2.7)

(2.8)

The classical solutions of Eqs. (2.7) and (2.8) are given by

x, (t)= A sin(cot )+B cos(tot )+C sin(V'3cot )

and three spring constants are all the same. Let the
forces f, (t) and fz(t) exerted on the two oscillators and
their displacements be x, and xz. Then the Hamiltonian
for DCHO can be written as

H= (p, +pz)+mco (x, —x,xz+xz) —f, (t)x,1

II. CLASSICAL CASE

In this section we consider a system of two harmonic
oscillators which are coupled together by means of anoth-
er spring. We assume that the masses of the oscillators and

+D cos(&3cot )

+ J dr I dve' " " "[f((v)+fz(v)] (2.9)
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xz(t)= A sin(cot)+B cos(cot) —Csin(v'3cot)

D—cos( v'3cot )

+ f

deaf

dve' " " "[f)(v) f—z(v)] .

K(x l, xz, t;x ),xz, O)

(x&,x2, t)
Dx(t)exp[(i/h')S(x &,xz, x &, xz', t )],

(x &,x&,0)

(3.2)

III. PATH INTEGRAL OF DRIVEN
COUPLED HARMONIC OSCILLATORS

where

N —1

Dx(t)= lim —g (dx„dxz, /A )
N~ oo J=

(3.3)

In the path-integral formulation, the solution of the
Schrodinger equation is given as the path-dependent in-
tegral equations with propagator E,

g(x, ,xz, t ) =f dx', dx zK(x, ,xz, t;x'»xz, O}f(x', ,xz, O), S(xl,xz, x),xz', t)= dtL(x), xz, x(,xz, t) .
0

In Eq. (3.3) A is the normalization factor given by

(3.4)

and S(x„xz,x', ,x z;t ) is the action defined as the time in-
tegral over the Lagrangian L(x, ,xz, x„xz,t.) between
t =t and t =0, '

which gives the wave function g(x, ,xz, t) at time t in
terms of the wave function f(x', ,xz } at time t =0. The
propagator in Eq. (3.1} can be written by means of the
Feynman path integral

A =[2rrifie/m]', e= lim (t/N) .
N~ cc

Substituting Eq. (2.6) into (3.4), the action becomes

(3.5)

S( &x, x, zIx, zx, t) =S,('&x, x, zIx, zx,'t )+ dr [y f(r—)+y z(r) —2' [y f(r) —y, (r)yz(r)+yz(r)]I,
0 2

where S, is the classical action and y; is the deviation of x;(t) from its classical path x„given as

y, =x; —x„(i=1,2) .

Then the propagator [Eq. (3.2}]can be expressed as

iS, /A
K(x ~,xz, t;x', ,xz, O) =F(t)e

Here, F(t) is the multiplicative function given in the form

F(t)= f Dx(t) exp (im /2') f dt[y i+y z
z—2coz(y f

—
y&yz+yzz )]

(3.6)

(3.7)

(3.8)

(3.9)

It is easy to show that F(t) has the same form for CHO and DCHO. Therefore the propagator depends only on the
classical action in both cases. In Eq. (3.9), by changing the variables x

&
kxz into

1
z, = —(xl —xz),

2
(3.10)

zz = —(x&+xz),= 1 (3.11)
2

we can reduce the condition (y &,yz ) =(0,0) to (z&,zz ) =(0,0). Applying Eqs. (3.10) and (3.11) to Eq. (3.9), the multipli-
cative function becomes

F(t)=Jf Dz(t) exp (im/2A) f Dz(t)[(i, t0 zf)+(i z
——3' zz) (3.12)
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In Eq. (3.12), Jbecomes unity.
If the action is separated into the functionals with only same variables in the path integral, then this integral can be

represented by the multiplication of path integrals with each variable. Therefore Eq. (3.12) becomes

F(t)=F&(t)Fz(t)= f Dz, (t)exp (im /2') f dt(i ~& co—z, )
0 0

(3.14)

Since F, (t) and Fz(t) are the path integrals of the harmonic oscillator, the evaluation of Eq. (3.14}gives
' 1/2

mco &3
sin(cot )sin( &3cot )

(3.15)

Hence, the propagator of DCHO can be written as
T

mco +3
K( x), xz, t&xl, xz, 0)=

sin(cot )sin(V 3cot )

' 1/2
iS /A

e (3.16)

IV. PROPAGATOR FOR THE COUPLED HARMONIC OSCILLATORS

To evaluate the exact propagator expressed by Eq. (3.16), we should first obtain the propagator for CHO. The classi-
cal action of CHO is

S,= dr —(x „+x,z) —mco (x„—x„x,z+x,z)
0

(4.1)

where x„and x„are the classical path and velocity, respectively. Integrating Eq. (4.1) over the time, we get

l m " 2S,=—(x„x„+x,zx, z}lo dr —x~[x,~+ c(o2x,
~

—x,z)]— dr x,z—[x,z+co (2x,z x, ~ }]
0 2 0 2

=—[x,&(t)x, |(t)+x,z(t}x,z(t) —x, i(0)x,&(0)—x,z(0)x,z(0)] . (4.2)

Here the second and third terms become zero because of
the equations of motion [see Eqs. (2.7) and (2.8)], given as

Equations (4.5)-(4.8) give

x, +co (2x, —xz) =0,
xz+co (2xz —

x& )=0 .

(4.3)

(4.4)

x I =x i(0)=8+D,

xz =xz(0) =8 D, —

(4.9)

(4.10)

To obtain the exact expression of Eq. (4.2), we solve Eqs.
(4.3}and (4.4) to obtain

x, =x, ( t) = 2 sin(cot ) +8 cos(cot )

x I =x|(0)= co( A +&3C),

x z=xz(0) =co( A —&3C) .

(4.11)

(4.12)

+C sin(&3cot )+D cos(&3cot ),
xz =xz(t) = 3 sin(cot )+8 cos(cot)

—C sin(&3cot } Dcos(&3cot ), —

(4.5)

(4.6)

The time-dependent constants A, 8, C, and D obtained
from Eqs. (4.5) and (4.6), and Eqs. (4.9) and (4.10) can be
expressed as

and x
&

and x2 are given, respectively, by

x& =x, (t) =co[A cos(cot }—8 sin(cot )

+&3C cos(&3cot }

3 = [—,'sin(cot )][x,+xz —(x', +x z )cos(cot )],

8=—,'(x', +xz),

C = [—,'sin(&3cot )][x,—xz+(x ', xz )cos(&3cot )], —

(4.13)

(4.14)

&3D sin(&3cot )]-,
xz =xz(t) =co[ A cos(cot) —8 sin(cot)

—&3C cos(&3cot )

+ &3D sin( &3cot )] .

(4.7)

(4.8)

(4.15)

D= —,'(x', —xz) . (4.16)

Substitution of Eqs. (4.5}—(4.16) into (4.2) gives the classi-
cal action,
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5, = I (x
&
+xz+x I +xz )[cot(tot )+&3cot(&3cot )]]+2(x &xz+x', x z )[cot(cot ) —&3cot(v'3cot )]

4
—2(x &x'& +xzx z ) I [1/sin(cot )+&3/sin(v'3cot ) ]]+2(x &x z+xzx & )[—1/sin(cot )+V 3/sin( v'3cot )] .

Combining Eqs. (4.17) and (3.16), we obtain the propagator for CHO,

K(x, ,xz, t;x'„xz, 0)= . [&3/sin(cot )sin(&3cot )]'~z
2miA

XexpI(imago/4')[(x, +xz+xI +xz )[cot(cot)+&3cot(&3cot)]

+2(x,xz+x', x z )[cot(cot ) —&3cot(&3~t )]
—2(x, x', +xzxz )[1/sin(tot )+&3/sin(&3cot)]

+2(x&xz+xzxI )[—1/sin(cot)+&3/sin(&3cot)]I .

(4.17)

(4.18)

V. PROPAGATOR FOR DRIVEN COUPLED
HARMONIC OSCILLATORS

When we set f, (t)=fz(t) =0, DCHO reduces to CHO,
whereby we can write the propagator for DCHO as

2lR 2+ mco

m
I+

2l

21' (z+ 3mQ7

m 2ifr

(5.12)

(5.13)

tr&asc/at ) =He . (5.2)

Substitution of Eq. (5.1) into (5.2) gives the time-
dependent coefficients

E(x„xz,t;xI,xz, 0)=exp[a(t)x f +b(t)x, xz+c(t)xz

+d(t)x, +g(t)x, +h(t)] .

(5.1)

Here a(t), b(t), c(t), d(t), g(t), and h(t) are time-
dependent functions including x

&
and x 2, which need to

be determined. Equation (5.1) must satisfy the
Schrodinger equation

The solutions of Eqs. (5.12) and (5.13) are given by

imam
cot(tot +8, ),

&3i tom
cot( &3' t +8 ),

2A
2

(5.14)

(5.15)

where 8, and 8z are the constants to be determined. The
time-dependent coeflicients a(t), b(t), and c(t) obtained
in comparison with Eqs. (5.10), (5.11), (5.14), and (5.15)
are given as

a(t) =b(t) = [cot(tot+8, )+v'3cot(&3cot+8z)],

(5.16)

a(t)= [4a (t)+c (t)]+ma) /iR,iA
2m

b(t)= [4b (t)+c (t)]+mcoz/i',iA

2m

c(t)= [a(t)c(t)+b(t)c(t)] —mco /il,2iR 2

m

d(t) = [2a(t)d(t)+c(t)g(t)]+ —f, (t),
m

(5.3)

(5.4)

(5.5)

(5.6)

c(t)= [cot(cot+8, )
—scot(&3cot+8z)] . (5.17)

Equations (5.16) and (5.17) do not include the driven
forces f, (t) and fz(t). Therefore, through setting

f&(t) =fz(t) =0, Eqs. (5.16) and (5.17) do not change at
all and should be equal to the coefficients of x

&
and x 2 in

Eq. (4.18). Comparison of these two equations shows 8,
and 8z to be zero. Substituting Eq. (5.9) into Eqs. (5.6)
and (5.7) and changing variables d and g into

g(t)= [2b(t)g(t)+c(t)d(t)]+ —f,(t),
m fi

h(t)= [d (t)+g (t)+2a(t)+2b(t)] .
2m

Since Eqs. (5.3) and (5.4) have the same form, we get

a(t)=b(t) .

(5.7)

(5.8)

(5.9)

p=d+g

0=d g

we obtain the two differential equations

(5.18)

(5.19)

Substituting Eq. (5.9) into (5.5) and changing the vari-
ables a and c into

p= [2a(t)+c(t)]p+ —[f,(t)+f,(t)], (5.20)

g=a+c /2,

/=a —c/2,

(5.10)

(5.11)

o = [2a(t)+c(t)]o+—[f&(t)—fz(t)] . (5.21)

we obtain two ordinary differential equations,
Combining Eqs. (5.20) and (5.21) with Eqs. (5.16) and
(5.17), we obtain the solutions
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r

p=[1/sin(cot)] f dr —[f,(r)+fz(r)]
0

X sin(cot )+a

o. =[1/sin(&3cot)] f dr —[f,(r) —fz(r)]
0

X sin( v'3cot ) +p

(5.22)

(5.23)

d(t)=[i/2trtsin(cot)] f dr[fl(r)+fz(r}]sin(cor)
0

+[i/2fisin(&3cot)] f dr[f, (r}—fz(r)]

X sin( V 3cor )

+ [a/2 sin(cot )]+[p/2 sin(&3cot )],
g(t)=[i/2fisin(cot)] f dr[f~(r)+fz(r)]sin(cor)

0
—[i/2fisin(&3cot)] f dr[f, (r) —f~(r)]

X sin(&3cor)

(5.24)

where a and p are constants to be determined. We can
obtain the time-dependent coefficients d(t) and g(t) by
substituting Eqs. (5.22) and (5.23) into Eqs. (5.18) and
(5.19),

+ [a/2 sin(cot )]—[P/2 sin(&3cot )] . (5.25)

Substitution of Eqs (5.16), (5.17), (5.24), and (5.25) into
(5.8) yields

h(t)=—

X sin( &3cov) —in[sin(cot )sin( V'3cot) ]+$ .

[a cot(cot)+(p /&3)cot(&3cot)] —[a/mcosin(cot)] f dr[f &(r)+fz(r)]sin[co(t —r)]
4m co 0

—[p/&3m co sin(&3cot )]f dr[ f~(r) —fz(r)]sin[v'3co(t —r)]

+[1/4ifimco sin(cot)] f dr f dv[f, (r)+fz(r)][f, (v)+ fz(v)]sin[co(t —r)]sin(cov)
0 0

+[1/4&3i&mco sin(v'3cot)] f dr f dv[ f, (r) —fq(r)][f )(v) —fq(v)]sin[V3co(t —r)]

(5.26)

Here, 5 is also a constant to be determined. When setting f, (t)=fz(t) =0, Eqs. (5.24) and (5.25) should be reduced to
the coefficients of x

&
and xz, and Eq. (5.26) should also be reduced to the terms in the exponent in Eq. (4.18). Compar-

ison between them gives the constants a, P, and 5,

a= (x', +xz),
iA

p= (x', —xz),
iA

(5.27)

(5.28)

5=1n 3"4m'
2miA

(5.29}

Substitution of the preceding results into Eq. (5.1) gives the propagator for DCHO,

& (x ~,xq, t;x ~,x q, 0)= . I &3/[sin(cot )sin(&3cot )] I
'

2mih

Xexp
™~(x, +xz+xI +xz )[cot(cot)+&3cot(&3cot)]

+2(x &xz+x &xz )[cot(cot ) —&3cot(&3cot )]
—2(x, x', +xzx & ) t 1/sin(cot)+ [&3/sin(&3cot )]j

+2(x &x & +x'&x& )[—1/sin(cot )+&3/sin(&3cot )]
2X I+ [1/sin(cot )]f dr[f, (r)+fz(r)]sin(cor)
mao 0

+[1/sin(&3cot )]f dr[f, (r) —fz(r)]sin(v'3cor)

2X2+ [1/sin(cot)] f dr[f ( )I+rfz(r)]sin(cor)
mco 0

—[1/sin(&3cot )]f dr[f, (r) —fz(r)]sin(&3cor)
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4x) t+ [1/sin(cot)] f dr[f, (r)+fz(r)]sin[co(t —r)]
me@ 0

+[1/sin(&3cot)] f dr[f, (r) —fz(r)]sin(&3cor)

4x2+ [1/sin(cot)] f dr[f, (r)+fz(r)]sin[co(t —r)]
mco 0

—[1/sin(V 3cot )]f dr[f &(r)—fz(r)]sin(&3cor)
J

—[1/m co sin(cot)] f dr f dv[f&(r)+f2(r)][f, (v)+fz(v)]

X sin[co( t —r )]sin(cov }

—[1/&3m co sin(&3cot)] f dr f dv[f, (r) —f2(r)][f,(v) —f2(v)]

Xsin[v 3co(t —r)]sin(v 3cov) (5.30)

VI. ENERGY EXPECTATION VALUES OF COUPLED HARMONIC OSCILLATORS

The Hamiltonian of CHO is

H= (p, +pz)+mco (xi —x,x2+xz) .1
(6.1)

Using Eqs. (3.1}and (3.2) with Eq. (6.1), we obtain the Schrodinger equation

ii}i(B/Bt )g(x „x2,t ) =H,zP( x&, x2, t ), (6.2)

where H, is the Hamiltonian operator in which the momentum p, is changed into p;=(fi/i )(B/Bx;). Since Eq. (6.2)
can be separated into time and coordinate parts, we may write

K(t)=e

H, ll, n ) =E,„ll,n ) (l, n =1,2, 3, . . . ) .

(6.3)

(6.4)

Here the states
l l, n ) are the complete set with energy eigenvalues of H, . Since the function with states l 1,n ) can be

expressed by

P,„(x,,xz)=&x, ,x2ll, n ),
the propagator at t & 0 becomes

—iH t/h
K(x„x2,t;x', ,x2, 0)=(x„x2le " lx', ,x2)

g (x&,xzlln )(lnle' " ll', n')(I', n'lx&, xz)
I n I' n'

—iEI„t /fi
In X& XZ e In X&~X2

I n

(6.5)

(6.6)

Equation (6.6) should be the same as Eq. (4.18). Setting x', =x, and x' =x2 in Eq. (4.18) and integrating over x, and

x2, we get

and

—iE(„t /R —iEI„t /Ag g f fdx, dxzP&'„(x„xz)e ™
P&„( „xx)=2e

I n

(6.7)

f f dx&dx2 . I &3/[sin(cot)sin(&3cot)]]'
2miA'

Xexp
™~

[(x&+x2) —&3(x& —x2) ][cot(cot)—1/sin(cot)] = —
—,'[sin(cot/2)sin(&3/2cot)]
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Hence we have

g g e '" = —
—,
' [sin(cot /2)sin(&3/2tot )]

1 n

[e
—icut/2/(1 e

—icot)][e —i+3cut/2/(1 e
—iv 3'))]

g exp [ i c—ot [(I + ,' ) —+&3( n + —,
'

) ] j .
1=On =0

(6.9)

Therefore the expectation values of CHO becomes

Ei„=[(I + —,
'

) +&3( n + ,' ) ]fit—o . (6.10)

VII. RESULTS AND DISCUSSION

In the previous sections we have obtained the exact
propagators [Eqs. (4.18) and (5.30] for CHO and DCHO
by the path-integral method. The forms of the propaga-
tors are new. Setting f (t) =0, Eq. (5.30) is reduced to Eq.
(4.18). Although DCHO is a nonconservative system, the
quantum-mechanical problem for the momentum opera-
tor does not appear because the canonical momentum is
equal to the kinetic momentum in our derivation. '

Making use of Eq. (4.81), we have obtained the energy
expectation values [Eq. (6.10)] for CHO, given by the sum
of two energy expectation values corresponding to the
quantum states of two oscillators. Even though we have
not evaluated the wave function of CHO, we may easily
surmise that the wave function will be given by the multi-

plication of two wave functions for two oscillators. In
the case of DCHO, one cannot easily apply Eq. (5.20) to
obtain the energy expectation values, since this equation
cannot be expressed in the form of Eq. (6.6), and one
should recognize that the energy operator is not equal to
the Hamiltonian operator in a nonconservative system.

The evaluations for the wave functions, energy expec-
tation values for CHO and DCHO, and propagator and
other physical quantities for n coupled and n driven cou-
pled harmonic, oscillators (arbitrary n) are in progress and
will be reported in the near future.
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