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Differential cross sections for secondary electron production by proton impact
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The differential cross section for ionization of atoms and molecules by proton impact is modeled
over a wide range of incident-proton and ejected-electron energies by an analytical equation. This
equation is based on the molecular promotion model at low energies and on the classical binary-
encounter approximation, modified to agree with the Bethe theory of ionization, at high energies.
Three adjustable parameters are sufficient to fit the experimental electron energy distribution at any

given impact energy. Equations are given which fit two of these parameters as a function of proton
energy over the range of 5 keV to 5 MeV. The third parameter is found to be a constant, indepen-

dent of proton energy, but its value varies somewhat from target to target. The relation of one of
these parameters to the optical oscillator strength is discussed as is the extension of the model to
multishell targets. As examples, the model is applied to fit data on molecular hydrogen, helium, and
argon. Quantities such as the stopping cross section, the average ejection energy, and the fraction of
electrons ejected with energies greater than a given value are easily calculated using this model.

I. INTRODUCTION

The process involving the greatest energy transfer dur-
ing collisions of protons with atoms or molecules is the
ejection of electrons. Such secondary electrons, if
sufficiently energetic, can themselves cause further ion-
ization. The details of this process are of obvious impor-
tance in all studies involving energy deposition by fast
ions moving through matter. Radiation damage in bio-
logical tissues and in other materials, the production of
auroras, and studies of solar and stellar processes are ex-
amples of areas in which this type of data is required.

Measurements of total electron production cross sec-
tions by proton impact have been made at many labora-
tories starting in 1949. These data have recently been
compiled and evaluated by Rudd et al. ' Comprehensive
measurements of differential cross sections for this pro-
cess, however, have been made only by a few groups
starting in the early 1960s. These were measurements of
the angular and energy distributions of electrons ejected
during the collisions. Such doubly differential cross sec-
tions (DDCS's) can be integrated over angle to obtain the
singly differential cross sections (SDCS's) which are the
focus of the present work. While the general agreement
between the various groups measuring DDCS's is fairly
good, there are sizable discrepancies in some ranges of
parameters. Low-energy electrons (below about 10 eV)
are especially difficult to control and measure accurately
and therefore large discrepancies appear among the data
in that region. One purpose of the present study is to
provide a basis for settling such disagreements and to
provide recommended values for the SDCS for a variety
of targets.

Attempts to calculate these cross sections theoretically
date back at least to 1912. Besides the classical binary
encounter approximation (BEA) (Refs. 2—7) and the Born
approximation, ' Monte Carlo methods" ' have also
been employed to obtain differential cross sections. Al-

though each of these methods has had some success, they
are all limited to high projectile velocities, i.e., velocities
greater than the orbital velocity of the electrons in the
target atoms. The Born approximation also requires ac-
curate knowledge of the initial and final-state wave func-
tions, a requirement which is difficult to meet except for
the simplest monatomic targets.

Miller and co-workers' ' have developed a sem-
iempirical model for the SDCS based on the Bethe theory
of energy loss. The soft-collision component of the cross
section is calculated from photoionization data and the
hard-collision component is obtained by subtracting the
soft-collision part from the experimental data at one pro-
ton energy. This component is merged into the BEA
cross sections at the highest electron energies. This mod-
el has proved useful for both electron and ion impact but
it, too, is applicable only for fast projectiles.

Recently Inokuti et al. ' introduced a model, based on
the Bethe theory, for the secondary electron spectra from
collisions of charged particles with atoms and molecules.
In this model the Bethe parameter dependence on elec-
tron energy is fitted by polynomial expressions with
twelve adjustable fitting parameters. This model applies
only to high-energy collisions for which the ejected elec-
tron energy is not too great.

In the low-velocity region the most promising theoreti-
cal method is the molecular promotion model of Fano
and Lichten. ' The only application of this model to the
calculation of SDCS's is that of Rudd' who with Macek
derived an exponential dependence of the cross section on
the secondary electron energy. However, this model did
not yield absolute values of the SDCS and the relative
values had discrepancies as large as a factor of 2.

In the present paper a simple analytical expression is
developed which is based on the BEA, the Bethe approxi-
mation, and on the molecular promotion model. With
three adjustable fitting parameters it is possible to fit the
SDCS's for all electron energies at a single proton energy.
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One of these three parameters is approximately indepen-
dent of proton energy for a given target. A study of the
variation of the other two parameters with proton energy
allows a connection to be made to the generalized oscilla-
tor strength at high energy and with the parameters
describing the total cross-section dependence on proton
energy' at low energy. A report on a preliminary version
of this model was presented earlier.

In addition to the adjustable parameters, the model re-
quires knowledge of the number of electrons in each sub-
shell of the target atom and their binding energies. In the
case of targets with more than one subshell, the partial
cross sections for the various subshells are calculated sep-
arately and added.

The present model allows users to make rapid calcula-
tions of needed cross sections at any combination of pro-
jectile and secondary electron energy. Knowing the
fitting parameters for a given target allows one to easily
calculate not only SDCS's, but also, by integration, such
quantities as the total electron ejection cross section, the
stopping cross section due to ionization, the average
ejected electron energy, and the fraction of electrons
ejected with energies greater than the binding energy.
Since the model provides a compact expression describ-
ing the systematics of secondary electron production, it
may also prove helpful in developing new theoretical ap-
proaches to the calculation of cross sections.

In Sec. II the model is developed by combining previ-
ous collision models. Before fitting the model to the ex-
perimental data, the measured SDCS's were adjusted so
that their integral agreed with accepted values of the to-
tal cross section. This adjustment is discussed in Sec. III.
In Sec. IV the process of fitting the model to each energy
spectrum is described and in Sec. V the fitting of the pa-
rameters as a function of proton energy is considered.
Approximate equations for the integral of the SDCS's are
given in Sec. VI where the relation of one of the parame-
ters to the generalized oscillator strength is shown. Mul-
tishell targets are discussed in Sec. VII and a calculation
of quantities derived from the cross sections are given in
Sec. VIII. Section IX discusses the extension of this
model for use with other projectiles.

II. DEVELOPMENT OF THE MODEL

A. Large primary energies

Consider first a one-electron atom with a binding ener-

gy R (=13.6 eV). The BEA equation for low ejected-
electron energies may be written

o ( W}=4mauR [f,(T)+fi(T)W]l( W+R), (1)

where f, (T)=7R/3T and fz(T)=1/T. Wis the ejected
electron energy, T is the proton energy E divided by A.,
the ratio of the mass of the projectile to the electron
mass, and ao is the radius of the first Bohr orbit. This
equation, first given by Williams in 1927, was an im-
provement on the earlier calculation of Thomson in that
it took account of the motion of the electron in the tar-
get. However, Williams incorrectly assumed that all ejec-
tion angles were available to the outgoing electron re-

where g, (W)=(1/E)dfldE, E =W+R, dfldE is the
differential optical oscillator strength, and cE is a func-
tion of W. The quantity g, ( W) ln(4cz) can be renamed

g2( W) yielding

o ( W) =4m a uR [g i ( W) ln( T/R ) /T+
g 2( W) /T

+gi(W)/T ] . (2)

Equations (1) and (2) can both be satisfied by choosing
somewhat different expressions for f, and f2, namely,

fi(T)=(A&R lT) ln(T/R)

and

f2(T)= A~/T+B2R lT
(3)

where A&, A2, and B2 are dimensionless constants, and

by setting

and

gi(W)= AiR/(W+R)

g2( W) = A2 W/( W+R)

g 3 B2R W/( W——+R)3

(4)

Equation (1) can be generalized slightly to hold for the
ionization of an atomic subshell with 1V electrons and a
binding energy I. At the same time, we introduce the di-
mensionless quantities w = W/I, the reduced electron en-

ergy, and u =(T/I)'~, the reduced projectile velocity.
Then Eq. (1) becomes

cr(w) =(S/I)(F, +F,w)/(1+ w)',

where S =4na+(R/I) and where F, and F2 are func-
tions of u which reduce to f, /R and f2 in the high-

energy limit.
Equation (5) indicates that a plot of (1+w)3o(w)

versus w should be a straight line with a slope of F2 and
an intercept of Fig. 1. Figure 1 shows for the example of
500-keV H++Hz that this prediction is realized up to a
cutoff energy w, =W, /I Beyond tha.t point the cross
section follows a different dependence.

The origin of the cutoff energy can be understood on
the basis of the BEA in which the proton is assumed to
collide only with the electron. For such a collision,
momentum and energy conservation dictate that above a
certain ejection energy the range of possible recoil angles
begins to be restricted causing a rapid drop in the cross
section. BEA theory gives W, =4T y(IT)'~ for this—
cutoff energy with @=4. However, experimentally we
find that y=2 fits the data much more closely. In our
notation, then, the cutoff is at w, =4U —2U. As the im-

pact energy decreases, the cutoff energy decreases and
eventually the region above the cutoff encompasses the

gardless of the energy transfer, a mistake that subsequent
authors corrected. In the present model this correc-
tion is made in a different way.

Bethe's treatment of the Born approximation ' yields

o(W}=4vrauR [g&( W) ln(4cF T/R)/T+g3( W}/T ],
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FIG. 1. Plots of cross section multiplied by (1+w)' to show
linear dependence up to the cutoff energy. Data are for 500-keV
proton collisions with H2 (Ref. 22).

FIG. 2. Schematic correlation diagram showing the electron
transfer transition, molecular promotion, and transition into the
continuum. r is the internuclear separation.

entire energy range of ejected electrons.
Above the cutoff experiment yields a nearly exponen-

tial decrease in the cross section. The logarithmic slope
in this region is found to vary with impact energy in a
systematic way such that the cross section has an
exp[ —a(w —w, )/v] dependence where a is a dimension-
less constant near unity. The value of a varies from 0.6
to 0.9, varying slightly from target to target. This factor
can be combined with the expression in Eq. (5) by writing

o ( w) = (S/I)(F, +F2w )(1+w)

+exp2x&) and P2=1/(1+exp2xz) where x, =lhE, /
2fiuz and xz = l (bE2+ W)/2fiu ) and where uz is the pro-
ton velocity and l is a characteristic length approximately
equal to the diameter of the atomic shell. We set
l =2aza(R/I)'~ where a is a dimensionless length pa-
rameter near unity which will be identified with the a in
Eq. (6). Also vp =uo( T/R)'~ where vo is the velocity as-
sociated with the first Bohr orbit. Then using the rela-
tion 2Rao =AUD the probabilities may be written
P, =1/(1+expaw, /v) and P2=1/[1+expa(w+w2)/
u]. The cross section for the entire process is then

X [1+exp[a(w —w, )/v]I (6) cr( w) =o Rc(u)P, ( v)P2( w, u),

For w ((w, this reduces to Eq. (5). For w »w, the ex-
ponential factor dominates the cross section.

B. Small primary energies

Rudd' and Macek applied the molecular promotion
model to obtain an equation for the SDCS at small im-
pact energies. This was derived from Meyerhof's expres-
sion for transition probabilities which was based on
Demkov's treatment of charge transfer.

Referring to the schematic correlation diagram in Fig.
2, during a collision there is first an electron capture tran-
sition, H++X~H+X+ involving an energy difference
AEI followed by a promotion through a rotational cou-
pling to an excited state of H. A subsequent transition
into the continuum takes place with an energy difference
bE2+8' where 8' is the kinetic energy of the ejected
electron. The energy differences are given approximately
by 4E )

=I —R and EEL =R /4.
We define w, =hE, /I =1—R /I and w2 =EEL/I

—=R /4I and also note that if I & R, the curves must cross
and so w, =0. Application of the Meyerhof equation to
the two transitions yields the probabilities P, = 1/( 1

where ozc is the rotational coupling cross section. The
form of P2 is very similar to that of the factor in Eq. (6)
containing the exponential. They would be identical if
w, ~—w2 at low energies and if w, ~4U —2v at high en-
ergies. These conditions can both be satisfied simply by
setting

w~ =4v 2U w2

Then the factor which describes the high-energy behavior
above the cutofF merges into the probability P2(w, u) at
low impact energies. Since o.Rc is an unknown function
of u, it is simply absorbed into the other factors of Eq. (6)
along with P& (u). The final form of the model equation is
then

o(w) =(S/I)[F, (v)+F2(v)w](1+w)

X [1+exp[a(w —w, )/u])

with w, given by Eq. (g).
It is also possible that transitions into the continuum

take place at or near the distance of closest approach.
This would not change the results except to increase
slightly the value of w2.
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III. ADJUSTMENT OF DATA

DDCS's have been measured for a variety of targets
and proton energies. For helium and argon there are
compilations in the literature. ' These data sets have
also been integrated over angle to yield the SDCS's
differential in ejected electron energy which are of in-
terest here. These, in turn, can be integrated over elec-
tron energy to yield the total electron ejection cross sec-
tions o = f o"o( W)dW. This is a good check on the ac-
curacy of the DDCS and SDCS data since recommended
values of o are available' for a large number of tar-
gets over wide energy ranges. The experimental SDCS's
at each impact energy were adjusted so that the integral
of each one matched the corresponding 0 cross section
given in Ref. 1 before Eq. (9) was fitted to it.

Two methods of adjustment were used, the first being a
simple multiplication of all SDCS's in a data set by the
same factor. However, in most data sets the cross sec-
tions for low ejected electron energies have a larger un-
certainty than those for intermediate and high electron
energies. For such data sets, a larger adjustment was
made in the low-energy region. In this case, adjusted
cross sections cr( W} were calculated from the equation:

o ( W) /0 „(W) = [ I +K, cr „(W) /cr „(0)]' ~ c —1,
where 0 „(W) is the unadjusted value and o„(0) is the
cross section at the lowest energy in the data set. E, is
chosen to make the integral equal to the tabulated total
cross section. A judgment had to be made concerning
which method of adjustment to use for a particular data
set based on the relative uncertainties in the different en-
ergy ranges. Most of the data sets from the Pacific
Northwest Laboratory, ~ ' ' for example, were taken us-
ing time-of-flight methods at low electron energy and
therefore have a nearly constant accuracy over the entire
energy range while data taken with electrostatic
analyzers are usually less accurate at low energies. In ei-
ther case, data below 2 eV were considered to have too
large an uncertainty to use in the fitting.

IV. FITTING TO THE DATA

Equation (9) was fitted to a data set at a given proton
energy using F„F2, and a as adjustable fitting parame-
ters. A nonlinear least-squares fitting routine was adapt-
ed from the CURFIT program of Bevington which is
based on Marquardt's method. Data for molecular hy-
drogen from 20 runs at 16 different proton energies were
fitted in this way taking X =2 and I =15.4 eV. At some
of the higher impact energies the entire range of the data
falls below the cutoff w, making a determination of the
values of a impossible for those energies. The average
deviation for the fits was 9% while the uncertainty in the
experimental data itself was 15—20%. Figure 3 shows
typical fits for five of the proton energies. In this graph
the dimensionless quantity log&0(I/S)(1+w) u(w) was
plotted versus log, ow/U. The factor (1+w} reduces the
range of variation of the cross sections which, for some
runs, was as great as six orders of magnitude. Figure 4
shows the variation of the three fitting parameters with
proton energy.
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Helium data from 38 runs done at five different labora-
tories at energies from 5 to 5000 keV were also fitted us-
ing N =2 and I =24.6 eV yielding an average deviation
of Ilgo. In Fig. 5 samples of the data for helium are
shown along with the model calculations. For cornpar-
ison the results of a calculation using the distorted-wave
Born approximation (DWBA) (Ref. 10) are also plotted.
While the DWBA describes the high-energy cross sec-
tions accurately, the discrepancy increases as the proton
energy decreases.

!
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o
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FIG. 4. Variation of the three fitting parameters with proton
energy for hydrogen.

FIG. 3. Fit of the model to electron energy distributions for
protons on molecular hydrogen. Cross sections are multiplied
by (I/S)(1+ m)2. The crosses are the unadjusted and the circles
the adjusted experimental data (Refs. 19, 22, and 30). The lines
are the model calculations.
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The model does not include Auger or autoionization
electrons nor any contribution due to the mechanism of
electron capture to the continuum. This latter mecha-
nism causes a small additional peak in the cross-section
curve at an electron velocity equal to the proton velocity;
a peak which is noticeable in the 100-keV curves in Figs.
3 and 5, for example. The vertical arrows indicate the ex-
pected positions of the peaks. Since the effect of this
mechanism is most pronounced at small angles, the peak
is more prominent in the data of Gibson and Reid, ' Fig.
6, whose data extends to O'. In the other data sets the
smallest angle measured was 10' or 15'. The tendency of
the peaks to be centered at slightly lower than expected
energies may be due in part to the range of angles includ-
ed.

V. FITTING F, (v) AND F (v)

10 100
w(ev)

1000

As seen in Fig. 4, the parameter a varies only slightly
over the entire range of impact energies and was taken to
be a constant for any one target. The fitting parameters
F& and F2, however, vary with impact energy so those
parameters themselves should be describable by functions
of v. They were fitted by the equations

FIG. 5. Energy spectra of electrons from proton-helium col-
lisions. Circles are the adjusted experimental data (Ref. 25);
dashed lines are calculated cross sections using the distorted-
wave Born approximation. Solid lines are the model calcula-
tions with F, and F2 calculated from Eq. (10). The arrow shows
the expected position of the peak due to electron transfer to the
continuum.

40
0

o~

F, =L, +H, and F,=L,H, /(L, +H, ),
where

H
~

= A t ln( 1+v ) /( v +8
&

/v ),
Hz = A2/v +82/v

Dl (D, +4) D~L, =C~v '/(1+E, v
'

) and L2=C2v

In the high-energy limit these expressions reduce to f, /R
and to f2 in Eq. (3). A„. . . , E, and Az, . . . , D2 plus a
are the ten basic fitting parameters for each target. Some
of these parameters can be related to better-known quan-
tities as will be shown. The fits to these equations for hy-
drogen are shown in Fig. 4. The values of the basic pa-
rameters for three target gases are given in Table I. If in-
stead of adjusting F„F2, and a for the best fit for each
experimental data set, we take a to be the average of the

-100k
TABLE I. Values of the basic parameters.

Hydrogen Helium Argon Inner shells'

0.1 10

FIG. 6. Fit of the model to differential cross section data for
protons on hydrogen. The circles are the adjusted data of Gib-
son and Reid (Ref. 31). The line is the model calculation using
parameters from Eq. (10). The vertical arrows indicate the ex-
pected positions of the electron transfer to the continuum peak.

A)
Bl
Cl
DI

A2

Bp
C2
D2
a

0.80
2.9
0.86
1.48
7.0
1.06
4.2
1.39
0.48
0.87
0.80

'Approximate values.
Value of A, from Eq. (15).

1.00
3.3
1.31
2.1

1.92
0.84
5.0
0.84
1.04
0.86
0.89

1.10
1.50
1.84
0.78
8.1

1.20
0.10
1.15
0.74
0.72
1.20

1.25
0.5
2.0
2.0
3.0
1.1
1.3
1.0
0.3
0.62
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fitted values and calculate F, and F2 from Eq. (10), the
deviations from experiment are somewhat greater but
still generally within the experimental uncertainty.

generalized oscillator strength obtained from photoion-
ization experiments as shown in Ref. 1. A comparison of
Eqs. (13) and (14) yields

VI. INTEGRATION OF THE MODEL EQUATION Ai =2AI/NR . (15)

The SDCS given by Eq. (9) may be integrated numeri-
cally over the ejected electron energy to obtain the total
electron ejection cross sections cr . It may be integrated
analytically by making approximations. One way to do
this is to set

The comparison could also provide an expression for A z

but the quantities 8 from Ref. 1 and A 2 in this model are
both affected by the rest of the equation in different ways
and therefore are not comparable. A different relation
for A2 will be derived in Sec. VIII.

o =Sf (F, +F2w)(1+J 'expa'w/u) 'dw if w, ~0,
0

where a'=a+3v and J =exp(aw, /v). The second part
of the second integral cannot be done exactly, but an ap-
proximation based on the first term of an expansion will
suSce for this purpose. The result is

o =SI w, (1+w, ) [w, (F)+F2)/2+F)]

+(v/a')[FR+F2(v la' w, )]—
X ln(1+J exp —a'w, /u)j for w, ~0

and (12)

a =S(v/a')(F&+F2u la') ln(1+ J) for w, ~0 .

This expression gives a total cross section which agrees
very well with that obtained by numerical integration at
high energies and reasonably well at low energies. In the
intermediate energy region there are discrepancies on the
order of 25%%uo.

A. High-energy asymptotic expression

At large proton energies, a considerable simplification
in Eq. (12} results. From Eqs. (8) and (10),
F, = A

&
ln(u )lu, Fz= A2/u, and w, =4u when

u ))1, so Eq. (12) reduces to

o =(S/2v )[A, ln(u )+ A2] .

To compare with the Bethe equation this may be rewrit-
ten in different notation:

o =(2maoNR /IT)[A, ln(T/R)+ A, ln(R/I)+ A2] .

(13)

The high-energy limit of the fitting equation used for the
total cross sections by Rudd et al. ' was

cr =(4ma+~ /T)[ A 1n(T/R)+B), (14)

where A and 8 are two of the four fitting parameters
used in that compilation. This equation is equivalent to
the Bethe equation and the quantity A is identical to the

cr =Sf (F, +F2w)(1+ w) dw
0

+Sf (F, +Fz )(1+J ' expa'w/u) 'dw
C

if w, ~O,
and

VII. MULTISHELL TARGETS

Targets with more than one shell can be treated by cal-
culating the partial cross section for each subshell
characterized by its own N; and I;, and adding the contri-
butions to obtain the SDCS. Then Eq. (9) becomes

o(w)= g(S;/I, )(F„+F2;w, )(1+w, )

X [1+exp[a;(w; —w„)/v;]j (16)

The other equations are modified in an obvious way by
summing over i and subscripting the variables I, v, w, w„
F~, F2, and a. In Eq. (5} NR /I is replaced by

X; N;R/I;.
Unfortunately, experimental data on ejection of elec-

trons from individual shells of multishell atoms or mole-
cules are very limited. Some o. data exist, but no
SDCS's have been measured. Sarkadi et al. have mea-
sured angular distributions of electrons from the L shell
of argon but only at three electron energies and one pro-
ton energy. In the absence of such data there is no direct
way to determine the values of the basic parameters
A], . . . , D2 and a for the separate shells. However,
some progress can be made in a less direct way.

Electrons from the the outermost subshell are the least
tightly bound and usually dominate the SDCS except at

B. Low-energy asymptotic expression

1 2For v &&1, w, = —wz, F~=C&v ', F2=C2v ', and
a'=a. Then, Eq. (12) reduces to

(Di+1) (D~+1)
o =4maoa 'N(R/I) (C, u

' +C2v '
)

Xexp( —awz/u) .

Since w2 is small, the exponential factor does not differ
much from unity except at very low projectile energies.
If that factor is neglected, this expression can be com-
pared to the low-energy expression for the total cross sec-
tion given in Ref. 1 which is o =4maoC(T/R) where
C and D are tabulated for various targets. This cornpar-
ison is not sufhcient to determine values of C&, Cz, D&,
and D2, but an important condition can be obtained,
namely, that D, 2D —1 and D2 2D —2. In fitting the
parameters F, and F2, the data often do not extend to a
low enough energy to determine D, and D2 accurately
and so in some cases the fits have been adjusted to con-
form to these conditions using the values of D from Ref.
1.
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the higher electron energies where inner-shell electrons
become relatively more important. We divide the inner
subshells of a given atom or molecule into two categories;
(a) those subshells which are not much different in bind-
ing energy from the outermost shell and (b) deeper inner
shells. The boundary between these two categories was
arbitrarily taken to be at a binding energy equal to two
times the outermost subshell binding energy. The less
tightly bound inner shells probably do not differ greatly
in the values of the basic parameters from the outermost
subshell, so as an approximation the same values of those
parameters are used. Most of the subshells of molecular
targets fall into this category as well as the outer s shells
of the rare gases.

On the other hand, the deeper inner shells are relative-
ly independent of the outer-shell configurations and are
similar from target to target. Garcia has shown, e.g. ,
using x-ray data, that the total cross sections for K- and
L-shell ionization of heavy atom targets by protons fol-
low a universal curve when I rr is plotted versus El%I
(which is v in the notation of this paper). Stolterfoht
and Schneider and others have also shown this from
Auger electron data for gases. Basbas et al. starting
from the plane-wave Born approximation, arrived at
essentially the same universal curve but went on to im-
prove the scaling by adding corrections for the change in
effective binding energy at low energies and for nuclear
Coulomb defiection of the projectile path. For the
present purposes, we will not take these latter refinements
into account.

The present model also predicts a universal curve for
the deep inner shells with large binding energies. Since
I &&R for such shells, w2=0 and w, =4v —2v. So for
deep inner shells w, is a function only of v and depends
on the binding energy I only through v. Then from Eq.
(12) we can see that the cross section o multiplied by
I /N is a function only of v provided that F„Fz,and the
constant a are independent of the target. As seen in Fig.
7, F, and F2 are nearly independent of the target for high
velocities although there are some variations at low ve-

TABLE II. Values of N and I for argon.

Subshell

3p
3$

2$ +2p

I (eV)

15.8
29.2

263

02 —
qp

0.02 = 3

0.002—
OJ

2
0.0002

(f)

locities. For deep inner shells the variations are likely to
be even smaller. Thus the present model also predicts a
universal curve for ejection of electrons from deep inner
shells.

Estimated values of some of the basic parameters for
inner shells were obtained from the SDCS data on ar-
gon where, at some proton energies, cross sections were
measured at a high enough electron energy that the con-
tribution from the n =2 shell dominates. Unfortunately,
fitting the model in this restricted region was not
sufficient to determine all ten parameters, but estimates of
the others could be made by choosing them so as to agree
with the universal curve of total inner-shell cross sec-
tions. The rough approximate values of the inner-shell
basic parameters obtained this way are given in Table I.
If SDCS data for ejection of inner shell electrons become
available in the future, these parameters can be deter-
mined with greater accuracy.

Using these inner-shell parameters, calculations have
been made for argon. The values of N; and I; used are

Fi (x)0 0.02-

o -1-
O

0.002—

0.0002
i W]/ Vi

0.05
I

0.5
I

V2

I

50 500

FIG. 7. Values of the parameters F& and F, vs the reduced
projectile velocity squared for hydrogen (solid line), helium
(long-dashed line), and argon (short-dashed line).

FIG. 8. Fit of the model to differential cross section data for
protons on argon. Contributions from the 3p, 3s, and the
2p+2s subshells are shown along with the total. Circles, data
of Rudd (Ref. 26); triangles, data of Crooks and Rudd (Ref. 26);
crosses, data of Criswell and Toburen (Ref. 26, 50 keV) and of
Toburen (Ref. 26, 300 keV); squares, data of Gabler et al. (Ref.
26).
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given in Table II. A weighted average of the values of I
for the 2p and 2s subshells was used. The results are
given in Fig. 8 for two proton energies which show the
contributions from these subshells along with the total
compared to the experimental values. For argon, the 3p
shell contribution is dominant at the lower electron ener-
gies, and the 3s shell makes only a minor contribution
since it contains only two electrons, but, as noted above,
the relative contribution from the 2p and 2s subshells in-
creases at higher energies, eventually becoming dom-
inant. While the 2s+2p contribution is underestimated
at 50 keV, the agreement is quite good at 300 keV.

10
OJ

O

1

VIII. APPLICATIONS

The availability of a model of the SDCS such as the
present one enables one to make calculations of a number
of quantities which are of interest in a variety of applica-
tions. The average ejected electron energy W,„,the stop-
ping cross section due to ionization o „,and the fraction

fr of ejected electrons with sufficient energy to cause fur-
ther ionization are defined in terms of the SDCS:

50 500
E(kevj

5000

FIG. 9. Stopping cross sections for three targets. Dashed
lines, stopping cross section contributed by ionization as calcu-
lated from the model; solid lines, total stopping cross sections
(Ref. 36).

ost=(1 /R) f (W+I)o(W)dW, (17)

and

W,„=(1/o )f Wo( W)dW,
0

f~=(1/o )f a(W)dW .
I

(18)

(19)

Values for these quantities may be obtained from numeri-
cal integration of the cross sections or by approximation
equations derived in a manner similar to that used for Eq.
(11}.For the stopping cross section the result of such an
approximation is

o„=(SI/R)[(Fi F2)w, (l+w—, ) '+F2 ln(1+w, )

+(v/a")(F, +F2v/a") ln(1+exp —2w, )]

Values of the stopping cross sections for the three tar-
gets calculated from . (17) are shown in Fig. 9 along
with measured values. Ionization is expected to con-
tribute 78—85% of the total stopping cross section for hy-
drogen above about 300 keV. As seen in the figure, the
present model yields values of o„at high energies which
are 83% of the total for Hz, 81% for He, and 87% for
Ar, in very good agreement with expectations.

The average energy calculated from Eq. (18) for the
three targets is shown in Fig. 10. This quantity increases
with impact energy until the reduced velocity v is approx-
imately unity. For hydrogen and helium it is nearly con-
stant at higher energies but is still rising for argon at 5

and

for w, &0

(20)

o„=(SI/R)(v/a")(F, +F2u/a") ln(1+ J) for w, ~0,
where

J=exp(aw, /v) and a"=a+2u .

For U ))1 this reduces to
CP
O

o„=4mao(RN/T)( A, + Az) ln(T/R),

where N = g; N;. This may be compared to the Bethe
result '

o„=8~ao(RN/T) ln(T/R),
50

E(keV)
5000

yielding the important condition on the basic parameters
A &+ A2 =2. In Table I it may be seen for the three tar-
gets studied that this condition is approximately satisfied.
Alternatively, A2 could be obtained from this equation
after A

&
is found from the generalized oscillator strength

using Eq. (15}.

FIG. 10. Top: calculations from the model of the fraction of
electrons ejected with energies greater than the Srst ionization
potential; scale on the left. Bottom: average ejection energies
for three targets calculated from the model; scale on the right.
Solid lines, hydrogen; 1ong-dashed lines, helium, short-dashed
lines, argon.



38 DIFFERENTIAL CROSS SECTIONS FOR SECONDARY. . . 6137

MeV because of the influence of inner shells.
An unexpected feature of the curves of ft, calculated

from Eq. (19) and shown in Fig. 10, is that the fraction of
electrons ejected with an energy above the first ionization
potential actually decreases with impact energy above
U =1.

IX. EXTENSIONS OF THE MODEL

The model is also applicable to impact by any other
bare nucleus. If Z scaling is applicable, the calculation
is particularly simple. Such scaling has been found by
Toburen and %"ilson to hold for 300-2000-keV
He ++Ar collisions over most of the range of parame-
ters studied. A discrepancy at small angles and at ejected
electron velocities close to the projectile velocity is due to
electron transfer to the continuum. Their SDCS data are
fitted quite well by the present model without further ad-
justment except for the discrepancy at the equal velocity
point already noted. The model is not appropriate for
collisions by projectiles carrying electrons since there is
no provision in it for electrons ejected from the projectile.

It appears from preliminary work that this model can
also be applied to electron impact. In that case, of
course, there is no promotion mechanism so the factor in-
volving the exponential is not present. Additional effort
in this direction is underway.

X. CONCLUSIONS

A model has been developed which describes the cross
section for production of electrons by proton impact on
atoms or molecules over a wide range of proton and eject-
ed electron energies. It is based on the promotion model
at low impact energies but merges continuously into an
expression at high energies which is consistent with the
Bethe theory. In multishell atoms and molecules the con-
tribution from each subshell is computed from the values
of N, the number of electrons and I, the binding energy
for that subshell. The average deviations of the model
from experimental values are generally within the experi-
mental uncertainty of the measurements. Integration of
the SDCS calculations in various ways by numerical
methods or by approximations yield average ejected elec-
tron energies, stopping cross sections due to ionization,
and fractions of electrons ejected in a given energy range.
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