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We examine, in a heuristic fashion, the analytic structure of the scattering amplitude for an elec-
tron interacting with an atomic potential in the presence of a radiation field. For each resonance
pole of the amplitude there are infinitely many shadow poles lying on different unphysical energy
sheets of the infinitely many sheeted Riemann surface. The pole having the dominant influence on
the scattering amplitude is the one closest to the physical energy axis. All poles undergo significant
movement when the field intensity is varied, and when a resonance pole which is dominant passes by
a multiphoton ionization threshold a shadow pole usually moves closer to the physical energy axis
and hence becomes the dominant pole. When this happens, an initially bound electron may jump ei-
genvalue curves, and in this way the electron can undergo a very large (ponderomotive) shift in its
energy and still maintain the correct physical character of its wave function. The movement of res-
onance poles near thresholds has implications for the fate of autoionizing states and for population
trapping. Consideration of threshold effects might also shed light on a puzzling result of a recent
energy-shift measurement. We address the problem of how to determine, in numerical calculations,
which sheet the energy eigenvalue is on so that the dominant pole can be identified. We illustrate
some of our remarks by results of numerical calculations, and we also touch on the question of the
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completeness of a basis set in numerical calculations of resonance eigenvalues.

I. INTRODUCTION

To calculate the rate of decay of an atom in the pres-
ence of a monochromatic radiation field, one must
effectively determine the locations of one or more poles of
the resolvent operator for the system (atom plus field). In
this paper we discuss the various classes of poles, in par-
ticular the class of ‘“shadow” poles, which has received
little attention in the multiphoton physics literature. The
shadow poles, as distinguished from the ‘“dominant”
poles, normally have only a weak influence on the physi-
cal scattering amplitude. However, as the intensity or
frequency of the laser is varied, the various poles move,
and when a multiphoton ionization threshold is passed a
pole which is a dominant one may change roles with a
shadow pole; in other words, a shadow pole may become
a dominant one. We present results of calculations of the
pole trajectories for a model atom and show that care
must be taken to correctly identify the dominant pole.

Any atomic Hamiltonian H, may support bound
states, which are stable, and resonance states, which are
unstable.! These states are represented by regular solu-
tions to the time-independent Schrodinger equation
which satisfy (in coordinate space) an outgoing-wave
boundary condition at asymptotically large distances.
(The outgoing wave decays in space if the electron is
bound.) To each bound state or resonance there corre-
sponds a pole of the resolvent R,(E)=1/(E —H,). The
resolvent is multivalued in E because for each E there are
two choices for the asymptotic boundary condition—
outgoing or ingoing waves. Furthermore, the full
specification of the asymptotic boundary condition re-

38

quires the specification of the channel into which the
atom can disintegrate if its energy exceeds the ionization
threshold. Thus R,(E) must be defined on a Riemann
surface consisting of 2V energy sheets, where N is the
number of channels. The physical energy sheet is the one
whose real axis contains the physically allowed energies,
that is, those energies which correspond to physically
realizable wave functions. Bound-state poles of R, (E) lie
on the negative real axis of the physical sheet while reso-
nance poles lie on unphysical sheets. If a resonance pole
is to have a significant physical effect, it must not lie far
from the physical energy axis.

When an atom interacts with another system, for ex-
ample, a radiation field, it will in general break up. Nev-
ertheless, information on the bound states and resonances
of the original atom is retained in the resolvent, R (E), of
the joint system; R (E) has poles that are just the bound-
state and resonance poles of R,(E) displaced from their
original positions by the coupling. Since the joint system
in general has more channels than the original atom,
R (E) is defined on a Riemann surface larger than that on
which R,(E) is defined. Furthermore, R (E) has addi-
tional poles—shadow poles—that are the shadows cast
by the displaced bound-state and resonance poles of
R,(E) on some of the additional unphysical sheets of the
larger Riemann surface. If the interaction between the
atom and the second system is very weak, a displaced
bound-state or resonance pole of R,(E) will lie closer to
the physical energy axis than the shadow poles which it
casts; in this circumstance it is the displaced poles of
R, (E) that are the dominant poles.

Shadow poles were first discussed in the context of ele-
mentary particle physics, by Eden and Taylor? in particu-
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lar, but also by many others.> Experimental evidence of
the existence of these poles has been seen in observations
of resonances in high-energy physics* and, more recently,
in nuclear physics.”> Shadow poles have also been dis-
cussed in the context of atomic physics, as, for example,
in the interpretation of the threshold behavior of the
cross section for excitation of the 23S state of He by elec-
tron impact,® and in the analysis of processes such as dis-
sociative attachment, and collisional electronic excitation
of molecules.” However, aside from the study by Os-
trovskii® of an electron moving in a one-dimensional
zero-range (8 function) potential which is harmonic in
time, there seems to have been little discussion of shadow
poles in the context of multiphoton processes. Yet it is in
the domain of multiphoton processes that shadow poles
may perhaps be of greatest interest. This is because the
strength of the coupling between an atom and a laser field
can be varied at will, by varying either the intensity or
the frequency of the laser. The poles of R (E) move
around on the Riemann surface as the coupling strength
varies; that substantial movement can occur may be ap-
preciated on recalling that the ionization energy of an
atom is increased in the presence of an intense low-
frequency laser field by roughly the ponderomotive ener-
gy shift, which is proportional to the laser intensity and
routinely exceeds 15 eV in current multiphoton ioniza-
tion experiments’® utilizing a laser of frequency 1.2 eV.
Thus a bound-state pole of R,(E) may be displaced, by
the field, down the (underside of the) negative-energy axis
and past one or more channel thresholds. As we see
below, and as noted earlier by Ostrovskii,® when a thresh-
old is passed one of the shadow poles moves closer to the
physical energy axis than the pole which is dominant be-
fore the threshold is passed, and it consequently becomes
the dominant pole. Consideration of threshold effects
might reveal an explanation for the puzzling result of a
recent energy-shift measurement. '

Resonance poles of R,(E) also undergo large shifts in
the presence of an intense laser field. The question natu-
rally arises as to what happens when, say, an autoionizing
state shifts below the ionization threshold (of the ap-
propriate channel). There is a popular misconception
that this autoionizing state becomes bound. In fact, as
we see below, the dominant pole moves further away
from the physical energy axis and ceases to be physically
significant. Threshold effects can also have implications
for the phenomenon of population trapping.

In Sec. II we give a heuristic (mathematically non-
rigorous) analysis of the analytic structure of the scatter-
ing amplitude for an electron interacting with an atomic
potential in the presence of a monochromatic, spatially
homogeneous, radiation field. We restrict our discussion
for the most part to atomic potentials which decrease at
large distances faster than the Coulomb potential so as to
avoid the complications arising from an accumulation of
bound states at each channel threshold. We focus on the
simplest trajectories; the poles do not need to follow
complicated—and unlikely—trajectories in order to ar-
rive at interesting physical situations. In Sec. III we
present the results of calculations for a model one-
electron “atom” whose atomic potential is a sum of Yu-
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kawa potentials. We plot the trajectories, versus the laser
intensity, of a dominant pole and some of its associated
shadow poles and we demonstrate the typical behavior of
these poles. Our calculation, which involves the expan-
sion of the electron wave function on a finite basis set,
cannot reveal all of the shadow poles. This is because our
basis (even when enlarged indefinitely) is incomplete, not
in the usual sense (of completeness in a Hilbert space of
normalizable functions), but in the sense that it cannot
represent both ingoing and outgoing waves; this is dis-
cussed more fully in Sec. III. We comment on how this
difficulty can be alleviated.

II. GENERAL ANALYSIS

A. Time-independent wave equation

For simplicity we consider an atomic system that has
only one electron. We can express the interaction of this
electron with the spatially homogeneous radiation field as

V(t)=V e "+ V_ei, 2.1
where o is the field frequency and where V, and
V_= V’; are time independent. We adopt the velocity
gauge, in which case V' = —(e/2uc)( Ay'p), where e, u,
and p are the charge, mass, and canonical momentum
(operator) of the electron and where A, is the amplitude
of the vector potential A(t)=Re( Age ~'“'). Note that
we have omitted the term e? A(2)?/(2uc?) from V (t); this
term is spatially-independent and can be removed by a
simple gauge transformation. Its removal cancels the up-
ward pondermotive energy shift of the continuum by
shifting the energy spectrum downwards by the amount

/o 2 A2
N AT
2w Yo 2uc?
=(e2/4uc?) Ay A} . 2.2)

Throughout this paper we keep  fixed but allow the in-
tensity w?| Ay|?/8mc to vary.
To pass to the time-independent treatment we make
the Floquet ansatz'! for |¥(¢)), the electron wave vector:
|W(t))=eE/R | D(1)) , 2.3)

where E is the electron quasienergy and |®(t)) is period-
ic in ¢ with period 27 /w. Substituting (2.3) into the
Schrodinger equation

Li#i(d /dt)—H,—V(1)]|¥(¢)) =0, 2.4)
and using Eq. (2.1) together with the harmonic expansion

D)= e "g,), (2.5)
we obtain the following coupled equations for the time-
independent harmonic components |¢, ):

(E+nfio—H)é,)=Vi|d,_)+V_ld,4) . (2.6)
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B. Asymptotic boundary condition

At asymptotically large distances the electron is free of
the atomic potential. However, in a time-independent
treatment we cannot switch the field on or off and there-
fore the field persists even when the electron is infinitely
far from the atomic potential. This does not pose any
serious difficulty since the wave vectors of a free electron
in the absence and in the presence of the field are related
by the unitary operator

O(t)=e —ia(t)p/f

a(t)=—(e/uc) [ 'dt" A(t") .

(2.7a)
(2.7b)

Thus at asymptotically large distances [O(2)]™!|W(¢))
represents a free electron in the absence of the field. The
canonical momentum operator p commutes with V(z)
and therefore the canonical momentum of the electron,
which in the presence of the field is the mean momentum
averaged over one cycle, would be unaffected by switch-
ing the field on or off when the electron is asymptotically
far away. Indeed, the states represented by | ®(¢)) and
[0(£)]7!| ®(¢)) have the same momentum distributions.
Hence if the electron is incident from infinity along the
direction of the unit vector 1i, with mean momentum
fik o1, and if it absorbs m photons so as to emerge from
the scattering region with mean momentum f#ik,, X, we
have, summing over m,

(x|[0(1]~" | ®(1))

" _ .

L Ce VL S e mimore (ER)e™ " /r 2.8)
m

where C is the amplitude of the incident wave, which is

specified in advance, and where r=|x| ~®, X=x/r,

and

k,, =[(2u/*NE +m#tiw)]'/? . 2.9)

[If the potential has a Coulomb tail, the logarithmic dis-
tortion must be included in the phases on the right-hand
side of Eq. (2.8).] From Egs. (2.7) and (2.8) we obtain

—ikob-alt) ikyli-x
0 e 0

(x| ®(t))—>Ce
+3Je

—imot —ik, X-al(t)

o (ER)e ™ /r .

(2.10)

Since the Schrodinger equation is linear and homogene-
ous, the amplitude f,, (E,X) for absorption of m real pho-
tons is proportional to C. Hence if we let C approach
zero, f,,(E,X) vanishes (there can be no scattered wave if
there is no incident wave) except for those values of E for
which, when C is nonzero, f,,(E,X) has a pole. At values
of E for which f,,(E,X) has a pole, the wave function can
satisfy a pure outgoing-wave asymptotic boundary condi-
tion, corresponding to a bound state or resonance. Let us
transform the summation index on the right-hand side of
Eq. (2.8) or (2.10) from m to m +I, and factor
exp(—ilwt) out of the sum. We cannot interpret
fm +1(E,X) as the m-photon absorption amplitude for an
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electron incident with energy E +I#iw because the first
term on the right-hand side of (2.8) or (2.10) represents an
electron incident with energy E. However, if f,,(E,X)
has a pole at E =E,, we can put C =0, in which case the
asymptotic boundary condition is identical for E =E,
and E =E, +l#w; it then follows that f,, | ,(E,,X) is pro-
portional to f,,(E, +!#w,X). In other words if f,,(E,X)
has a pole at E =E,, f,, ,,(E,X) must have a pole at
E =E,—l#o. (However, the pole at E, does not neces-
sarily lie on the same sheet as the pole at E, —/iw.)

At nonsingular values of E the normalization of
| ®(¢)), and therefore f,,(E,X), are fixed by C, the ampli-
tude of the incident wave. At singular values of E, the
normalization of | ®(¢)) may be fixed by the physically
appropriate boundary condition on the “incident” wave.
If the electron is initially bound, the incident wave is
represented by the normalized bound-state wave function
immediately after the field has been turned on, and the
normalization of | ®(z)) is fixed by the condition that the
probability for finding the electron in the “incident” wave
diminishes in time at the decay rate of the atom.'? The
properly normalized f,,(E,X) are finite at the singular
values of E [the singular f,,(E,X) are renormalized
through multiplication by a factor proportional to
E —Ep]. Furthermore, since, at the singular values of E,
both the asymptotic boundary condition and the normali-
zation condition are the same whether | ®(¢)) is defined
in terms of f,, . ,(E,X) or f,,(E +1#w,X), we have

S +1\Ep,R)=f(E, +1#i,X)
under the proper renormalization.

The asymptotic boundary condition satisfied by the
harmonic components is given, from Egs. (2.5) and (2.10),
as
(x]¢,)—>C,e

*BE LS frm (BN /r (2.11a)
where, writing k,, ‘a(t)=p,, sin(ot —X,, ), where p,, and
X,, are both real and depend on k, =k,X, writing
kot-a(t)=psin(wt —X), and using the integral represen-
tation

1 2 inr—izsi
Jn(Z)zz—,”_fo dreinT—izsint
for the Bessel function, we have

C,=e™J, (p)C, (2.11b)

n—m)X,

f(ER)=e" Iy mlpo i (ER) .

A harmonic component |@,) represents the electron
after it has absorbed a total of n photons, both real and
virtual, and f,,,(E,X) is the amplitude that the electron
has absorbed m real photons when it absorbs a total of n
photons. The net amplitude f,,(E,X) for absorbing m
real photons is a coherent sum over all possible virtual
absorptions. In the zero-field limit we have
Fmn E,X)=fn,(E,X)S,,,. From Eq. (2.11c) we see that if
fm(E,X) has a pole at E =E,,, so does f,,,(E,X); the con-
verse is also true. Furthermore, provided that the field is
on, a pole of f,,(E,X) must give rise to a pole of f;(E,X)
at the same location on the same sheet, for all /, since all

(2.11¢)



channels are coupled together, as illustrated by the cou-
pled equations (2.6) for the harmonic components. In
summary, if f, (E,X) has a pole at E =E,, which may
move but does not disappear in the zero-field limit, we
conclude that when the field is on f,(E,X) and f,,(E,%)
have poles at E =E, +'#iw for all (integer) / and !’; in the
zero-field limit the residues of these poles vanish unless
I'=m —I. A pole of f,(E,X) at E =E, corresponds to
an outgoing-wave solution of Eqs (2.6) with complex ei-
genvalue E,.

It is important to note that the asymptotic boundary
conditions stated above apply only in the velocity gauge;
they do not apply in the length gauge since in the latter
gauge the canonical momentum is the instantaneous
momentum, not the mean momentum. [Moreover, in the
length gauge V(t) diverges in position space for r ~ .
Of course, in the velocity gauge, V' (¢) diverges in momen-
tum space for p ~ «, but it does not diverge as fast as
p?/2u.] This has important consequences'* for the for-
mulation of a time-independent treatment of multiphoton
processes.

In the Appendix we derive two different expressions for
the m-photon absorption rate f,,(E,X), one in terms of
matrix elements of the coupling V.. of the electron to the
field, the other in terms of matrix elements of the cou-
pling of the electron to the atomic potential.

C. Riemann surface and the optical theorem

We must now specify the branch of the square root of
Eq. (2.9). On the physical energy sheet we have
O=<arg(k,,)<m for all m. We draw a series of overlap-
ping branch cuts along the real energy axis, with the mth
branch cut originating at the threshold E = —m#iw (the
threshold of channel m) and extending to «. Unphysical
energy sheets are reached from the physical sheet by
paths crossing some of the branch cuts. On an unphysi-
cal sheet we have —m <arg(k,, ) <O for at least one value
of m. The physically allowed values of E are those that
lie on the real axis on the physical energy sheet. For the
remainder of this paragraph we assume that E is physi-
cally allowed. If Ny(E) is the smallest integer for which
E +Ny(E)Yiw=0, we have that k, is real and non-
negative if m = Ny(E) and that k,, is positive imaginary
if m <Ny(E); the terms in the sum on the right-hand side
of Eq. (2.10) represent outgoing scattered waves if
m = Ny(E) (open channels) and outgoing decaying waves
if m <Ny(E) (closed channels). The total probability
current radiated to infinity is, from Eq. (2.10),

fik
Jrad= 2 “

m>Ny(E)

Jaz| fn(E3)|?, 2.12)

where cross terms have been neglected since they vanish
when averaged over a macroscopically small volume. If
E is positive, k is real and positive and the first term on
the right-hand side of Eq. (2.10) represents a wave of
specified amplitude C incident from infinity. The proba-
bility current lost from the incident beam is given as the
interference between the incident wave and the radiated
wave, integrated over a surface perpendicular to §i which
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subtends a very small solid angle that includes §i. The
loss is

j,OSS=4—ZﬁIm[C"f0(E,rﬁ)] : 2.13)
where terms involving f,,(E,rli) with m=£0 have been
neglected since they average to zero over a macroscopi-
cally small volume. Since E is physically allowed, current
must be conserved and we have the optical theorem
Jrad =Jioss-

The optical theorem, which applies only for physically
allowed values of E, immediately tells us that f,,(E,X),
for m > Ny(E), cannot have a pole at a physically allowed
positive value of E, since otherwise j 4 would possess a
pole whose order would be the square of the order of the
pole contained in j, if indeed j,, contained a pole at
all. Furthermore, except in the zero-field limit, f,,(E,X)
cannot have a pole at a physically allowed positive value
of E even if m <Ny(E). This follows because, with the
field on, a pole of f,,(E,X) gives rise to a pole of f,(E,X)
at the same location on the same sheet, for all /, and in
particular [ > Ny(E), since all channels are coupled to-
gether. Of course, there would be no objection to f;(E)
having a pole on the positive physical energy axis when
1> Ny(E) if the pole were to have a vanishing residue;
this is relevant to population trapping, discussed below.
We also see from the optical theorem that, except in the
zero-field limit, there are no negative physically allowed
values of E for which the asymptotic boundary condition
(2.10) can be satisfied, since for such values k, would be
imaginary and the first term on the right-hand side of Eq.
(2.10) would be unphysical, unless C =0, in which case
fm(E,X) would have a pole on the negative physical ener-
gy axis, at E =E, —m#w say; but f,,(E,X) would also
have a pole at E =E, +l#w, all I, and we could choose /
sufficiently positive that this pole lies on the positive
physical energy axis, in contradiction with the above. Of
course, in the zero-field limit negative values of E are
physically allowed, namely, those discrete values corre-
sponding to the bound states. [In the zero-field limit the
residue of the pole of f,,(E,X) at E =E, + %o vanishes if
Is#—m because the interchannel coupling vanishes.]
When the field is turned on the bound-state poles shift off
the real axis. Furthermore, they must shift onto an un-
physical sheet, and hence become resonance poles; were
they to remain on the physical sheet we would have
Im(k,,) >0, all m, and the wave function would decay at
large distances and would not, therefore, represent an
electron escaping to infinity. Therefore the trajectories of
the bound-state poles must cross the real energy axis,
along which the branch cuts lie, to an unphysical sheet
where the energy has a negative imaginary part, —I"/2
say. (See Fig. 1.) The decay rate of the atom is I" /#, as is
evident from Eq. (2.3) which shows |W¥(¢)) decreasing
exponentially with time as exp(—TIt/2). Provided that
the bound-state poles do not move far from the real axis,
that is, provided that the imaginary part of E is small
compared to the real part, we can recover the optical
theorem by neglecting the imaginary part of E in the
evaluation of j_,4 and by equating j,,,, with T /4, the to-
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FIG. 1. Some possible trajectories (short dashed lines) of
poles of fo(E,X) in the complex E plane vs intensity. In the
zero-field limit f,(E,X) has a bound-state pole (solid circle) at
E, and a resonance pole (open circle) at E,. The straight hor-
izontal line is the real energy axis, and the short vertical lines
mark the channel thresholds, which are numbered. When the
field is turned on the bound-state pole moves off the real axis
and becomes a resonance pole; the pole which is a resonance
pole in the zero-field limit also moves. The shadow poles (open
squares) move to different positions. The solid lines are possible
paths from the physical energy axis to the poles. The dominant
pole (open circle) is closer to the physical energy axis than the
shadow poles, and can be reached by a path which does not
encircle a threshold. The long-dashed lines in (a) are example of
paths from the physical energy axis to unphysical sheets on
which there are no shadow poles. In (b) the dominant pole
(open circle) has interchanged roles with a shadow pole; the
open square was the dominant pole along the initial portion of
the trajectory before it passed to the left of the threshold of
channel 2.

tal rate of decay of the bound state. The degree to which
this modified optical theorem is satisfied is, in fact, a mea-
sure of the applicability of the Floquet ansatz to ioniza-
tion processes. !’

D. Shadow poles

In Fig. 1 we show the hypothetical behavior of a reso-
nance pole which develops from a bound-state pole as the
intensity of the field is varied. Suppose for the moment
that the field is off. In this limit f,(E,X) has a bound-
state pole on the physical sheet at E =E, —Ilfiw. We
focus on the pole of f,(E,X) at E,. (Since E, lies be-
tween the thresholds of channels 1 and 2, the atom must
absorb at least two photons to ionize, in the weak-field
limit.) Not only does f(E,X) have a pole on the physical
sheet, but this amplitude must also have a pole, at exactly
the same location E,, on the unphysical sheet reached
from the physical sheet by a path which encircles once
the ionization threshold of channel 1, crossing the branch
cut emanating from the threshold of channel 1 [so that
arg(k,) changes from /2 to —m/2]. This follows (we
borrow the argument of Eden and Taylor?) because, in
the zero-field limit, channel O is uncoupled to other chan-
nels and therefore f,(E,X) should not have a branch
point singularity at the thresholds of channels n, ns£0.
Consequently, f,(E,X) should return to its initial value
along a path which starts at E, on the physical sheet and
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ends at E, on the unphysical sheet reached by encircling
the threshold of channel 1. Using similar reasoning,
fo(E,X) should also have a pole at E, on the unphysical
sheet reached by encircling once the threshold of channel
2 [so that arg(k,) changes from O to —]; and so on ad
infinitum. Thus in the zero-field limit f,(E,X) has a
bound-state pole at E, on the physical sheet, and it has a
“shadow” pole at the same location on each unphysical
sheet on which arg(ky)=/2 (rather than —7/2). How-
ever, once the field is turned on, channel 0 becomes cou-
pled to all other channels and f,(E,X) acquires branch
point singularities at all channel thresholds. Consequent-
ly, when the field is turned on and the poles of f(E,x),
which are situated at the same point E, in the zero-field
limit, move off the real axis, they do not need to move to
the same locations on the various sheets. Hence f,(E,X),
and indeed f,,(E,X), have infinitely many poles displaced
slightly from each other and from the zero-field bound-
state pole at E,. Each of these poles is on a different un-
physical sheet. However, the pole which moves off the
physical energy axis remains, at least in the weak-field
limit, close to this axis—this is the dominant pole; the
other poles—the shadow poles—are far from the physi-
cal energy axis. Since f;(E,X) has a pole at E =E, —lfiw
in the zero-field limit, and since a pole of f;(E,X) is also a
pole of f,, (E,X) when the field is on, we can generalize
our conclusion and say that f,, (E,X), where m is an arbi-
trary integer, possesses infinitely many clusters of poles;
each cluster is centered (at least in the weak-field limit)
near a different point E =E, —Ifio and contains one
dominant pole close to the physical energy axis and
infinitely many shadow poles. The partial rate for ioniza-
tion into the mth channel, via the absorption of m
photons, is, aside from a normalization factor,
(#ik,, /1) | frn(E,X) |2, where f,,(E,X) must be evaluated
at the real physical energy E that is closest to the position
of the dominant resonance pole which develops from the
zero-field bound-state pole at E, (see the Appendix).

The same argument can be applied to poles of f,,(E,X)
which arises from resonances, rather than bound states,
in the zero-field limit. (See Fig. 1.) If, in the zero-field
limit, f;(E,X) has a resonance pole at E =E, —lfiw,
reached from the physical sheet by a path crossing the
real axis to the right of the threshold of channel /, there
are shadow poles at E =E, —I#iw on all other unphysical
sheets on which arg(k;) <0, and when the field is on these
(displaced) poles are also poles of f,,(E,X) even if m#1.

E. Conjugate poles

If there is a pole, at E =Ep say, in the lower half E
plane, there is also a “conjugate” pole at E,’ in the upper
half E plane on the same unphysical sheet. This follows
by taking the complex conjugate of Eq. (2.4), noting that
H, is real, and transforming from ¢ to —¢ +a, where a is
a constant chosen so that V(¢1)=V*(—t +a), where V(t)
is obtained from V'(t) by changing V' to VL, and it cor-
responds to reversing the sense of field polarization (the
eigenvalue spectrum is unchanged); if K denotes the
operation of complex conjugation, K|W(—¢+a)) is a
solution of Eq. (2.4), equal to (to within a constant phase



factor) exp(—iE*t/#)K|®(—t+a)). Hence if E, is an
eigenvalue, so is E;. A conjugate pole at Ep" is always
further from the physical energy axis than the pole at E,
(in the lower half E plane) since the conjugate pole can
only be reached from the physical energy axis by an addi-
tional circuit around a threshold. Conjugate poles are
therefore of little physical significance, as can also be seen
from the fact that an eigenfunction whose energy eigen-
value has a positive imaginary part increases in time. We
restrict our attention in this paper to poles lying in the
lower half E plane. The wave number k,, therefore lies
either in the upper left or lower right quadrant of the k
plane. (For the conjugate pole, k,, lies either in the
upper right or lower left quadrant.) It could happen,
however, that the trajectory of a pole crosses the real en-
ergy axis one or more times.

F. Interchange of dominant and shadow poles

Normally the real component of the shift in the energy
of a bound-state (or resonance) pole is substantially larger
than the imaginary component. If the field is of low fre-
quency, and not too strong, the decay rate of the atom,
I" /#i, will be small while the ponderomotive energy shift
P [of Eq. (2.2)] will, if the field is not too weak, be large.
In this case, shown in Fig. 1(b), a bound-state pole will
slide the distance P down the real axis past one or more
thresholds as the field is turned on. (The number of pho-
tons which the atom must absorb to ionize therefore in-
creases.®1%) This pole must actually slide down the un-
derside of the real axis because I', while small, is never-
theless finite. Therefore the pole moves onto an unphysi-
cal sheet, becoming a resonance pole, and [referring to
Fig. 1(b)] once it passes to the left of the threshold of
channel 2 it starts to more further away from the physi-
cal energy axis because it can only be reached from the
physical sheet by a path which crosses the real axis be-
tween the thresholds of channels 2 and 1. The shadow
poles also shift down the underside of the real axis (along
trajectories that are similar to but not the same as each
other). When the pole which is dominant on the right of
a threshold passes to the left, it is likely that the shadow
pole which can be reached from the physical sheet by a
path passing just to the left of this threshold will move
closer to the physical energy axis than the other pole.
This shadow pole will therefore become the dominant
pole. If the new dominant pole passes to the left of
another threshold it will interchange roles with still
another shadow pole, and so on. This is illustrated in
Fig. 1(b); the shadow pole which is reached from the
physical sheet by a path which crosses the real axis be-
tween the thresholds of channels 3 and 4 becomes the
dominant pole when the threshold of channel 3 is passed.

We must distinguish between a continuous “adiabatic”
trajectory followed in the E plane by a given pole, and
the “diabatic” trajectory which passes through whichever
pole is closest to the physical energy axis at each value of
the intensity. The diabatic trajectory may pass from one
unphysical sheet to another, and is the path on which the
dominant pole lies at each intensity; the dominant pole
need not be the same pole at all intensities. Consider a
pole which is dominant just before it passes to the left of

38 MOVEMENT AND INTERPLAY OF THE BOUND STATE, ...

6195

the threshold of channel m, but which interchanges roles
with a shadow pole when this threshold is passed. The
wave number k,, of the pole which is dominant before
the threshold is passed swings through an angle 7 /2,
from an angle slightly less than zero (we assume I is
small) to an angle slightly greater than —# /2. In con-
trast, if we consider the shadow pole which becomes the
dominant pole, k,, swings again through an angle ~/2,
but from an angle slightly less that 7 to an angle slightly
greater that 7/2. In the first case exp(ik,r) changes
from a weakly exploding outgoing wave to a strongly ex-
ploding one, while in the second case exp(ik,,r) changes
from a weakly damped ingoing wave to a strongly
damped one. Since channel m changes from an open
channel to a closed one, the component of the electron
wave function in the mth channel should change from a
wave which is outgoing at large distances to one which is
decaying. The electron must therefore follow the diabat-
ic curve, and hence jump the gap between the adiabatic
curves at the “crossing” point where these curves almost
touch. The gap is of order I'. As long as this distance is
small compared to #i/At, where At is the characteristic
time (which depends on the rate of change of intensity)
for the poles to move through the crossing point, the
electron can jump the gap. (If I' R #i/At the atom ionizes
before the threshold is passed.) Thus, in the vicinity of a
threshold, the complete electron wave function is a super-
position of two Floquet eigenfunctions whose eigenvalues
follow one or the other of the adiabatic curves, and in
principle the time-dependent coefficients for the superpo-
sition must be determined from Eq. (2.4). (This is simi-
lar'” to the situation where the laser frequency is on reso-
nance with the transition frequency between two bound
states; in that case two poles almost coalesce on the same
unphysical sheet, and the adiabatic curves lie on the same
sheet, meeting at a “‘crossing” point which corresponds
to a transition resonance rather than a threshold.) Note
that the variation of the amplitude f,,(E,X) as a thresh-
old is passed is rapid if the amplitude is evaluated along
the adiabatic curve but slow if this amplitude is evaluated
along the diabatic curve. Note also that in the neighbor-
hood of a threshold the distinction “dominant” pole loses
its meaning.

In the ultralow-frequency limit where the field becomes
a static electric field of finite amplitude w Ay/c, the pon-
deromotive shift P becomes infinite. Clearly, the energy
of a bound electron does not shift by this amount. In
fact, in this limit, the lifetime, # /T, of the atomic system
is smaller than the cycle time, 27 /w, so that it makes no
sense to speak of an energy shift, which is meaningful
only when averaged over the cycle time. In the ultralow-
frequency limit the characteristic distance I" between two
adiabatic curves at a threshold crossing point is larger
than the distance fiw between thresholds, and therefore
crossing points merge. Hence there is no well-defined di-
abatic curve along which the electron can follow a
smooth path.

Consider now a pole which is a resonance pole of
fm(E,X) in the zero-field limit, at E, —m#w say, and
which lies to the right of channel m —p, p >0, and can be
reached from the physical energy axis by a path passing
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vertically downwards from this axis between the thresh-
olds of channels m —p and m —p —1. This pole is the
dominant pole in the weak-field limit. However, if this
pole shifts to the left as the intensity increases, it might
interchange roles with a shadow pole as it shifts to the
left of the threshold of channel m —p if p > 1. This is be-
cause the shadow pole reached from the physical sheet by
a path crossing the real axis between the thresholds of
channels m —p +1 and m —p might move closer to the
physical energy axis than the resonance pole. This sha-
dow pole would then become the dominant pole, but it
might interchange roles with another shadow pole when
it passes to the left of the threshold of channel m —p +1,
if p >2, and so on until the threshold of channel m is
passed. However, once this last threshold is passed there
is unlikely to be any further interchange between a sha-
dow pole and the dominant pole. This is because the
poles of f,,(E,X) which are born from a resonance pole,
rather than a bound-state pole, of f,,(E,X), can only be
reached from the physical energy axis by paths which
cross the real axis (an odd number of times) to the right of
the threshold of channel m.!® Consequently, when the
dominant pole moves further to the left of the threshold
of channel m it actually moves further from the physical
energy axis and ceases to be physically significant. This
justifies our earlier remark that an autoionizing level
which is shifted far below the ionization threshold will
cease to be physically significant. Were an electron to be
“bound” in an autoionizing state (possibly a long-lived
state in the absence of the field) and were the resonance
pole of f,,(E,X) which corresponds to this state in the
zero-field limit to move below the threshold of channel
m, the electron would be liberated before this threshold
were reached.

It is appropriate here to mention a recent calculation'®
of the amplitude for an electron to scatter from a model
potential in the presence of a laser field. It was observed
in Ref. 19 that when interchannel coupling is neglected,
fo(E,X) acquires new bound-state poles as the laser inten-
sity increases. These new bound-state poles presumably
arise from resonance poles shifting down underneath the
positive real axis, through the threshold of channel 0, and
onto the negative physical energy axis. Such behavior is
an artifact of the neglect of interchannel coupling. A
dominant pole which develops from a resonance pole of
fm(E,%) in the zero-field limit will not normally pass
through the threshold of channel m; rather, this pole will
pass beneath the threshold, and will move further from
the physical energy axis as it shifts further downwards.!®

G. Population trapping

Suppose that in the zero-field limit f,(E,X) has a
bound-state pole at E =E, and a resonance pole not far
off the physical energy axis at E =E,, and suppose also
that Re(E,) differs from E, by nearly p#iw (with p an in-
teger). In the weak-field limit f,(E,X) acquires a pole at
E =E,+m#w (almost) on the physical energy axis and
since this pole is close to the resonance pole which ap-
pears at E,+(m —p)fio the two poles will interact
strongly and repel each other. As the laser intensity is
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FIG. 2. Some possible pole trajectories for f,(E,X) when
there is a bound-state pole close to a resonance pole in the
zero-field limit.

turned up, the pole initially at E,+m#io will move off
the real axis, but it could move back onto the real axis, to
a point E;.+m#iw say, as the intensity is turned up still
further. This is illustrated in Fig. 2(a). When this hap-
pens, the residue of the pole of f,(E,X) at E =E,. + mfiw
must vanish if m 2 Ny(E,.) since then E, +m#iw is posi-
tive (recall the optical theorem). Since f,,(E,,X) is pro-
portional to fy(E, +m#iw,X), the residue of the pole of
fm(E,X) at E =E, also vanishes if m > N(E,.), and con-
sequently no ionization takes place. This situation is
analogous to the vanishing of the photoabsorption cross
section at the Fano minimum?®?! and it gives rise to pop-
ulation trapping.?""?? If, in the weak-field limit, the reso-
nance pole at E,+(m —p)hiw lies directly below the
bound-state pole at E, +m#iw (a circumstance where the
laser frequency is tuned exactly to the Fano minimum, as
in Ref. 22) the resonance pole, through its repulsive in-
teraction, actually prevents the bound-state pole from
moving off the real axis until the laser intensity is quite
strong. A different (perhaps less likely) situation is illus-
trated in Fig. 2(b). Here it is the (zero-field) resonance
pole which moves onto the real axis when the field is
turned on. If it moves onto the real axis at the point
E,.+m#iw, the residue of the pole of f,(E,X) at
E =E,+m#io must vanish for all m 2 Ny(E,). Hence
fm(E,—p#fiw,X) vanishes for all m >Ny(E,—p#w).
Population trapping can now occur if the electron jumps
from the adiabatic eigenvalue curve that develops from
E, onto the adiabatic eigenvalue curve that develops
from E, —pfiw. In Fig. 2(c) we give an example where a
bound-state pole moves off and back onto the real axis by
passing beneath a threshold. When this happens,
E,+mfio is not on the physical energy axis if
m Z Ny(E,.), and we cannot conclude that the residue of
Sm(Ey—p#iw,X) vanishes when m > Ny(E,.—p#w); pop-



ulation trapping cannot occur unless the electron jumps
to the adiabatic curve of a shadow pole which also moves
onto the physical energy axis.

We have already noted that when a pole moves off the
physical energy axis it must move onto an unphysical
sheet. (A more rigorous argument, found in many text-
books,! goes as follows: A pole on the physical sheet cor-
responds to an eigenfunction of the Hamiltonian which is
normalizable. Therefore the Hamiltonian can be treated
as Hermitian. Hence the energy eigenvalue is real, and
therefore a pole on the physical sheet must lie on the
physical energy axis.) It follows that in Figs. 2(a) and 2(b)
the poles on the physical energy axis, at E,. and E,, can-
not cross this axis as the intensity is increased further.
Rather, these poles must turn back into the lower-half E
plane. We therefore expect their trajectories to osculate
the physical energy axis; hence we expect that a pole situ-
ated on this axis remains on this axis through first-order
variations of the intensity. This circumstance is obvious-
ly favorable to the practical realization of population
trapping; the laser intensity need not be sharply defined.

III. SAMPLE CALCULATIONS

In this section we present results of calculations of pole
trajectories, versus the field intensity, for a model one-
electron system whose atomic potential is

W(r)=[5'1e—}“r/r+[32e_k2’/r ) 3.1

Within the independent particle approximation, this
simulates the atomic potential seen by an electron in a
negative ion. We could obtain the Coulomb potential by
putting A, =A,=0, but, as noted earlier, doing this would
significantly complicate our discussion since the Coulomb
potential supports an infinite number of bound states ac-
cumulating at each channel threshold.

To solve the coupled equations (2.6) we expanded the
harmonic components (x| ¢, ) on a basis set consisting
of spherical harmonics, Y, (X), and radial Sturmian
functions Sy;(r):

SK5(r)= A, (—ikr) tle™ F (I +1—n,2] +2,—2ikr),
3.2)

where k may be complex and where the normalization
factor A4, is independent of k:

172
(n +1I)
(n—1—1)!

21+1
T+

A4, (3.3)

Projecting Egs. (2.6) onto this basis yields a matrix eigen-
value equation; an eigenvalue which is stable with respect
to changes in the basis set corresponds to a pole of
fm(E,X). We note that rather than use a complex basis
set, with k= | k| e/"2=9 we could use a real basis set,
with k= | k| e'™?, but with the Hamiltonian H,+ V (¢)
transformed®>2* by the rotation r—re’®. We prefer to
work with the real Hamiltonian and a complex basis set;
not only do we find this conceptually more appealing, it is
potentially more useful, a point we return to at the end of
this section. In all of our calculations we used a basis set
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consisting of spherical harmonics Y,y(X), with 0</ <1,
and Sturmian functions S;;(r) with 1 <n —1 <90.

The Sturmian functions are orthonormal with respect
to the weight function 1/7:

fo"’dr(1/r)s,f,,<r>s:,(r)=am . (3.4)
This orthonormality condition can be analytically contin-
ued to all complex k. Any well-behaved function of r
which vanishes as r/*! for r ~0 and behaves as r*e’*" for
r ~ oo can be expanded in terms of the S,;(r) with expan-
sion coefficients that vanish for n ~  provided that®’

| arg(x)—arg(k) | <m/2 . (3.5)

Note that we require that 0 <arg(k) <, for otherwise
the off-diagonal matrix elements of the Yukawa potential,
calculated using the Sturmian basis set, would not, ac-
cording to (3.5), vanish far off the diagonal.

The boundary condition (2.11a) implies that inequality
(3.5) must be satisfied for kK =k,,, all m, in order for the
harmonic components to be expanded on the Sturmian
basis set. This certainly cannot be fulfilled on every un-
physical energy sheet. To see this, note first that there
must exist an integer m for which arg( k,,,o) <0. [If there

did not, we would have Im(k,,) >0, all m, so we would
have a pole on the physical energy sheet and the system
would not decay.] We are interested only in resonance
poles which lie in the lower-half E plane, so that k,,,0 lies

in the lower right quadrant of the k plane, and all other
k,, lie either in the lower right or upper left quadrants.
We require the angle X between « and k"‘o in the complex

plane to be less than 7/2, according to (3.5). Hence we
require k to lie in the upper right quadrant. (See Fig. 3.)

FIG. 3. Orientation of wave numbers in the complex k plane.
Note that k,,,o lies in the lower right quadrant while k,, lies ei-

ther in the upper left or lower right quadrant. As m increases
(decreases) k,, moves towards the real (imaginary) axis.
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If k,, were to lie in the upper left quadrant for m > m,,
the angle between k,, and « would exceed m—X because
k,, moves closer to the real axis as m increases, as illus-
trated in Fig. 3. Since #—X > /2, inequality (3.5) can be
satisfied only if k,, lies in the lower right quadrant for
m >m,. For m <m, k,, may lie either in the upper left
or lower right quadrant, subject to one restriction: If
there is an my (less than mg ) such that km(,) lies in the

upper left quadrant, k,, must lie in this quadrant for all
m < mj. This follows because the angle X’ between « and

km, must be less than 7 /2, and since k,, moves closer to
0

the imaginary axis as m decreases, the angle between «
and k,, would exceed m—X'>m/2 for m <m if k,, were
to lie in the lower right quadrant. Noting this restriction,
we define m, so that my—1 is the largest integer for
which arg(k,,) is positive. In summary, our basis set al-
lows us to locate only those poles for which k,, lies in the
lower right (upper left) quadrant of the k plane when
m>mg (m <mg). These are the poles which can be
reached from the physical energy axis by a path which
crosses this axis at most once, and therefore these are the
poles of greatest physical interest.

We now discuss some results for the case where, in the
zero-field limit, W (r) does not support any bound states
but does support an s-wave (/ =0) shape resonance of
energy E,, where Re(E,)=7.6715X10"% au. and
Im(E,)=—7.0557X10"% au. In the zero-field limit
fo(E,X) has a resonance pole at E =E, on the unphysical
sheet reached by directly crossing the branch cuts be-
tween the thresholds of channels 0 and — 1 [on this sheet
arg(k,,) <0 if m >0] and it has shadow poles on all other
unphysical sheets for which arg(k;)<0. We therefore
have m, <0; we cannot locate the shadow poles on those
sheets for which arg(k,, ) >0 when m >0. In fact, in this
calculation we included only those harmonic components

| ¢, ) with channel index in the range —2<n <2, and
therefore we can only locate the dominant resonance pole
(my=0) and two shadow poles (my=—1 and —2). The
results shown in Fig. 4 would not be significantly altered
by the inclusion of more harmonic components, though,
of course, we would obtain additional shadow poles. The
trajectories of the two shadow poles are seen in Fig. 4 to
remain close together; this is a general feature, one that
we noticed in studying other resonances (corresponding
to different values of the atomic parameters) when there
is no interchange of a shadow pole and a dominant one.
The shadow poles in Fig. 4 move more swiftly, as the in-
tensity varies, than does the dominant pole, although this
is not a general feature. Note that the poles shift to the
left as the intensity increases, a general feature noted pre-
viously by Ostrovskii.> (However, exceptions to this rule
occur, for example, when the laser frequency exceeds the
smallest dipole-allowed transition frequency.?®) Thus the
real part of the quasienergy becomes increasingly nega-
tive. The large shift of the poles to the left is a conse-
quence of removing the spatially independent term in
| Ay|? from the Hamiltonian, a term whose inclusion
would result in a shift to the right of each channel thresh-
old by the ponderomotive energy P. (A significant move-
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FIG. 4. Trajectories in the complex E plane of an s-wave
dominant resonance pole (open circle) and two shadow poles
(open squares) of fo(E,X) vs laser intensity. The atomic poten-
tial is given by Eq. (3.1) of the text, with parameters (in a.u.)
Bi=—1.85, A,=2.0, B,=0.16, and A,=0.30. The laser light is
linearly polarized and of wavelength 532 nm (frequency
®=8.5645X 1072 a.u.). The results shown in Figs. 4, 5, and 8
were calculated at intensity intervals of 0.5X10'* W/cm?; we
draw lines through the calculated points to guide the eye.

ment of the trajectory relative to the real axis implies a
strong influence of the field on the “width” of the energy
and hence on the lifetime of the atomic system.) The sha-
dow poles shown in Fig. 4 shift to the left by very nearly
P; in contrast, the dominant pole, whose trajectory moves
toward the real axis, shifts by substantially less than P
(roughly half). We have not been able to follow the tra-
jectory of the dominant pole at intensities beyond 5 X 10"
W/cm?, and we do not know whether this pole actually
crosses the real axis; however, there is no reason why it
could not, since it would cross the real axis to the left of
the threshold of channel 0 and would not, therefore, pass
onto the physical sheet. It becomes difficult, even impos-
sible, to follow the path of a pole once it passes near to or
to the left of the myth threshold. This is because k,,,o

swings through an angle ~ /2, becoming almost parallel
to the negative imaginary axis in the k plane, and with
the restriction that « lies in the upper right quadrant, Eq.
(3.5) cannot be satisfied in practice. (In general, most of
the shadow poles that we can in principle observe, can in
practice be located only by choosing « nearly parallel to
either the real or imaginary axis, and then their observa-
tion is difficult.)
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FIG. 5. Trajectory of an s-wave dominant resonance pole of
fo(E,X). The atomic potential differs from the potential for Fig.
4 only in that 8,=—6.90 and B,=2.70. We included all har-
monic components with channel number in the range
—5<n <5. The light is the same as for Fig. 3.

The movement of a dominant resonance pole of
fm(E,X) towards the real axis, as the laser intensity in-
creases, appears to be a general feature when this pole is
not far to the right of the threshold of channel m.
Another, though less striking, example is shown in Fig. 5.
In this example the zero-field width is extremely small,
and the pole at first moves away from the real axis when
the field is turned on. However, as the intensity is turned
up further the pole moves back toward the real axis, a
nonperturbative feature. A possible explanation of this
behavior is the following: The imaginary part of the en-
ergy at the dominant pole is the decay rate, and this is
proportional to the available phase space. Now if the
coupling of channel m to channels m'> m is negligible,
the available phase space is proportional to the square
root of Re(E —mfiw), with E understood to be the posi-
tion of the dominant pole. The phase space, and there-
fore the decay rate,?’ vanish when Re(E) < m#io because
the square root becomes imaginary. Therefore, if the
coupling of channel m to channels m’'>m were truly
negligible, and if the dominant pole were to pass to the
left of the threshold of channel m, it would actually have
to pass through this threshold and then down the real en-
ergy axis. Taking into account interchannel coupling, the
behavior of the dominant poles shown in Figs. 4 and 5 is
not so surprising. In Fig. 5 the dominant pole does not
move much closer to the real axis than where it is in the
zero-field limit because the width in the zero-field limit is
already very small, and coupling to channels m >0
prevents the width from shrinking much further. This
pole moves to the left by very nearly (slightly less than)
the ponderomotive energy P.

This characteristic movement of a dominant resonance
pole that is not far to the right of the ionization threshold
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in the zero-field limit raises an interesting question in re-
gard to the kind of two-color experiment performed by
Trainham et al.!° In this experiment Cl~ was neutral-
ized by a relatively weak ‘‘ultraviolet” laser in the pres-
ence of a strong “infrared” laser, and the photodetach-
ment signal was measured near threshold. Does Cl~ pos-
sess a shape resonance just above the ionization thresh-
old? Although there is no evidence that it does, if such a
resonance were to exist its width would probably be quite
large so that it would not be noticed in ordinary photode-
tachment by a weak ultraviolet laser. However, a strong
infrared laser would shift the resonance down toward the
ionization threshold, and possibly below it, and at the
same time the width would shrink so that this resonance
could play a significant role in the photodetachment pro-
cess, assuming that it were of the right symmetry and did
not shift too far below the threshold.

One does not need to invoke such speculation to shed,
perhaps, some light on an interesting puzzle raised by
Trainham et al.'® In their experiment they observed that
the induced shift in the energy required to neutralize C1~
was smaller than one might expect from computing the
ponderomotive energy of a free electron in the infrared
laser. This might be due to the presence of two dominant
poles in the neighborhood of the ionization threshold. To
see this, consider first the Cl~ ion in the absence of the
infrared laser. Suppose that the ultraviolet laser is tuned
so that the energy of one high-frequency photon is
sufficient, but not by much, to photodetach the electron.
Then before the ultraviolet laser is turned on, f,(E,X)
has a bound-state pole on the physical energy axis to the
right of, and not far from, the threshold of channel 1.
This amplitude also has a shadow pole at the same posi-
tion on the unphysical sheet reached from the bound-
state pole via a path which encircles the threshold of
channel 1 in a counterclockwise sense. When the ultra-
violet laser is turned on these two poles separate, but only
very slightly because the intensity of this laser is weak.
If, now, the frequency of the ultraviolet laser is reduced,
the threshold of channel 1 moves closer to the poles and
when it is very close to the poles both of the poles are
close to the physical energy axis and are of comparable
importance. When the frequency is reduced still further,
the threshold moves to the right of the poles, the dom-
inant and shadow poles interchange roles, and photode-
tachment can no longer occur via the absorption of one
photon. Note, however, that the shadow pole which be-
comes the dominant pole as the threshold is passed is not
significant because when it becomes the dominant pole its
contribution is of second-order in smallness in the sense
that it contributes to the weak fwo-photon detachment
signal. Suppose now that instead of reducing the original
frequency of the ultraviolet laser we turn on the infrared
laser. As we increase the intensity of the powerful in-
frared laser the poles move to the left towards the thresh-
old of channel 1, and they begin to separate significantly.
Now the two poles simultaneously contribute significantly
to the photodetachment signal; the shadow pole which
crosses the threshold contributes to the nonnegligible
two-photon two-color signal. (Note that the ponderomo-
tive energy is of the same order as the average energy ab-
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sorbed by an electron in the continuum.?®) This suggests
that the analysis based on the trajectory of a single pole
should be reconsidered.

We now address the question of how we can tell wheth-
er an energy eigenvalue, which is stable with respect to
enlarging the basis set, corresponds to a dominant pole or
a shadow pole. Stated another way, how do we know
which sheet the energy eigenvalue is on? The answer is
provided by considering the allowed orientation of «.
Suppose we find an eigenvalue E which lies below the real
energy axis between the thresholds of channels I, and
l,—1. If this eigenvalue corresponds to a dominant pole
it can be directly reached from the physical energy axis
along a downward vertical path commencing on this axis
between the thresholds of channels /; and [ —1. In this
case, k,, lies in the lower right quadrant if m >1[; and in
the upper left quadrant if m <I;. This now determines
the allowed range of orientations of k: We can choose all
k for which Eq. (3.5) is satisfied with k& =k,0 and

k =k,0_l [subject to arg(x) > 0]. If the eigenvalue E real-

ly does correspond to a dominant pole, it must remain
stable as the orientation of « is varied throughout this
range. If stability is not observed in this range, E cannot
correspond to a dominant pole; it must correspond to a
shadow pole. In this case, there is an integer m, such
that k,, lies in the lower right quadrant if m >mg and in
the upper left quadrant if m <m,. The allowed range of
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FIG. 6. Stability regions for the poles shown in Fig. 4 at the
intensity 5X10'> W/cm?. The vertical axis is the real part of
the energy. The horizontal axis measures the orientation of «
relative to the positive imaginary axis. The predicted range of
stability is indicated by <. In Figs. 6, 7, and 9 we show raw
data obtained from the solution of the matrix eigenvalue equa-
tion discussed in the text.

R. M. POTVLIEGE AND ROBIN SHAKESHAFT 38

orientations of « is given by Eq. (3.5) with k =k,,,0 and
k =k,,,0_1. We choose various values of m until we ob-

serve the predicted stability for the particular mg; this
tells us on which sheet the shadow pole lies. In Fig. 6 we
show the stability regions, at a fixed laser intensity, for
the dominant pole and two shadow poles shown in Fig. 4.
In Fig. 7 we show the stability regions for three shadow
poles arising from a different s-wave resonance in the
zero-field limit. The stability regions overlap, and in
principle we ought to be able to see two poles in the over-
lap region. In practice it is difficult to see more than one
pole in the overlap region because there are numerical in-
stabilities in this region. Furthermore, the boundaries of
the various stability regions are not always respected in
our calculations; we often find the range of stability to be
either slightly wider or narrower than predicted. This is
presumably due to minor inaccuracies of the calculation
stemming from the inclusion of an insufficient number of
both spherical harmonics and harmonic components; one
consequence is that the asymptotic boundary condition
(2.11a) is not satisfied, and this in turn affects our analysis
of the stability regions.

It is particularly difficult to follow the path of a reso-
nance pole which starts as a bound-state since it does not
usually move far below the real axis before it reaches the
first threshold, and so when it does pass this threshold
k,,,0 swings very rapidly (through ~#/2). In Fig. 8 we

show the trajectory of a resonance pole, which starts as a
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FIG. 7. Stability regions at a fixed intensity for three shadow
poles born from a resonance pole which is at
E,=0.00791-0.123i in the zero-field limit. The atomic param-
eters are (in a.u.) B8, =—2.25, A,=2.0, B,=0.36, and A,=0.30.
We included all harmonic components with channel number in
the range —3 <n <3. The laser light is linearly polarized, with
wavelength 532 nm and intensity 4 X 10'* W/cm?.
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FIG. 8. “Diabatic” trajectory of the dominant resonance
pole which is born from a bound-state pole. The resonance pole
which is the dominant pole to the right of the threshold of chan-
nel 1 interchanges roles with a nearby shadow pole when it
crosses to the left of this threshold. The atomic parameters are
B1=—2.0, A,;=2.0, and B,=0. We included all harmonic com-
ponents with channel number in the range —3=<n<3. The
laser light is linearly polarized and of wavelength 532 nm (fre-
quency ©=28.5645X 1072 a.u.).

bound-state pole, up to the point where it reaches the first
threshold. We cannot follow this pole at higher intensi-
ties (25X 10" W/cm?); it changes roles with a shadow
pole. The trajectory shown to the left of the threshold is
that of the dominant pole. Note that the diabatic curve
exhibits a sharp bend at the threshold, where it passes
from one unphysical sheet to another. The sharp bend in
the adiabatic trajectory to the right of the threshold is a
consequence of the reduction in available phase space as
the threshold is approached; this was discussed above.
Stability regions at the two intensities close to the intensi-
ty where the threshold is crossed are shown in Fig. 9.

We end this article by briefly commenting on the
inadequacy of our basis. It should now be apparent that
the chief inadequacy is the failure to satisfy inequality
(3.5) for k equal to all possible k,,. This is a consequence
of choosing only one wave number « for the Sturmian
basis functions. However, we could alleviate this
difficulty by introducing two types of Sturmian basis
functions, S:{(r), i =1,2, where «; lies in the upper left
(i=1) or lower right (i =2) quadrant of the k plane.
(The method of complex coordinates does not appear to
have a similar extension since we cannot introduce two
different rotated Hamiltonians.) It might seem that such
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FIG. 9. Stability regions, at two different intensities, for the
dominant pole shown in Fig. 8, and the nearby shadow pole.
The two intensities are both very close to the intensity at which
the dominant pole crosses the threshold. In this intensity region
we are able to locate both the dominant pole and the nearby
shadow pole. (a) Intensity is slightly below the intensity at
which the threshold is passed. (b) Intensity is slightly above the
threshold intensity. In (a) the imaginary parts of the eigenval-
ues (not shown) are similar for the shadow and dominant poles,
while in (b) the imaginary parts differ by about 15%.

as basis would be overcomplete; this is not so because the
spaces spanned by the S:,’ (r) are not equivalent for
different i. For example, we can expand r exp(—pur) in
terms of the S:&(r); were we to take k; and «, along the
positive and negative imaginary axes, respectively, the
coefficients of the Sturmian functions whose wave num-
ber is k, would simply vanish. Unfortunately, there is no
orthogonality relation between Sturmian functions with
different wave number, and this significantly complicates
the calculation. Nevertheless, this is the path we shall ex-
plore in future calculations.
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APPENDIX: EXPRESSION FOR THE
ABSORPTION AMPLITUDE

The differential rate, denoted as dRy /d(}, for elec-
trons to absorb N >N, photons and emerge with mean
speed vy=#ky/p into the solid angle d{) along the
direction ky is, with | ®(¢)) properly normalized,
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dRy /dQ=vy | fy(EXky) |2 . (A1) My, =—Q2m) 3 Qr#ay /) fin(EKy) . (A4)

Here N, is the smallest integer n for which E +n#iw>0.  Putting n =N, and using Eq. (2.11c¢), it follows that

If the electrons are incident from infinity, we take E to be a 3 )

the incident free-particle energy. If, on the other hand, JW(Eky)=—(27) " Apu/2mfa), IMyy/Jolpy) . (AS)

the electrons are initially bound, we take E to be the real
energy that is closest to the complex energy E, of the
dominant pole which develops from the zero-field
bound-state pole of f(E,X). The reason we must neglect
the width I" of E, in the evaluation of the rate is that the
rate is a physical quantity, and therefore real; were we to
retain I', the speed vy would be complex on the right-
hand side of Eq. (Al). Moreover, if I' were kept we
would have Im(k,,) <0 for m > N, and, referring to the
asymptotic form (2.11a), the terms m > N, of each har-
monic component would explode exponentially for
r— o, as exp(I'r/2%v,, ) if we assume that

T <«<Re(E,)+Nofio . (A2)

This last inequality is, in fact, just the condition under
which T' can be neglected since the significant range or r
in the mth channel is of the order of the de Broglie wave-
length 1/k,,, and exp(I'r/2#v,,) is unity over this range
if (A2) is satisfied.

We now utilize Eqgs. (2.11) to derive two different ex-
pressions for the N-photon absorption amplitude,
Sn(E,X), for N5£0. We start by assuming that the atom-
ic potential W does not have a Coulomb tail. The first ex-
pression is in terms of matrix elements of the coupling
V. of the electron with the field; it remains valid if, at
the end, we let W acquire a Coulomb tail. The other ex-
pression is in term of matrix elements of W, and is valid
only if #W ~0 for r ~ . We introduce the matrix ele-
ment

My, = |(Hj—H,)|$,) , (A3)

{

where |®_ ) represents an electron which elastically
scatters from W in the absence of radiation and emerges
with momentum #%k. Note that (&g |®dg)
=al8 (k—k'), where the density of states in a narrow
energy interval is (uk /#*a?)dk. Using Green’s theorem
we can transform the volume integral of Eq. (A3) into an
integral over a surface of very large radius, and we can
evaluate this surface integral by using the asymptotic
forms of (x| ¢,) and (x| ®, ). The asymptotic form of
(x| ®g ) consists of the plane wave a,{x|k) where
(x|k) =(2m)~3%exp(ik-x), plus an ingoing scattered
wave. This ingoing scattered wave becomes outgoing
upon complex conjugation, and the product of this and
(x|¢,) yields a contribution to the surface integral
which oscillates as r varies, since (x| ¢, ) is a plane wave
with amplitude C, and wave number k, (s4ky since
N=£0) plus a superposition of outgoing waves. In fact,
the only contribution to the surface integral which does
not oscillate comes from the product of (x|ky)* and
the Nth term of (x| ¢, ), that is, the term in fy,(E,%).
Neglecting the oscillatory contributions, which average
to zero over a macroscopically small volume (provided E
is real), we find, after a little manipulation, that

If we let HI act on the bra in Eq. (A3), noting that
H, | &y )=(#k%/2u)| ® ), we obtain, on putting
n =N and using Egs. (2.6) and (2.9),

MNN=(¢‘k_N [V_ |¢N+1>+((pk_N |V, lén_1) (A6)

Equations (A5) and (A6) express the N-photon absorption
amplitude in terms of matrix elements of V' ; the expres-
sion remains valid if we now let W acquire a Coulomb
tail. We can derive an alternative expression by first con-
sidering

MNE ze

n

=—(2m) > 2rfla, /) fy(ERy) ,

i(N—n)XNJ
n

_v(pn) My, (A7a)

(A7b)

where in the second step we used Egs. (A4) and (2.11¢) to
express My, in terms of fy(E,Ky), and we observed that
the sum of J,(z)? over all n is unity. We now use Egs.
(2.5) and (A3), and the integral representation of the
Bessel function, to reexpress Eq. (A7a) as

w 27/ ik, alt)+iNot
— dte
27 Yo

MN=

x<<1>;N|(H,I_Ha)|<1>(t)>. (A8)

We replace the bra in the matrix element on the right-
hand side of Eq. (A8) by akN(kN |, since (as before) the

scattered wave in (d)k_N| does not contribute to the
nonoscillatory part of the surface integral. Noting that

[(p*/2u)+V(t)—i#id /dt]

—iky-a()—i(E + Nfio)t /%

Xe |ky)=0, (A9)

and using Eq. (2.3), we obtain
2r/w i
MNz(w/ZTr)akao dteT(ky |
X[W —V(t)—H, —i#(d /dt)']
X | W),

where f(t)=ky-a(t)+Nowt+Et/#, and where the ad-
joint of the time derivative implies this derivative acts to
the left. Integrating by parts over ¢, noting that the sur-
face term vanishes because the integrand is periodic, and
using Eq. (2.4), we arrive at

iNot +iky -a(t)

My=(0/2ma, fo”""dt e (ky | W | ®(D)

=a, 3N, _ypy)ky | W 14,) . (A10)

Combining Egs. (A7b) and (A10) we have an expression
for the N-photon absorption amplitude in terms of matrix
elements of W (but we cannot let W acquire a Coulomb
tail).



The expression for fy(E,X) obtained by combining
Eqgs. (AS5) and (A.6) is, as far as we know, new. We re-
cently used it?° to calculate rates for multiphoton ioniza-
tion of H. The expression obtained by combining Eq.
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(A7b) and (A 10) was derived earlier in a different way,!?
and was used to calculate rates for multiphoton detach-
ment of H™.
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