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The double-scattering mechanism of Thomas represents the dominant means in an ion-atom col-
lision at high velocities for the electron-projectile subsystem to rid itself of its large internal kinetic
energy and thus allow the electron to be captured. The plane-wave second Born approximation to
the single-electron capture amplitude calculated in a linearized-propagator approximation gives the
lowest-order quantum estimate of the Thomas mechanism by employing initial and final bound-state
momentum values around the center of these distributions along with a neglect of the electronic
part of the momentum transfer in the two collisions of the mechanism. It is shown that additional
contributions to the amplitude deriving from values of the bound-state momentum in the wings of
the distributions are non-negligible and in fact explain the large differences found between exact and
linearized-propagator approximation results. Consequently, the second Born approximation is seen
to su8'er from the same problem as does the first Born approximation, namely, too dominant a con-
tribution of the large bound-state momentum components.

I. INTRODUCTION

The plane-wave second Born approximation to the
single-electron capture amplitude has been analyzed in
great depth, notably in connection with second-order
singularities of which the most well known is the Thomas
peak' at forward-scattering angles. Starting with the
full amplitude including the internuclear potential, one
can show to the order of the electron mass over heavy-
particle masses that the sum of all the internuclear terms
in the amplitude gives a zero contribution in the forward
scattering directions. The remaining part of the ampli-
tude, which includes only electronic-nuclear potentials
(hereafter denoted B2}, is further known to provide the
lowest-order quantum representation of the double-
scattering mechanism of Thomas which dominates in the
near forward-angle region. ' Extensive calculations
have appeared involving capture to and from both the
ground and excited states in this angular region. Away
from the forward angles, additional double-scattering
mechanisms have been isolated in the full amplitude by
critical-angle analyses. Finally, exact numerical calcula-
tions of the amplitude have been reported for proton-
hydrogen, ' proton-helium, " and other" collisions.
In this article, a new approximate but analytic evaluation
of the amplitude is compared with the exact numerical
one in order to understand better the poor agreement of
the second Born approximation with experiment.

Since the Thomas mechanism involves two scatterings
of the electron, first with the projectile and then with the
target nucleus, it is natural that the second Born approxi-
mation should apply to the process, as was first shown by
Drisko. When the 82 amplitude is evaluated by (l)
neglecting terms in the free Green s-function quadratic in
the bound-state momentum variables and (2) disregarding
electronic contributions to the momentum transfers in
the two collisions, a so-called linearized-propagator ap-

proximation (LPA) to the exact amplitude is obtained.
The essence of this approximation is to evaluate the am-
plitude at bound-state momentum values (in a.u. } of the
order of or less than the projectile and target-nuclear
charges Zz and Zz, ostensibly obviating any reliance on
the much less likely large momentum components of the
bound states that are necessary in the first Born approxi-
mation. '

The LPA, however, models the exact differential cross
sections well only in a very limited angular region cen-
tered about the classical Thomas peak located at 0.47
mrad for proton impact. This paper considers additional
contributions to the amplitude which are derived from
certain large, bound-state momentum values and calcu-
lated through the use of a multiple-peaking approxima-
tion (MPA). The resulting approximate amplitude is seen
to reproduce well the exact one over all forward angles.
Graphical and tabular comparisons of the LPA, MPA,
and exact B2 cross sections are presented showing the
good agreement of the latter two.

Use of the MPA leads to a very simple closed-form ex-
pression for the B2 amplitude for 1s~ls capture. In
contrast to the first-Born cross section' which shows an
impact-velocity dependence of U

' relative to that of the
LPA, some terms in the MPA amplitude contain an extra
(lnv)/U dependence which leads to a slower convergence
toward the well-known u

" velocity dependence of the
82 total cross section which appears in the exact calcula-
tions. Preliminary results of the present work have ap-
peared elsewhere. ' In the following discussion, atomic
units (m =A'=e =1}are employed.

Consider a target system consisting of an active elec-
tron and a target ion of mass Mz- including nucleus plus
nonactive electrons. The second Born approximation to
the exact amplitude representing the transfer of the ac-
tive electron from the target system to the projectile ion
of mass Mz at the total system energy E is given in
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distorted-wave form by'

A»(E) = &x, l vp, le, &
= &nfl v„lx, &,

where the distorted-wave states are defined as

IX; & =[I+Go+(E)V, ]l@;&,

&xfl = [[1+G (E)v7;]lef &]t,

with the asymptotic scattering wave functions

&RT rTl@ &=exp(iK, RT)P;(rT)

&Rp, rp 4f &=exP(iKf Rp)gf(rp) .

(1.2a)

(1.2b)

Only that part of the full amplitude containing
electronic-nuclear potentials is considered here. ' The
coordinate variables rT, rp define the electron's position
relative to the target-ion center-of-mass and projectile nu-
cleus, respectively; RT defines the projectile s position
relative to the target-system center of mass; and R~
defines the target-ion position relative to the electron-
projectile-nucleus center of mass. The initial (final)
bound-state wave function is p;(pf ) and the initial (final)
heavy-particle wave vector is K;(Kf }.

The free Green operator Go+(E)=(E Ho+iri—) ' is
defined in terms of the full three-body kinetic energy
operator in the center-of-mass system Ho with q denoting
an infinitesimal quantity. The electron-projectile poten-
tial is given by Vp, (rp ) = Zp Ipp and the electron-target
ion potential has the limiting forms

VT, (rr)- —Z, /rr as rr

——Z, /rT as rT~O .

(1.3a)

(1.3b)

The asymptotic charge of the target ion is denoted by Z, .
The shielding of the target nucleus of charge ZT by all of
the nonactive electrons leads to the value Z„and for
neutral targets Z, is unity. The inner part of VT„howev-
er, is modeled by a scaled-Coulomb potential of charge
Z, which is close to ZT. For the numerical calculations
presented in the following Eq. (1.3b} is used; Eq. (1.3a) is
not discussed further.

Since approximations to the distorted waves are central
to the discussion here and calculations for proton-helium
as well as proton-hydrogen collisions are presented, a
symmetric form of the 82 amplitude is introduced, name-
ly,

A, (E)=-,'(&xfl v, le, &+ &cfl v, lx; &), (1.4)

= A~, (E)+ A~(E), (1.5)

where the partial amplitude Az(E) has been introduced

which is equivalent to those listed in Eq. (1.1). In addi-
tion, it is convenient to separate explicitly the first Born
term A~, (E) in Eq. (1.4) by working only with the scat-
tered part of the distorted waves. Thus, A&2(E) is writ-
ten as

A ~2(E)= & @fl vp, l 4; & + —,
'

( & gf l vp, l e, &

+&of lv„ly, &)

and the scattered parts of the distorted waves are defined
as

lg; &=G,+(E)vp, l@; &,

&&f1 =[GO (E)VTe l@f&]

(1.6a)

(1.6b)

Relaxing the terminology, these new states are also called
distorted waves.

When the wave functions and potentials in Eq. (1.5) are
transformed to momentum space, the discussion proceeds
by showing that the exact amplitude is approximated well
if certain limited regions of momentum space are em-
phasized. The ensuing forms for the distorted waves
equations (1.6) then allow the calculation of simple
closed-form expressions for the amplitude.

II. AMPLITUDE EVALUATION

where momentum-space versions of the distorted waves,
Eqs. (1.6), are given by

Q;(kf, k; ) =G 0 (E)Vp, (kf —K)p;(k; ),
tpf (k(,kf ) =Qf (kf ) Vre(k(+ J)G 0 (E) .

(2.2a)

(2.2b)

The free Green's function in momentum space assumes
the form

Go (E)=[(u /2+v kf+sf) —(k;+kf K) /—2+iri]

(2.3)

A tilde on a function denotes Fourier transformation.
The heavy-particle part of the momentum transferred

to the projectile in the collision is denoted by K and that
transferred to the target nucleus by J; momentum conser-
vation is represented by the relation

K+J+v=O, (2.4)

which is valid to order 1/Mp and 1/MT. The squared
norm of K is given by K =K, +E~ with E,= —u/2
—(Ea+ef)/u, and Kj being the transverse momentum
transfer; K, is taken to be parallel to v, the impact veloci-
ty vector. The experimental target binding energy e& and
projectile bound-state energy cf are used in defining K, .
Equation (2.4) states that the outgoing momentum v of
the captured electron is attained in the two collisions
modeled by the 82 amplitude.

In the LPA version of Eq. (2.1), terms quadratic in k,.
and kf are neglected in Eq. (2.3) as are the k; dependence
of VT, (k;+J} and the kf dependence of Vp, (kf —K).
The momentum regions around the peaks of the wave

Beginning with Eq. (1.5), a complete set of heavy-
particle plane-wave states is inserted' ' between the dis-
torted waves and the potential in the partial amplitude
A2(E). This leads to the expression

A, (E)= —,
' fdk;dkf[gf'(kf ) V T(k;+J)f;(kf, k;)

+ t/Jf ( k;, kf )
'

Vp, (kf —K )p; (k; ) ]

(2.1)
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functions((), . about k; =0 and Pf about kf =0—are as-

sumed to give the main contributions to the correspond-
ing integrals.

For the MPA, Eq. (2.1) is evaluated by adding to the
LPA contribution another part in each of the terms in
A2(E}. The distorted wave tPf is approximated by
neglecting the kf dependence of Vz, and choosing the
momentum of the initial bound state to be J while still
treating the propagator exactly. The distorted wave g; is

approximated analogously, taking the value K for the
final-bound-state momentum, neglecting k; in VT„but
treating the propagator exactly.

Explicitly, the distorted waves are written

li;(kf, k;)=G 0 (E)Vp, (K)$;(J),

gf(k(qkf ) pf(K)VTe(J)G 0 (E)

The partial amplitude A 2 is thus seen to be

A~Mp~ = VT, (J) fdk;dkf[pf'(kf)G I (E)$;(k;) Vp, (K)

+(—,') f dk;dkfpf'(kf)VT, (k;+J)GO (E) Vp, (K)$;(J)

+Pf'(K) VT, (J) fdk;dkf G o (E)Vp, (kf —K)P;(k;)

+—,'[I2Vp, (K)p;(J)+pf'(K)VT, (J)I3] . (2.5)

which implicitly defines the integrals I&, Iz, and I3
through the equation

A = VT, (J)Ii Vp, (K)

The first term in Eq. (2.5} is easily evaluated for initial
and final 1s states by first performing the angular integra-
tions in combination with radial integrations by part.
This is followed by use of Cauchy's residue theorem for
the radial integral themselves. Using the 1s
momentum-space hydrogenic wave function for charge Z

The linearized, free Green's function is given by (new ri)

G L+(E)= 2[K v—+Zp+—2(kf J—k; K}—i'] P, (k)=2 Z /n(k +Z ) (2.6)

when Eq. (2.4) is used and a ls final state is assumed:

ef = —Zp/2.
Consideration of the integral I3 in Eq. (2.5) shows that

Vp (kf K) and G 0+(E) can peak simultaneously when

k; =0 and kf =K. It is precisely this fact that allows the
significant contribution of the third term in the MPA am-
plitude. A similar conclusion can be shown to hold for
the second term as well. In each case a particular large
momentum component of the bound state is taken to
evolve in the distorted wave while the electronic part of
the momentum transfer in the potential transform of the
wave is neglected. The propagator, which describes the
evolution of the waves, is treated exactly.

the result is found to be

I, = (4n ) (ZpZ—T )
~ /[K u+ Zp 2—i (Zp J—+ZTK) ] .

(2.7)

Comparison of Eq. (2.7) with the definition of G L+(E)
shows that k; and kf have assumed the "average" values
iZT and iZp, respectively, as Eq. (2.6) implies.

The second and third terms of Eq. (2.5) are formally
identical for 1s states. Thus, only one of them, say I3,
needs to be considered here. Taking the potential trans-
form Vp, (K)= Zp(2/m)'~ /K—, and performing the
angular integrations one has

I,= (2'n' 'Z—pZT /u) f dk, k, f dkfkf '[[(k, +kf)z+Z'] ' —[(k, —k )'+Z']

Xln[(k; +2kf v +ZT ig)/(k, —2kfv +.
—ZT ig)] . —

Defining u =2kf v /(k, . +ZT ) and using the symmetry of the k,. integrand gives

I3 = 24~'~2ZpZ—T~~~ f du u ln[(1+u i g) l(1—u —ig)]—
x f dk k (k'+Z') 'I[k;+(k'+Z')u/2u]'+Z']

The k, integration with use of the u integrand symmetry leads to

I3=(2 m
~ ZpZ&/ /u}f du u 'ln(1+u —iq)[1+(ZTulu) ]

finally, performing the u integration one obtains the very simple form

I3=i2 n ~ ZpZT v '[21n(1 iv/ZT) —(1+—iZT/u) '] .
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Expanding both terms in the square brackets of this equation as functions of Zz /U one finds to order (Zz/v) the ex-
pression

I3= —i2 m
~ Z&ZP v '[21n(Zr/U)+(1+in. ) 3iZ—&/v] . (2.8)

Note here that (Zz /v) terms have been neglected relative to the 1n(Zr/v) term. A similar result holds for Iz but with

Zz and Zz- interchanged.
The MPA form of the A 2 amplitude is thus seen to be

3 "(E)=—[2'n(ZpZz )' /(JK) ]I[K U+—Z 2—i(ZpJ+ZrK)]

The LPA version is

+i [ZPK /2U(K2+Zz) ][2ln(Z& /v) +(1 +in ) 3i—Z&/U]

+i [Z&J /2U (J +Zz ) ][21n(Z&/v)+ (1+in') 3iZ—P /U] J . (2.9)

(E)=—2 m(Z&Zz ) /[(JK) [K U+Z— 2i (Z—zJ+ZzK)]I . (2.10}

Terms involving Zz and Zz are retained in Eqs. (2.9) and
(2.10} in order to treat lower impact velocities better.
Adding the partial amplitudes to Az, gives

GAMP+(g)= g (g)+ GAMP+(g)

g LPA(E) g (g)+ g LPA(g)

The first Born amplitude for 1s states is'

Aa~(E) 2sm(Z~Zz )sn/(K +Z )

(2.11)

(2.12)

In Sec. III results obtained using Eqs. (2.11) and (2.12)
are compared with an exact evaluation of Eq. (2.1).

III. RESULTS AND DISCUSSION

A comparison of results derived fro~ exact, MPA, and
LPA evaluations of the B2 capture amplitude are given in
this section in order to demonstrate explicitly that the ex-
act amplitude is approximated well by the MPA version,
at least for is~is capture. Collisions of protons with
hydrogen and helium atoms are considered. An effective
charge Z, of 1.6875 is used in the helium case.

In Figs. 1 and 2 differential cross sections derived fram
Eqs. (2.11) and (2.12) for the MPA and LPA, respective-
ly, are compared with those obtained from exact numeri-
cal evaluations of Eq. (2.1) due to Simony and
McGuire ' for hydrogen and to Simony et al. " for heli-
um. It is seen that the primary effect of the extra peaking
terms present in the MPA is to give a much better repre-
sentation of the exact cross section away from the
Thomas-peak area which is centered around 0.054 in the
hydrogen case and 0.034 in the helium case. The im-
provement of the MPA over the LPA is striking.
Differences of factors of 2 or more between LFA and ex-
act results have been reduced to percentages for the MPA
results.

The poorest agreement is found in the vicinity of the
local minimum of the cross sections where the largest
cancellation among the various terms occurs and where
one has, consequently, the most sensitive test of second-

order terms. A better treatment of the free propagator in
the amplitude in which some quadratic momentum terms
are retained shows the local-minimum value to be raised,
e.g., by 25% over the MPA value for 10-MeV proton-
hydrogen collisions; however, a closed-form result is
last. "

The total cross section is obtained by integrating the
amplitude squared over transverse momentum transfers:

o =(2@v } ' f dKjK, (A(
0

The larger MPA differential cross sections seen in the ex-
treme forward region 8 ~0.01' in Figs. 1 and 2 are com-
pensated for partially by their smaller values outside this
region, implying that the total cross sections should agree
better with the exact ones. This is indeed the case as
Table I shows for both hydrogen and helium. At 500
keV and higher energies, MPA and exact values agree to
better than 8%, with higher accuracy being attained as
the impact energy is increased. It should appear from
this trend that the exact value in the 50-MeV helium case
is somewhat in error. This is quite possible because of
the great diSculty of performing an exact calculation at
high energy due to the sharp peaks in the momentum in-
tegrals. ' Since the extreme forward angular region dom-
inates the total cross section at lower energies, however,
the larger values of the MPA cause it to fail relative to
the exact result as the 100-keV values in Table I show.

Experimental total cross sections' are also shown
in Table I. It is seen that the exact B2 cross sections
differ considerably from the data, being generally too
large. This poor agreement along with the good repro-
duction of the exact cross sections by the MPA ones
which are derived by making use of the large bound-state
momentum components implies that the second Born ap-
proximation suffers from the same deficiency as does the
first Born approximation, namely, that high-momentum
components play a disproportionate role in the collision
process. Recent experimental differential cross sections
further support this idea.

As is we11 known, the overall velocity dependence of
the LPA total cross section is v

"which follows as a re-
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FIG. 1. Center-of-mass differential cross sections for 1s~1s
capture in proton-hydrogen collisions. Results of calculations
representing three levels of approximation to the second Born
amplitude are shown: exact, (Ref. 8); multiple-peaking
approximation (MPA), ——— [Eq. (2.11)]; and linearized-
propagator approximation (LPA), ———[Eq. (2.12)].

FIG. 2. Center-of-mass differential cross sections for 1s~1s
capture in proton-helium collisions. Results of calculations
representing three levels of approximation to the second Born
amplitude are shown: exact, (Ref. 11); multiple-peaking
approximation (MPA), ———.[Eq. (2.11)]; and linearized-
propagator approximation (LPA), ———[Eq. (2.12)].

TABLE I. Comparison of approximate and exact second Born Is ~ ls total capture cross sections (in units of rrao22'electron) vs im-

pact energy E in MeV for protons on H and He. The numbers in square brackets are powers of 10.

E (MeV) LPA MPA
p~H

Exact' Experiment LPA MPA
p ~He

Exact' Experiment

0.1

0.2
0.5
1.0
3.0
5.0
7.0

10.0
20.0
50.0

8.76[—1]
2.16[—2]
1.53[—4]
3.18[—6]
5.52[ —9]
2.76[—10]
3.81[—11]
4.67[—12]
7.92[—14]
3.61[—16]

3.47[0]
1.15[—1]
7.53[—4]
1.25[—5]
1.45[ —8]
6.05[ —10]
7.49[ —11]
8.25[ —12]
1.17[—13]
4.53[—16]

1.58[0]
9.13[—2]
7.95[—4]
1.36[—5]
1.50[ —8]
6.09[—10]
7.41[—11]
8.04[ —12]

4.51[—16]

1.4[ —1]'
1.0[ —2]
5.6[—5]'
2.3[—6]
2.7[—8]"

1.02[+ 1]
2.04[ —1]
1.40[ —3]
3.24[ —5]
6.58[—8]
3.40[ —9]
4.76[—10]
5.88[—11]
1.01[—12]
4.89[—15]

2. 1 1[+ 1]
7.51[—1]
7.60[ —3]
1.60[ —4]
2.22[ —7]
9.42[ —9]
1.16[—9]
1.27[—10]
1.74[—12]
6.69[—15]

1.74[ —4]

1.30[—10]
1.72[ —12]
6.25[ —15]

3.1[—1]'
4.0[ —2]
1.2[ —3]'
5.6[—5]
1.4[ —7]"
1.0[—8]'

1.2[ —10]'s

'McGuire (Ref. 17).
Values are per H& molecule.

'Simony et al. (Ref. 11).
Barnett and Reynolds (Ref. 19).

'Williams (Ref. 20).

Schryber (Ref. 21).
IInterpolated value.
"Welsh et al. (Ref. 22).
'Barker et al. (Ref. 23).
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suit of the term E v—+Zp in 6 L (E) passing through
zero for a certain value of E~. On the other hand, the
first Born cross section is proportional to v ' . Con-
sideration of Eq. (2.9) shows the presence of a (lnv)/v fac-
tor in the MPA amplitude in addition to the other men-
tioned factors. Since (lnv/)v goes to zero for v going to
infinity, the fundamental dominance of the LPA part is
not altered, but how fast the large velocity limit is
reached is affected. This fact coupled with the above-
reported results then explains, to a large extent, the slow
convergence of the exact cross section to the limiting
dependence v

The present discussion also has particular relevance to
a Faddeev-type theory of electron capture where an ap-
proximate evaluation of the amplitude is necessary due to
the extreme diSculty of the numerical computations.
There, it can be shown that the contributions of the
large-momentum components, which correspond to those
contained in the MPA, are of the order (Zp/v) and
(ZT/v) relative to the other terms in the amplitude.
Such is clearly not the case for the MPA itself, as Eq.

(2.9) shows. This partially explains then why the higher-
order theory agrees better with experiment.

In summary, use of a simple approximate analytic eval-
uation of the second Born capture amplitude (without in-
ternuclear contribution) has shown that the exact ampli-
tude relies too heavily on the large momentum com-
ponents of the initial and final bound states just as does
the first Born approximation. It appears that a Faddeev-
type approach to electron capture does not suffer from
this problem. Additionally, a ln(v)/v correction to the
velocity dependence of the total cross section is seen to be
present which, although not of leading order, neverthe-
less slows convergence to the asymptotic v

"form.
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