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Nonadiabatic coupled-rearrangement-channel approach to muonic molecules
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A new variational approach to muonic molecules is proposed. The total three-body wave func-

tion is expanded in terms of basis functions spanned over the three rearrangement channels in the
Jacobian coordinate system. Energy levels of the dtp molecule are calculated with a high accuracy
and a short computation time. For the weakly bound state with J =U =1, which is a key to the
muon-catalyzed d-t fusion, the calculated energy c&l is better than the literature data. With the use

of the most up-to-date, 1986 CODATA-recommended [E. R. Cohen and B. N. Taylor, CODATA
Bull. 63 (1986)] values of physical constants, we obtained e„=—0.660264 eV with 2662 basis func-

tions and c»( Oo ) = —0.660 30+00002 eV by extrapolation.

I. INTRODUCTION

In connection with muon-catalyzed fusion, energy lev-
els of muonic molecules have extensively been studied
with various calculational methods. ' It is known that
formation of the dtp molecule via the resonance reaction
(tp)t, +D2~[(dtp)s „ idee]' is a key to the most in-

teresting d-t fusion. The dt p molecular state with
J =v =1 is very weakly bound, by only -0.66 eV, with
respect to the (tp}„dthresho-ld. The calculated rate of
the resonance reaction is very sensitive to the energy of
this state; required accuracy of the calculated energy is
—10 eV which is to be compared with the total three-
body binding energy of 2.7 keV.

For the nonrelativistic, Coulomb three-body Hamil-
tonian of the dtp system, most recent variational calcula-
tions which took more than one thousand basis func-
tions give the energy of the weakly bound state more ac-
curately than the adiabatic nonvariational calculations. '

The large-size variational calculations of Refs. 4 and 5

and those of Refs. 6 and 7 utilized basis functions of
molecular type in spheroidal coordinates and of general-
ized Hylleraas type, respectively.

In the present paper we propose a new variational ap-
proach to muonic molecules in which all the three rear-
rangement channels are explicitly employed with the use
of their Jacobian coordinates (Fig. l). The reason for tak-
ing such an approach is as follows: The fact that the
state with J =v =1 lies by only -0.66 eV below the
(tp)„-d breakup threshold suggests that the three-body
wave function of the state has a large component corre-
sponding to the (tp)„dconfiguratio-n. Similarly, the
(dp, )„tconfiguration -is likely to be important because
the state is located slightly (48 eV) below the (dp)„t-
threshold [cf. the (tp}z, 2 dthreshold app-earing 2 keV
higher]. The (dt) 1J, component is a-lso necessary for
determining the wave function precisely in the region of
the nuclear fusion. Large-size variational calculations
can suffer from a very large linear dependence between

II. METHOD

Formulation of our method is presented with the dt's
system as an example. The three channels (tp) d, (dp-)-t,
and (dt) pare refe-rred to as channels c = 1, 2, and 3, re-
spectively, and their Jacobi coordinates (r„R, ) are
defined as in Fig. 1. We introduce the reduced masses
(m„M, ) associated with the coordinates (r„R,):
m i

——m, +mu, Mi ——md +(m, +m„)—1 —1 —1

m2
' ——md

' +m ', M2 ' ——m, '+(md+m„) ', and

m3 ——md +m, , M3 ——m„+(md+m, ), where—1 —1 — —1 —1 —1

m„, md, and m, are masses ofp, d, and t, respectively.
The nonrelativistic three-body Hamiltonian assumed in

the present paper is

t d.

c=1 c=2 c=3

FIG. 1. Three arrangement channels of the dtp system and
their Jacobian coordinates.

the basis functions employed, but the basis functions
spanned over the three rearrangement channels are ex-
pected to give a not exceedingly large linear dependence
and therefore to result in a high accuracy and a short
computation time. Furthermore, the framework of the
Jacobian coordinate system for the rearrangement chan-
nels is found' to be particularly suited for a nonadiabatic
description of scattering processes such as (dp)„+t
~(tp)„+d with the correct boundary condition.
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x[&, (r, )&, (&,)],M . (2)

Here I, (L, ) stands for the angular momentum of the rel-
ative motion associated with the coordinate r, (R, ), and
the bracket [ ]&M represents the vector coupling of the
two spherical harmonics. In Eq. (2), I, and L, are re-
stricted as 0&I, &I, '",

~

J —I,
~

&L, &J+I„and
I+L

( —1) ' '=( —1) . The numbers I, and I, specify the ra-
dial dependences of P',. '& (r, ) and Xz't (R, ), respectively

C C e c

(see below). The expansion coefficients and the eigenener-
gies corresponding to 4'&M may be determined by the
Rayleigh-Ritz variational method as usual.

In the present method muon is treated on an equal
footing with the two nuclei since the muon mass is not
much smaller than the nuclear masses. For the three-
body system, the expression (2) must be the most general
form of the expansion with a finite number of basis func-
tions. In principle, +&M may be expanded in terms of the
complete set of single-channel basis functions, but this
would need, in actual calculations, up to large I, and L,
and generate a large linear dependence between the basis
functions. Our idea is that we take the three-channel ex-
pansion and expect 1, and L, to remain rather small.

The form of the radial functions P and X is taken as
(the index c omitted)

P;&(r) =r'exp[ (r/r; ) ], —

r, =r, at' " (i =1 n), —

&a.(R)=R exp[ —R/R

Ri ——R A' " (I =l N) . —

(3)

The geometrical progressions for t r; ) and [R~ ] are found
to be useful in optimizing the ranges with a small number
of free parameters. The nonlinear parameters (n, r, , r„)
and (N, R „Rz) are chosen for each c and (I„L,); r„and
Rz are employed instead of the ratios a and A.

Use of Gaussian tails, rather than exponential ones,
makes the transformation between the three sets of the
Jacobian coordinates very simple, and therefore closed
forms of the energy- and norm-matrix elements are ob-
tained straightforwardly. The "fast" damping of the
Gaussian tails is not a serious problem since we can make
r„and Rz much longer than the muonic molecular size.
It is to be noted that Gaussian-type basis functions have
often been utilized in variational calculations of atomic
and molecular problems, " but the present functions
spanned over the three rearrangement channels with the
use of the Jacobian coordinate system are quite diferent
from them.

e e e
~R — — +

2m, " 2M, ~ r, rz r3

where c =1, 2, or 3. The total wave function with J and
its z component M, %'zM, may be expanded in terms of
basis functions spanned over the three channels:

3

+1M g g Ai 1 l, l. (I '
I, ( )~l, l. (R

c=] i I I L

The (tp)~, d -and (dp)„r-configurations mentioned
above are taken into account as follows: A satisfactorily
accurate expansion of the ls wave function 4&, (r) of the
tp atom is obtained (even at r =0) by diagonalizing the
1-p sub-Hamiltonian with a set of basis functions
[P;&(r); I =0, i = 1 n—] of Eq. (3) with n —20,
r

&

—(0.005 —0.01)a„, and r„—(5—10)a„, where

a„=A /m„e =2.56&10 " cm; the same is true for
4„(r) of the dp atom. Therefore, taking those basis
functions as P',' (r, ) (I, =O, c =1,2), we can automatical-

ly incorporate the (tp)„dand-(dp)„-t configurations of
the 4~, (r, )Xz s(rR, ) type into the total wave function
when the Hamiltonian (1) is diagonalized.

III. CALCULATIONS

As for physical constants, we take two sets: set I,
m q

——206.7686m„md ——3670.481m„m, =5496.918m„
and R =m, e /2' =13.605 804 eV (Ref. 12); these were
often used in the literature; set II, m„=206.768262m„
md ——3670.483014m„and R~ =13.605698 1 eV which
are taken from the new, 1986 CODATA —recommended
values' of physical constants; and m, =5496.921 58m,
with m, from Ref. 13 and m, from Ref. 14 (since Ref. 13
refers to Ref. 14 for mass of nucleon and deuteron). The
calculated energy of a state with J and u is denoted by c~,
which is measured with respect to the (tp, )„dthreshold-
energy, —(m, /m, )R . The number of the basis func-
tions is presented by Nb.

All the numerical calculation was performed in double
precision (14-16 decimal digits). For typical sets of the
nonlinear variational parameters, the energy-matrix ele-
ments were compared with those calculated in quadru-
pole precision (31—33 decimal digits), and error was
found to be less than 10 eV in all the elements. Diago-
nalization of the energy and norm matrices was not ill
conditioned even for Nb -2600, and error in the process
was checked to be less than 10 eV. Thus, the whole
computation can be performed with a vector processor
which works in double precision. The computation time
is then very short. When N&

——2000 (J = 1), the time for
calculating all the matrix elements is about 30 sec and
that for the eigenvalues and eigenvectors of the lowest-
lying ten states is about 100 sec on a FACOM VP-200
computer.

Such a short computation time enables us to optimize
the nonlinear variational parameters very carefully. For
J =1, 15 cases of N~ were chosen. For each case of N&

the optimization was made so as to obtain the best value
of c»,' the total number of such trial-and-error calcula-
tions for those 15 cases of Nb was about 100. Figure 2
shows the best values of c.» versus N& thus obtained;
some of them are listed in Table I together with c]p which
was simultaneously given by the diagonalization here,
we took set I of the physical constants. As seen in Table
I, the energy s&&

———0.660104 eV (N& ——2662) is better
than the literature data. ' The dependence of c]& on N&

in Fig. 2 is very smooth, which shows a high accuracy of
the present calculation. The distribution of c» versus N&

is well followed by the dashed curve which is given by the
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(eV)

0.66010—
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(m} ~-
1't

0.66005—

function ' E&~(Nb)=e~, (oo )+CNs with e~~( oo )

= —0.66014 eV, C =38500 eV, and a=2.638. Error in
the estimation of e, ~(oo } is considered to be +0.00002
eV.

In order to examine the role of the individual rear-
rangement channels, we made three two-channel calcula-
tions in which one of the (tp) d, (dp-) t, and (dt-) pchan--
nels is omitted from the full three-channel calculation
with Nb ——2662 in Table I, and we ob-
tained (ett, etc)=(+48.405, —188.546) eV, (+0.370,

p 660pp i t I I I I I I I

1800 2000 2200 2400 2600
Nb

FIG. 2. Convergence of the calculated energy all of the dtp
molecule with respect to the number of the basis functions Nb.
The dashed curve corresponds to '

the function
c, 11(Nb) =c»( 00 )+CNb with c„{00 ) = —0.66014 eV,
C =28500 eV, and a=2.638. Set I of the physical constants
are used [for set II, all the dots and the dashed curve are to be
shifted upward by 0000 160 eV giving s„(oo ) = —0.66030 eV].

—176.451) eV, and ( —0.646, —232.454) eV, respective-
ly. It is interesting to see that the third calculation with
the (tp} d-and (dp) t-channels can almost reproduce the
energy of the full-channel calculation both for the weakly
bound state and for the deeply bound one, although the
least important (dt}-p channel cannot be neglected to ac-
complish the required accuracy (10 eV) of st~ and to
determine precisely the wave function in the nuclear
fusion region.

As far as the roles of I, and L, are concerned in the
case of J = 1 (v =0, 1), the angular momenta
(I„L,)=(0,1) for c =1 and 2 are the most important,
and the large angular momenta become the less impor-
tant quickly, as expected. Contribution of the basis func-
tions with (I„L,}=(3,4) and (4,3) (c =1-3) to the ener-

gy c.» is roughly 5X10 eV in the case of Nb ——2662
(Table I), and the role of the angular momenta larger
than them is regarded to be included in the extrapolated
value ef/( oo }.

The energies sj„of the states with J =0 and 2 of the
dtp molecule were obtained, for set I of the physical con-
stants, as zoo ———319.139606 eV and Eo]= —34.834372
eV with Nb ——1442 and c20 ———102.643 337 eV with

Nb ——1566. The values of cJ„are in agreement with those
in Refs. 4—7 within 10 eV (s2o is not given there). The
calculated energies with the use of the most up-to-date
set of the physical constants, set II, are listed in Table II.

IV. CONCLUDING REMARKS

The nonadiabatic coupled-rearrangement-channels
method proposed here has been shown to be suited for
describing the dt p molecule with satisfactorily high accu-
racy. ' Since the computation time is very short, an ex-
tensive optimization of the nonlinear variational parame-

TABLE I. Calculated energies c, ~~ and c&0 of the dt's molecule for different numbers of the basis func-
tions Nb. The numbers in parentheses are given by extrapolation. Set I of the physical constants is
used. Some of literature data are also listed.

Ng

1789
1848
2044
2240
2438
2662

~» (eV)

—0.660038
—0.660048
—0.660070
—0.660084
—0.660096
—0.660 104

( —0.660 14+0.00002)

c)0 (eV)

—232.471 435
232 471 AAA

—232.471 478
—232.471 492
—232.471 501
—232.471 506

( —232.471 53+0.000 02)

400'
844
1102'
1498
2084'
3063'

Literature for c,»
—0.607 19 ( —0.6554+0.0150)
—0.656
—0.658 025
—0.658 87 ( —0.663+0.002)
—0.659 68 ( —0.6604+0.0002)
—0.660 01 ( —0.6601+0.0001)

'Reference 15.
Reference 9.

'Reference 6.

Reference 4.
'Reference 5.
'Reference 7.
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J=O, v =0
J=O, v=1
J=l, v =0
J=l, v=1
J=2, v =0

cJ„, (eV)

—319.136 850
—34.834 327

—232.469 703
—0.660 264"

—102.642 886

0.66030+0 00002 eV

1442
1442
2662
2662
1556

TABLE II. Calculated energies cj„of the dt's molecule by
the present method with the use of set II, the 1986 CODATA-
recommended set, of the physical constants. Nb is the number
of the basis functions used.

due to relativistic kinematics is in progress. Also in pro-
gress is a precise three-body calculation in which the di-
agonalization is made of the Hamiltonian including
Coulomb potentials of the 6nite-size charges and a com-
plex nuclear potential between d and t; the nuclear poten-
tial is determined from the d + t ~ He+n reaction and
therefore fusion rates of the molecular states can be given
immediately from the imaginary part of the complex
eigenenergies cJ, .

On account of the explicit use of the Jacobian coordi-
nate system, the present methods are easily extended' to
a nonadiabatic description of the (dp)„+t~(t )tt)~, +d
reaction with the correct boundary condition.
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