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Nonlinear extensions of the Dirac equation and their implications in QED

D. C. Ionescu, J. Reinhardt, B. Miiller, and W. Greiner
Institut fii r Theoretische Physik, J. W. Goethe U-niuersitat, Robert Ma-yer Str-asse 8-10,

D 600-0 Frankfurt am Main, Federal Republic of Germany

G. Soff
Gesellschaft fiir Schwerionenforschung (GSI), Planckstrasse 1, Postfach 110552, D 6100-Darmstadt, Federal Republic of Germany

(Received 23 December 1987)

We investigate the influence of additional nonlinear terms in the Dirac Lagrangian on strongly
bound electron states in heavy and superheavy atoms. Upper bounds for the coupling constants are
deduced by comparison with precision spectroscopy data in QED. We demonstrate that nonlinear
interactions may cause significant modifications of electron binding energies in superheavy quasia-
tomic systems which would not be visible in ordinary atomic-physics measurements.

In this paper we investigate the influence of additional
contact interactions of Fermi-type in the Lagrangian of
the classical Dirac field on electron binding energies in
high-Z collision systems. Let us assume the following re-
lativistically invariant Lagrange density consisting of two
parts:

X =XD+Xr =T(iy~ t)„—ey" 3„—m )iir+A(VI 4)",

where the first term Xn describes the interaction of the
spinor field + with the electromagnetic field A„which is
minimally coupled. The self-interaction term Xr is given
by bilinear covariants of the Dirac theory. The coupling
constant k has to be real in order to ensure a conserved
total probability. Let us assume A. )0 such that the
second term in (1) is attractive, and consider in the stan-
dard representation of the Dirac matrices' the cases
I, =14x4 (scalar coupling} and I i, =y" (vector coupling).
Such nonlinear interactions were studied within the last
few years because the resulting nonlinear field equations
possess solitary wave solutions of finite energy and
momentum. This property has been utilized by several
authors to generate models for extended elementary par-
ticles. Some of the extensive theoretical research work in
this field is cited in Ref. 2. We also mention that in his
attempts to construct a unified theory of elementary par-
ticles, Heisenberg proposed a nonlinear Dirac equation
for quantized spinor fields.

A second motivation of our investigations arose from
the observed sharp line structures in the spectra of posi-
trons emitted from superheavy collision systems. Similar
line structures have already been predicted in connection
with the decay of the neutral vacuum in QED. In vari-
ous experiments performed at Gesellschaft fur
Schwerionenforschung (GSI}, peaklike structures have
been discovered at impact energies close to the Coulomb
barrier, but they cannot be identified with the mechanism
of spontaneous e+ —e pair creation. For a revie~ of
the experimental status see Ref. 4.

(2)

Furthermore, if 4(x) is a solution of the variational prob-
lem, one easily obtains the following functional relation
between the total Lagrange density L and the self-
interaction part Xr from Eq. (1):

X[+]=(1 n)Xr [%—] . (3)

The total energy for stationary solutions, which is ob-
tained from the T component of the energy-momentum
tensor T", reads

A great variety of theoretical models has been pro-
posed during the past years to explain these peaklike
structures (many references of corresponding recent
theoretical work are provided in Ref. 6). It also has been
suggested that a system containing several electron-
positron pairs could explain the observed correlated emis-
sion of electrons and positrons in coincidence experi-
ments. Such a polypositronium state could be highly lo-
calized and tightly bound if one assumes the existence of
a short-range many-body interaction. Such a new non-
linear many-body force is required to be sufficiently weak
to provide negligible corrections in the ordinary atomic-
physics sector. For example, it could grow like Ap",
where p is the electronic density.

A further important contribution related to ihe new

phenomenon of spontaneous positron formation in QED
was the investigation of self-energy and vacuum polariza-
tion corrections ' and some new types of interactions be-
tween leptons in the electromagnetic field' and their
influence on electron binding energies in superheavy col-
lision systems. However, calculations displayed no
significant shift of the electron binding energies.

Since the Lagrangian (1) describes a nonrenormalizable
theory for n )—', , it must be regarded as an effective model
in the low-energy sector of a more fundamental renor-
malizable interaction. We note that the Lagrange density
(1) satisfies the relation
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E[q J= Jd'x(t+7'a, q —z)
=oif d x f f+(n —1)J d x Xt, (4)

[ly~B„—e}i' A„m+—nA(% 1% )" 'I ]%-(x)=0. (6)

We now consider the case of a spherically symmetric
electrostatic potential of a homogeneously charged
sphere, i.e., A& ——{Ao(r),0}, and construct continuous
normalizable stationary solutions of the nonlinear Dirac
equation (6) which are simultaneously eigenstates of the
total angular momentum, parity, and time evolution
operators. For these solutions we make the usual spheri-
cal separation ansatz,

ig t(r)Q' (8,q&)
t
JPl ( } P{ ~Jul ) f ( )g Ql (P )JI" r )m

(7)

where we employed the relation (2) and the separation of
the time dependence of the Dirac field 0 due to

%(t,x) =g(x)e

The frequency co represents a parameter describing the
time evolution of the spinor field O'. Note that in the
linear theory {A,=O) one has E=to

The variational principle yields, from (1), the following
field equation for the spinor field %(x):

where g t and f ta. re radial functions and Q'. (8,p) are
two-component spherical spinors defined as in Refs. 1.
They contain the angular dependence of the spinor field

o', denotes a scalar operator which ensures that the
upper and lower components in (7) have opposite parity.
Inserting the ansatz (7) into the field equation (6) yields
stationary coupled equations for scalar (S) and vector ( V)

coupling, respectively, which possess spherical symmetric
solutions only for states with j=—,

' and 1=0,1, i.e., s»2
and p»z states. Here the resulting eigenvalue equations
are separable. By inspection of the self-interaction term
in Eq. (6) we conclude that for vector coupling (I r ——y"),
only the timelike component (p=O) leads to spherically
symmetric solutions. With the substitutions

2 2

S„(g,f }=n
4m

'n —1'+ '
V„(g,f )=n

4m.

which represent the scalar (S} and vector ( V) self-
interactions, respectively, Eq. (6) in spherical coordinates
yields the following radial equations of motion for the
lowest-energy state with j=—,', m =+—,', and l =0
(fi =c = 1 ). For scalar coupling,

r

g(r)
dr f(r} =

to+ e A o( r)+—m —A,,S„

to eAo(r)+ m A—,Sn—, g (r)
2lr — f (r) (10)

For vector coupling,

g(r)
dr f (r) to+e Ao(r) A,„V—„+—N eAO(r)+A—.V. +- g(r)

2lr f (—r)

In addition to these equations we have the normalization
condition of the spinor field 4, i.e.,

Jd x + 4= J dr r [g (r)+f (r) ]=1 . (12)
0

Inserting this normalization condition into Eq. (4) we ob-
tain the following relation between the total energy E and
the eigenvalue parameter to from the systems (10) and
(11):

tions" a numerical analysis has to be performed. We
have solved the eigenvalue problem of the system of radi-
al equations (10) and (11)with the integral constraint (12)
using the general-purpose computer code COLSYS written
by Ascher, Christiansen, and Russel. ' The eigenvalue
problem has been converted into a system of ordinary
difFerentia1 equations with boundary conditions expressed
at the two end points by defining a new function N(r),

E=to+(n —1)f d x/1

=to+A, I dr r [g (r)+f (r)]" .
(4~)" ' o

(13)

N(r)= f driri[g (r&)+f (ri)],
0

which leads to the additional differentia equation

(14)

In the second term of Eq. (13) the plus and minus signs
correspond to vector ( V) and scalar (S) coupling, respec-
tively. We now solve the systems (10) and (11) for the
cases n =2 and 3 for scalar coupling and n =2 for vector
coupling. Note that vector-type self-interaction terms
with odd n would lead to theories which are not Lorentz
invariant. As it is not possible to find analytical solu-

d N(r) =r'[g'(r)+ f'(r)],
dT

with the boundary conditions at the end points

N(0)=0, N(ao)=1 . (16)

For numerical purposes the unknown frequency eigenval-
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ue co is regarded as a further independent function, satis-
fying

(17)
50

=2.3 x103

In this way we have transformed the eigenvalue problem
(10), (11), and (12} into a boundary-value problem which
is defined by the four differential equations (10), (11), (15},
and (17), with the corresponding boundary conditions
(16), together with g (0}=0, f( oo }=0.

For further investigations it is now crucial to note that
the values of the coupling constants A,, and k, are
stringently limited by the precise data frotn atomic spec-
troscopy. Therefore we have investigated the conse-
quences of the considered self-interaction terms in the
following three cases.
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The energy differences
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represent the
present agreement between experimental values and
theoretical predictions. ' From these transition energies
we deduce upper limits for the coupling constants A, . The
additional terms in Eq. (1) have no significant conse-
quences in the ordinary atomic physics up to Z=100 if
the coupling constants do not exceed the maximal al-
lowed values A. ,„ indicated in Table I. Note that in this
calculation only the self-interaction terms were con-
sidered.

Kith the determined upper bounds for the coupling
constants, we solve the systems of equations (10), (11),
(15), and (17) for K-shell electrons in superheavy atoms.
The last column in Table I indicates the influence of the
additional nonlinear terms on the energy of a K-shell
electron in the superheavy quasiatom with Z=155 for
A, =A, ,„. In the case of scalar coupling with n =3 one ob-
tains a large shift of the E-shell energy by about 200 keV.
Similar calculations have been presented in Refs. 10 and
15 for n=2. These authors also verified that first-order
perturbation theory is no longer applicable in the case of
such strong nonlinear interactions.

FIG. 1. Radial functions for the 1s&&2 state of a Z=155
quasiatorn with cubic nonlinearity. The solid curves correspond
to the nonlinear Dirac equation taking the maximal allowed
value for A,. The dashed lines indicate the radial functions of
the linear theory.

Typical shapes for the radial functions g and f are de-
picted in Fig. 1. The displayed radial functions dernon-
strate that the solutions are highly localized due to the
fact that the self-interaction terms can be regarded as ad-
ditional attractive potentials. This effect can also be
recognized in the density plot illustrated in Fig. 2. We
note that the large component

I g I
decreases, while the

small component
I f I

increases, with growing values of
the coupling constant due to the nonlinearities, such that
they become similar in shape and magnitude. For scalar
couplings with n =3 the influence of the nonlinear terms
decreases if the coupling constant exceeds a certain value,
because of the combination (g f ) in the r—adial equa-
tions (10). Hence we expect a kind of saturation in the

I I 1 I I I

4 .

TABLE I. Upper limits for the coupling constants consistent
with experimental transition energies in atoms for several non-
linear interactions. We note that the Ka transition energy in

Fm provides the most stringent limit A, ,„. The last column
indicates the 1s

&
z2-level shift in a Z= 155 quasiatom for

A. =A, ,„. The coupling constants have in natural units the di-
mension of a power of the length, i.e., [L]'"
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FIG. 2. Scalar densities in a quasiatom with Z=155 for the
lowest-energy state. The dashed line corresponds to the linear
theory {A.=O), while the solid line belongs to the nonlinear rnod-
el with cubic nonlinearity for A, =A. ,„. A, is given natural units
(n.u. ) (fi=m =c=1).
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TABLE II. Upper bounds for the coupling constants con-
sistent with precision experiments assuming a A, &E (+l 4)" in-
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FIQ. 3. The frequency eigenvalue shift h~, =~(0)—co(A. ) in
dependence on the coupling constant [n/(4n)" '] A,, in a
Z= 156 quasiatom assuming a (%'+)3 coupling.
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variation of the frequency eigenvalue co with A, , which is
presented in Fig. 3.

Figure 4 illustrates the main result of our investigation,
viz. , the influence of the scalar self-interaction (%O) on
the total energy of a K-shell electron in superheavy quasi-
atoms up to Z=190, taking the maximally allowed value
for the coupling constant k, from spectroscopic precision
experiments (see Table I). The total energies are calculat-
ed from Eq. (13).

The solid line represents the energy of the 1s,&2 state
predicted by the Dirac theory, assuming a Coulomb po-
tential of an extended nucleus where the nuclear radius
R„„,is assumed to be R„„,=1.2A ' fm. The 1s,&2 state
joins the negative-energy continuum at the critical charge
Z„;,=170. In the supercritical region the 1s-resonance

X, =A, ,E (IIII +)",
Xz——Az(+I 4)"exp(+I 4)",

(18)

(19)

X3=m %%exp
A3-

(+'P) (20)

where E denotes the electric field strength of the positive-
ly charged nucleus of the superheavy atom. In Eq. (20),
m represents the rest mass of the electron. We consider
again the two cases I, =I4„4 (scalar coupling) and
I v ——y, respectively, and calculate upper bounds for the
coupling constants A, k2, and k3 from the requirement
that the discrepancy between theoretical and experimen-
tal values of the Ka transition energy has to be less than
10 eV in the element ' Fm. The results of this calcula-
tion are presented in Tables II and III for the additional
interactions (18) and (19), respectively. Note that in case
(20) one actually has an effective density-dependent mass,
i.e.,

energies have been determined by an approximate cutofF
procedure. ' The results of our calculations for the non-
linear Dirac equation are illustrated by the dashed line.
We observe that the influence of the nonlinear interac-
tions is negligible for Z & 135. However, if the charge is
continuously increased, the modifications of the I) -shell

energy become quite significant. In this region the energy
shift amounts to about 200 keV. This indicates that
high-Z systems are quite sensitive to such types of in-
teractions.

Finally, we investigated three other more exotic in-
teractions given by the interaction Lagrangians

-5oo

-1000

m, s ——m exp — (%%')
m

i rom this, the Taylor expansion of m, z reads

(21)

-1500—

120 130 140 150 160 170 180 190

TABLE III. Upper bounds for the coupling constants con-
sistent with precision experiments assuming a
('lI 4 )"exp(%'I 4) interaction.

FIG. 4. Total energies of 1s&/2 electrons in atoms up to
Z= 190. The solid curve represents the predictions of the Dirac
theory (A, =O), while the dashed curve indicates the modified K-
shell energies due to cubic self-interaction terms A,,(%'4l), tak-
ing the maximal allowed values for A,
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2
1 ~3

m =m —A, (0+) +— (%%}+.
eff' 3 2 m

(22}

This interaction represents, in fact, a superposition of
scalar self-interactions with different even powers. We
obtained a maximally allowed value k3-2X 10 n.u. By
comparison with the maximal k, value from Table I one
can conclude that these two bounds are nearly equal.
This result verifies that higher-order terms in the expan-
sion (22) are of no importance. Only the dominant term
A 3( 4 P ) plays a major role.

Finally, we summarize the main results of our investi-
gation. We have studied the influence of additional non-
linear terms in the Dirac Lagrangian on electron binding
energies of very heavy atoms with combined nuclear
charge up to Z=190, which can be transiently formed in
heavy-ion collisions. From QED precision experiments
we determined upper bounds for the corresponding cou-
pling constants. Taking the maximally allowed values for
the coupling constants, a simple nonlinear interaction
Xt ——A,, (%'4) was found to provide a rather strong
modification of binding energies of K-shell electrons in

superheavy quasiatoms with Z&150. Such an interac-
tion causes, for all known atoms in the Periodic Table, a
negligible modification of the K-shell energy. Theoretical
investigations' have shown that the excitation probabili-
ty P„(b) of the molecular iso orbital in encounters
with impact parameter b can be represented with good
accuracy by the expression

P(b) =D(Z)exp[ Eb(—RO)ll (b)], (23)

where Et, (Ro) is the iso binding energy and Ro is the
distance of closest approach of two very heavy ions Z,
and Zz. Details on the strength function D(Z) and the
falloff constant f'(b) are given in Ref. 16. This law has
been proposed as a tool to determine the binding energies
of the 1s0 orbitals by the measurement' of the excitation
probability P„(b) as a function of the impact parameter
b for several collision systems with 128&Z&+Z2 &179.
In consequence, precision ionization measurements in su-
perheavy collision systems could further restrict the
upper bounds of such additional nonlinear interactions.
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