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We investigate the performance of an adiabatic separation of electronic and nuclear motion in the

presence of a magnetic field and find that the diagonal term of the nonadiabatic coupling elements

must be added to the nuclear equation of motion in the Born-Oppenheimer approximation. As an

alternative to the Born-Oppenheimer approximation we introduce the so-called screened Born-
Oppenheimer approximation which is particularly suited to describe the adiabatic separation of
electronic and nuclear degrees of freedom in a magnetic field. A new interpretation of the well-

known gauge-centering phases is given. Furthermore, we provide a qualitative discussion of some
of the effects of the off-diagonal nonadiabatic coupling elements.

I. INTRODUCTION

The existence of strong magnetic fields near compact
cosmic objects' like white dwarf stars and neutron stars
has motivated many studies on the properties of matter in
strong fields. ' Most of the investigations are on the
behavior of the H atom in strong homogeneous magnetic
fields. The ground as well as many excited states of the H
atom in such strong fields are therefore known to a high
accuracy. " ' In order to study the physics of the
intermediate- and high-field region at laboratory magnetic
geld strengths two possibilities have been used. The first
one is to investigate the behavior of excitons or excitonic
molecules in a semiconductor. Because of their small
effective masses and the large dielectric constants, typical
strong-field effects can appear already at laboratory mag-
netic field strengths. ' The second possibility is to study
highly excited atoms' ' (Rydberg atoms} at laboratory
magnetic field strengths. This possibility is of special in-
terest, because it allows an experimental as well as
theoretical investigation of the transition of a quantum
system from regularity to irregularity, ' ' as indicated,
e.g., by the distribution of energy levels.

In contrast to the numerous investigations on atoms in
magnetic fields, especially on the hydrogen atom, the
knowledge of the properties of molecules in strong mag-
netic fields is rather rare. There exist a few works on the
structure and properties of the H2+ ion and much
less information on many-electron molecules. Nev-
ertheless, the existing knowledge on molecules in a homo-
geneous strong magnetic Geld indicates a richness of new
phenomena. Examples are the contraction of the bond
length, the increase in binding energy, or the hindered ro-
tation of the molecular axis against the magnetic field
direction, which leads in the high-field limit, for example,
for the H2+ ion, to the dissociation of the molecule.

The above-mentioned arguments show that not only
the electronic structure but also the molecular dynamics
is severely altered by the presence of a strong magnetic
field. In this paper we want to investigate whether some

of the commonly used concepts and approximations of
molecular dynamics are still valid and useful if a magnet-
ic field is present or whether they have to be altered or
even abandoned. Starting with the Hamiltonian in Carte-
sian coordinates one first separates the center-of-mass
motion of the molecule from its internal motion. For
neutral molecules in a homogeneous magnetic field, there
exists a constant of motion, the total pseudomomentum,
which allows a pseudoseparation of the center of mass
motion. In this case the dependency of the Hamiltonian
on the center of mass can be reduced to a Stark term aris-
ing due to the electric field induced by the center-of-mass
motion. The pseudoseparation as well as the inhuence
of the Stark term on the spectrum was discussed to some
extent in the literature. In the case of ions there ex-
ist only few investigations on the center-of-mass motion
of atomic ions.

One of the most important foundations of molecular
physics, the validity of which was presumed in all the
above-mentioned studies on molecules in a magnetic field,
is the Born-Oppenheimer approximation. However, so
far there exist no investigations on the validity of the
Born-Oppenheimer approximation if a magnetic field is
present.

Before we consider the problems associated with the
Born-Oppenheimer approximation in the presence of a
magnetic field, we want to make some brief remarks on
the zero-field case. It is well known that the Born-
Oppenheimer adiabatic approximation provides very
good approximate molecular spectra and wave functions
if the electronic energy-level spacings are large compared
with typical spacings associated with the nuclear motion.
The inclusion of the mass-correction terms (due to the
finite nuclear masses) and the diagonal term of the nona-
diabatic couplings in the adiabatic approximation scheme
then causes only small and, for most practical calcula-
tions, negligible corrections. Only for the case that the
electronic states are close in energy it is necessary to
abandon the Born-Oppenheimer approximation and to
include the nonadiabatic coupling s of the electronic
states which are involved. A prominent example is the
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well-known Jahn-Teller effect. ' The latter is a special
case of the so-called conical intersection situations, '

which appear for the exact degeneracy of some electronic
states of a polyatomic molecule.

In the case of the presence of a magnetic field the situa-
tion is much more complicated. It is clear that no kind
of adiabatic approximation can be valid over the whole
range of magnetic field strengths. For the case of the
H2+ ion, it has been shown * that in the very-high-field
region the zero-point energy of the hindered rotation ap-
proaches the order of magnitude of the Coulomb binding
energy and therefore any kind of adiabatic approximation
breaks down. This breakdown also takes place in the
case of neutral molecules. Apart from it, there exist some
other serious problems which make the applicability of
an adiabatic approximation a priori questionable. For ex-
ample, the nuclear equation of motion in the Born-
Oppenheimer adiabatic approximation treats —as we
shall s8e—the nuclei as "naked" charges, i.e., it does not
describe the effect of the screening of the magnetic field

by the electrons. This screening should be almost com-
plete in the weak-field case for the dissociation of the
molecule into neutral atoms. Because of the exactness of
the fully coupled nuclear equations of motion, the miss-
ing screening must be contained in the nonadiabatic cou-
plings.

A problem related to that of the missing screening is
the gauge dependency of electronic potential surfaces in
practical approximate calculations. To reduce this gauge
dependency one has to take care of the correct gauge
centering of the functions, used to build up the
molecular wave function. This can, in general, be done
by multiplying the functions by a magnetic-field-
dependent phase factor.

The above-mentioned difficulties in the performance of
a Born-Oppenheimer separation in the presence of a mag-
netic field were already partially investigated in a previ-
ous paper of the authors for the special case of a
homonuclear diatomic molecule, which is, as will be
shown later on, much simpler than the general case. In
the following sections we want to proceed as follows. In
Sec. II we carry out the pseudoseparation of the center-
of-mass motion of an arbitrary neutral molecule. In Sec.
III we make an adiabatic ansatz for the total wave func-
tion of a heteronuclear diatomic molecule and derive the
electronic Hamiltonian, nonadiabatic coupling elements
and nuclear equations of motion. The formulas for the
case of an arbitrary molecule are given in the Appendix.
In Sec. IV we investigate the problem of the missing
screening which appears in the nuclear equation of
motion in the Born-Oppenheimer approximation. We
show the importance of the diagonal term of the nonadia-
batic coupling elements and are thereby led to the
screened Born-Oppenheimer approximation. In Sec. V
we briefly discuss the special case of a homonuclear dia-
tomic molecule. In Sec. VI we obtain a new interpreta-
tion of the gauge-centering phases by investigating the
separate center-of-mass motions of the atoms of a
homonuclear diatomic molecule. Furthermore, we dis-
cuss some of the effects of the off-diagonal nonadiabatic
coupling elements.

II. PSKUDOSEPARATION OF THE CENTER OF MASS

Our starting point is the nonrelativistic Hamiltonian
for a neutral molecule in a homogeneous magnetic field in
Cartesian coordinates

[p,
' —e A(r,'. )] +g [p'+eZ A(r' )]

1, , 2 1

l a a

(2.1)

where we have neglected the rather trivial interaction of
the spin with the magnetic field. Throughout the paper
Greek indices are used for the nuclei and Latin ones for
the electrons. The symbols m, e, r,', p,', and A(r,') denote
the mass, charge, position vector, canonical conjugated
momentum, and vector potential for the ith electron, re-
spectively. M, Z, r,', p', and A(r') denote the mass,
nuclear charge number, position vector, canonical conju-
gated momentum, and vector potential for the ath nu-
cleus, respectively. V' contains all the Coulomb interac-
tion terms. The Hamiltonian (2.1) has a constant of
motion, ' ' the total pseudomomentum k

k= g [p,
' —e A(r,')+eBXr,']

+g[p'+eZ A(r') —eZ BXr'], (2.2a)

[&'„k]=0, (2.2b)

where B is the magnetic field strength. For convenience
we will adopt in the following the symmetric gauge for
the vector potential A(r)= —,'BXr. Nevertheless, all our
formulas can be translated directly to the more general
case of the mixed gauge, ' which also obeys the
Coulomb-gauge condition V A=0.

In our case of a neutral molecule the components of k
can be made sharp simultaneously, i.e., they obey the
commutation relations k Xk=0. In the zero-field case k
becomes identical with the conserved total momentum of
the molecule.

In order to take advantage of the constant of motion k
for the pseudoseparation of the center of mass, we trans-
form the Hamiltonian (2.1) to a coordinate system which
contains the center-of-mass coordinate and (n —1)
remaining internal coordinates. ' As internal coordi-
nates we choose (n —1) relative coordinates to the center
of mass of nuclei (CMN). This internal coordinate sys-
tem is especially appropriate for the subsequent perfor-
mance of an adiabatic separation, i.e., it enables us to
identify the relative velocities of the nuclei. Further-
more, it has the advantage that it does not lead to terms
in the Hamiltonian which involve mixed electronic and
nuclear momenta. The Hamiltonian (2.1) in this coordi-
nate system reads as follows:
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p + P, ——BX r +R, — gr
2m M 2 J

2

L

+g' p — gp+g'p + P+ —Z BX r +R, — gr, .
2M Mg, . ' M ' 2

1

2M„

M„ M„
P, — gp, +g'p +—Z„BX R, — gr; — g'M r

M Mo i ~ a

2

+V(jr, };Ir I), (2.3}

e 1k=P, +—BXg r, —— BXg' JK,r
n a

where

(2.4)

At =(Z M„—Z„M~) . (2.5)

The eigenfunctions of the Hamiltonian (2.3) can be
chosen as simultaneous eigenfunctions of k with eigenval-
ue k. They take on the following appearance:

where M is the total mass of the molecule and Mo the to-
tal mass of the nuclei. R, and P, are the center-of-mass
coordinate and its canonical conjugated momentum, re-
spectively. M„and Z„are the mass and nuclear-charge
number of that nucleus, the relative position of which has
been excluded from the internal coordinate system. The
primed sum indicates summation over all nuclei except
that denoted by n.

The total pseudomomentum reads in this coordinate
system

4'(R, ; Ir, ];tr ) ) = Uf(k; Ir, };Ir ) ),
with

(2.6)

U=exp, +i k ——BX gr; — g'At r R,
e 1

i & a

(2.7)

It is therefore possible to eliminate the center-of-mass
coordinate from the Hamiltonian (2.3) by a unitary trans-
formation

%(= U '%'U . (2.8)

The unitary transformation U replaces the canonical con-
jugated momentum of the center-of-mass coordinate by
the eigenvalue k of k. The Hamiltonian ff can, after
some lengthy algebra, be rearranged to a rather simple
form which is particularly suited for investigating the
performance of an adiabatic separation. The resulting
Hamiltonian takes on the following appearance:

k — (kXB) gr, . — g'At r +g p; ——BXr;+— BXg'JK~r~
2

2

+ gp +—BX+r —— + BXg'AI r +g' p, +—Z BXr,—— Z BX+r;1 e e Mo 1 e e m

Mo ~ 2 ~ 2 M M Mo 2M 2 2 M

2MQ 2 M 2 M
g'p +— BXQ'AI r —— ZBX+r,.

L

2 Z2 '2
+ BXg'M r + BX+r, +V(tr, ];[r I),

J

(2.9)

where Z is the total-nuclear-charge number. The Hamil-
tonian (2.9) depends only parametrically via the pseu-
domomentum k on the center-of-mass motion. As can be
seen from Eq. (2.9} the only consequence of the center-
of-mass motion is, apart from the trivial constant kinetic
energy term, the appearance of a Stark effect due to a
motional electric field [see second term on the right-hand
side (rhs) of Eq. (2.9)]. In the zero-field case this Stark
effect disappears, i.e., we have no coupling of the center
of mass to the internal degrees of freedom.

The Hamiltonian (2.9) contains a series of mass-
correction terms for the electronic and nuclear motion.
These corrections terms (due to the finite nuclear masses)
can be divided into the following two types: the specific-

mass corrections, i.e., mass-polarization terms, which
provide additional couplings of the motion of different
particles, and the normal-mass corrections, which can be
taken exactly into account {for the nomenclature of the
mass correction terms in the absence of a magnetic field
see, for instance, Ref. 60 or 61). In the zero-field case the
normal mass corrections are due to reduced masses. In
our case of the Hamiltonian (2.9) this type of corrections
are contained in the second and fourth quadratic term for
the electronic and nuclear motion, respectively. In Sec.
IV we will discuss new normal-mass corrections which
appear in the Hamiltonian (2.9) and are not present in the
zero-field case. The specific-mass corrections or mass-
polarization terms which involve the momenta or coordi-
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nates of diferent electrons are also included in the second
quadratic term of Eq. (2.9}.

For an arbitrary molecule we have all types of mass-
correction terms in the Hamiltonian (2.9), except those
which include mixed electronic and nuclear momenta.
The latter do not appear because of the special choice of
our internal coordinate system. We remark that no fur-
ther essential simplification of the mass-correction terms
can be achieved by choosing another reference point
(defined by the nuclei} for the internal coordinate system.
For the special case of a diatomic homonuclear molecule
the Hamiltonian (2.9) reduces to a form which contains
no mass-correction terms involving mixed electronic and
nuclear degrees of freedom. This case will be discussed
separately in Sec. V.

In Sec. III we make an adiabatic ansatz for the wave
function of a heteronuclear diatomic molecule in a mag-
netic field and present its electronic Hamiltonian, nonadi-
abatic couplings and nuclear equation of motion. The
electronic Hamiltonian, nonadiabatic couplings, and nu-
clear equation of motion for an arbitrary molecule are
given in the Appendix.

III. ADIABATIC SEPARATION
IN THE PRESENCE OF A MAGNETIC FIELD

There is one physical picture which is common to all
adiabatic approximations for molecules. It is the picture
that the Coulomb forces cause electronic velocities which
are much larger than the nuclear velocities and therefore,
from the point of view of the electrons, the nuclei can in a

I

first approximation be regarded as fixed in space. In or-
der to separate the electronic and nuclear motion we have
to establish the electronic Hamiltonian for fixed nuclei.
Usually one starts from the Hamiltonian (2.1) in a space-
fixed laboratory coordinate system and defines the elec-
tronic Hamiltonian by assuming infinitely heavy, fixed
nuclei. In the following we will call this electronic Ham-
iltonian the fixed-nuclei electronic Hamiltonian. The cor-
responding electronic energy is a good approximation in
many cases, but has an inherent weakness in the treat-
ment of the motion of the center of mass. It is known
that correction terms due to finite nuclear masses are of
particular importance in the presence of a magnetic field
(see Sec. IV). Their order of magnitude becomes in the
very-high-field region comparable with the Coulomb
binding energy and they are no more negligible.

In order to obtain a correct treatment of the center of
mass and to include the mass-correction terms in the
electronic Hamiltonian we will in the following apply the
adiabatic separation to the Hamiltonian (2.9}which is ex-

pressed in the center of mass of nuclei coordinate sys-
tem. The resulting electronic Hamiltonian will coincide
in the infinite-nuclear-mass limit with the above-
mentioned fixed-nuclei electronic Hamiltonian. We will

call it the "mass-corrected electronic Hamiltonian. " For
the sake of clarity we will in this section specialize to a
heteronuclear diatomic molecule and present the formu-
las for a general polyatomic system in the Appendix. As
a first step in our calculation we rewrite the Hamiltonian
(2.9) to give the following simpler form for the diatomic
molecule

'2

k — (kXB) gr, — AR +g p;
——BXr;+— JKBXR1 2 e 1 1 e - e m

2M M M0 2m ' 2 ' 2 MM0
r

+ gp, +—BX+r;—— + ABXR

'2

+ P+ — (Z M~+2 M~ }BXR—— JKBXg r + V(Ir j;R),
2MM 2M2 1 2 2 1

1 2 0 2 MM 0
l j 7 (3.1)

with

~ 1R = —.[R,%'],
l

(3.2)

A, =Zi Mq —ZqMi,

where Z, and M, , and Z2 and M2 denote the nuclear-
charge numbers and masses of the two nuclei, respective-
ly. R is now the relative coordinate of the two nuclei and
P its canonical conjugated momentum.

In order to obtain the mass-corrected electronic Ham-
iltonian we have to set the nuclear relative velocities in the
total Hamiltonian (3.1) equal to zero. In the zero-field
case and using our internal coordinate system this is
equivalent to setting the canonical conjugated momen-
tum of the relative. coordinate of the nuclei equal to zero.
In the magnetic-field case one has to calculate the equa-
tions of motion for the nuclear coordinates

%=U 'RU= —.[R,&]=0,1

l
(3.3}

with & from Eq. (3.1) and U from Eq. (2.7). The commu-
tator (3.3) yields the following condition:

P+ — (Z M +Z M )BXR—— AtBXQ rI 2 2 1 2 MM I

0 0 l

=0. (3.4)

From Eq. (3.4) it is clear that the third quadratic term in
the Hamiltonian (3.1) is related to the relative kinetic en-

ergy of the nuclei. Using condition (3.4} we arrive at the
following mass-corrected electronic Hamiltonian

with &' being the total Hamiltonian of the system given
in Eq. (2.3). Setting R=O in Eq. (3.2) is equivalent to re-
quiring
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(kXB) g r; — JKR +g p,.
——BXr, +— JKBXRe 1 1 e e m

M Mp 2m ' 2 ' 2 MMp

2

2

+ gp, . +—BX+r,—— + JRBXR +V(jr,. I;R} .
1 e e 1 1

2Mp, . ' 2,. ' 2 M Mp
(3.5)

The first term on the rhs of Eq. (3.5) contains the cou-
pling of the pseudomomentum to the internal degrees of
freedom. We have included the coupling of the pseu-
domomentum to the nuclear degrees of freedom in the
electronic Hamiltonian in order to obtain the correct k-
dependent behavior of the electronic energy in the disso-
ciation limit of the molecule (see also Sec. VI). This cou-
pling disappears for the special case of a homonuclear
molecule (see Sec. V}. There are three kinds of mass
corrections included in Eq. (3.5). They are the following:

(i) The mass-correction term [em /(2MMo )]KBX R
which is contained explicitly in the first and implicitly in
the second quadratic term of &„. This term shifts the
gauge origin from the origin of the coordinate system.
As we shall show in Sec. IV this term can and must be
taken exactly into account in order to obtain a well-

defined mass-corrected electronic potential surface. It is
therefore of particular importance.

(ii) Exact corrections due to reduced masses which are
included in the second quadratic term of %,,.

(iii) Dynamical corrections due to mass-polarization
terms (i.e., terms which involve, for example, the momen-
ta of different electrons) which are also contained in the
second quadratic term of the Hamiltonian (3.5}.

We remark that in order to obtain the mass-corrected
electronic Hamiltonian it was essential to set the nuclear
relative velocities equal to zero and not the canonical con-
jugated momentum P of the nuclei. Otherwise one would
obtain an ill-defined mass-corrected electronic Hamiltoni-
an, the expectation value of which contains terms which
diverge as the internuclear distance goes to infinity.

As a next step we expand the total wave function g in a
series of products of electronic and nuclear functions

where E is the total energy. The first term of Eq. (3.8)
contains the paramagnetic ( ~ B) and diamagnetic ( ~ 8 )

part of the nuclear motion. The second term is the trivial
kinetic energy term of the pseudomomentum. The nona-
diabatic coupling elements are given by

2M]M2 2 MMp
r

+ P P —— AtBX+r;
M, M2 2 MMp

X P+ (ZiM2+Z2Mi )BXR
2Mp

(3.9)

where the integration is over the electronic coordinates
only and where the operators in the scalar product in Eq.
(3.9) act only on the electronic wave function P '.

The Born-Oppenheimer adiabatic approximation is ob-
tained from Eq. (3.8} in analogy to the zero-magnetic-
field case by neglecting all the nonadiabatic coupling
elements A '. The corresponding nuclear equation of
motion reads

'2
P+ (Z, M2+Z2M, )BXR

2M)M2 2Mp

+ k +ej(k;R)—E y =0 .
1

(3.10)

P+ (Z, Mq+Z2M f )BXR
I2M, M,

+ k +e (k;R)—E yj. ++AJJyj'=0, (3.8)
1

2M

P(Ir, I;k;R)=g P~'(Ir; I;k;R)yj'(k;R) . (3.6)

The functions P', which depend parametrically on the
pseudomomentum k and on the nuclear coordinates, are
eigenfunctions of the mass-corrected electronic
Schrodinger equation

&„P,.(Ir; I;k;R)=e, (k;R)P.(Ir; I;k;R) . (3.7)

Substituting Eq. (3.6) in the total Schrodinger equation
&g=EP, multiplying by P'. (Ir; I;k;R), and integrating
over the coordinates of the electrons, we find the set of
nuclear equations of motion

In this approximation the nuclear equation of motion is
restricted to perform on the single electronic potential
surface s.(k;R) which, in contrast to the zero-field case,
still depends on the center-of-mass motion. An equation
similar to Eq. (3.10) for k=0 was used in the literature
for the calculation of the rovibrational spectrum of the
H2+ ion in a strong magnetic field. '

We now briefly want to discuss the nonadiabatic cou-
pling elements (3.9). The first matrix element on the rhs
of Eq. (3.9}gives in the zero-field case the matrix element
of the nuclear relative kinetic energy and the second term
gives the derivative coupling, which contains explicitly
the nuclear momentum operator P. The nonadiabatic
coupling elements (3.9) contain several terms which de-
pend explicitly on the magnetic field strength. In addi-
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tion, the matrix elements (3.9) depend implicitly, via the
electronic wave functions jgj. j, on the magnetic field

strength. The nonadiabatic coupling elements A. ', and
with it the quality of the adiabatic approximation will
therefore, in general, be very sensitive to the order of
magnitude of the magnetic field strength. In particular,
in the case of electronic-level degeneracy, or near degen-
eracy, the magnetic field could play an important role.
The symmetry lowering due to the presence of a magnetic
field now allows electronic states to couple which did not
couple in the zero-field case (see also Sec. VII).

Finally, we remark that the nonadiabatic coupling
terms of Eq. (3.9) which explicitly depend on the elec-
tronic coordinates via the term BXg, r, are by a factor
m/M smaller (

cern/M

) than those involving only nu-
clear degrees of freedom ( ~ 1/M). In Sec. IV we investi-
gate in some detail the nuclear equation of motion (3.8).

IV. IMPORTANCE OF THE DIAGONAL TERM
OF THE NONADIABATIC COUPLINGS

AND THE SCREENED BORN-OPPENHEIMER
APPROXIMATION

would be an eigenfunction $0 of the electronic Hamiltoni-
an in the infinite-nuclear-mass limit, i.e., to the Hamil-
tonian

g (p,. ——BXr,. ) + V(tr; j;R) .
l

(4.2)

However, the expectation value of the mass-correction
terms calculated with $0 diverge at a large internuclear
distance ~Rj. This can be seen by calculating the elec-
tronic energy with the wave function $0 and the mass-
corrected electronic Hamiltonian (3.5} for k=O. The
reason for these divergencies is the mass-correction term
[em /(2MMD)]JIB XR of the first quadratic term on the
rhs of Eq. (3.5). It centers the gauge of the Hamiltonian
away from the origin of our coordinate system. This
term is also implicitly contained in the second quadratic
term of &„ in Eq. (3.5). We therefore must choose an
eigenfunction P to the electronic Hamiltonian

'2

p,
——BXr, +— JKBXR

A. Importance of the diagonal term
of the nonadiabatic couplings

+ V(jr; j;R), (4.3)

In the following we again specialize to the case of a
heteronuclear diatomic molecule. For the sake of simpli-
city we neglect the efFects of the pseudomomentum k, i.e.,
we assume k=O (the case k&0 is discussed in Sec. VI).
The nuclear equation in the Born-Oppenheimer approxi-
mation, which is obtained from Eq. (3.10} by setting k
equal to zero, then reads as fo11ows:

'2

P+ (Z, M2+Z2Mi )BXR
2M] M2 2MO P=&ll[Pp, „(tr, j; (s, j;R)y2s((r, j; js, j;R)], (4.4)

in order to obtain a well-defined electronic energy. We
note that we cannot establish a dissociative molecular
eigenfunction of the full electronic Hamiltonian (3.5).
However, the mass-correction terms not included in %„
contribute only corrections which in the following are
taken into account by perturbation theory. Our electron-
ic wave function P which is an eigenfunction of %,, takes
on the following appearance:

+s (R)—E yj =0 . (4.1)

Equation (4.1) contains all the magnetic-field-dependent
terms of the relative motion of the nuclei. It therefore
treats the nuclei as "naked" charges in a magnetic field
and cannot describe the efFect of the screening of the nu-
clear charge by the electrons against the magnetic field.
This screening is of particular importance for the dissoci-
ation of the molecule into neutral atoms, i.e.,
AB~A+B. In this case the electronic energy s (R) be-
comes a R-independent number and Eq. (4.1) shows the
relative motion of two charged nuclei in a magnetic field.
In reality the nuclear charges are screened by the elec-
trons and paramagnetic and diamagnetic terms should
not appear in the nuclear equation of motion. In the dis-
sociation limit we have two neutral atoms each of which
is moving with its own conserved pseudomomentum (see
Sec. VI}. Hence one should arrive at a virtually free nu-
clear equation of motion.

Because of the exactness of the fully coupled equations
of motion (3.8) the missing screening must be contained
in the nonadiabatic coupling elements. In order to inves-
tigate this problem we investigate the electronic wave
function of the molecule in the dissociation limit. The
simplest choice of a dissociative electronic wave function

where JV' is a normalization constant and where 11 is the
antisymmetrization operator. The electrons with posi-
tion vectors [r; j and [r, j, and spin variables ts; j and

[s j are located at the nucleus A and B, respectively.

p, „and q&zs are electronic atomic functions [for details
see Eq. (4.6)]. P is the phase factor

P=exp i JK—(B—XR) g r;+g r
2 MMO

(4.5)

P must be included in order to ensure that P is an eigen-
function of the Hamiltonian &,~

in Eq. (4.3). By com-
muting P with &,&

one shifts the gauge center in the
Hamiltonian &d and obtains the electronic Hamiltonian
in the infinite-nuclear-mass limit.

In order to specify the atomic functions y» and y2~
we must take care of the gauge degrees of freedom. The
gauge dependency of the electronic expectation values
computed within an incomplete basis set is a very-well-
known problem. It was recognized very early that
in order to obtain approximate gauge-invariant energy
expectation values one must provide the correct gauge
centering of the localized functions used to build up
the molecular electronic wave function. In our case this
means that, in addition to the phase P, the atomic func-
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M2
Xp, r, — R;[s;J

0

e M)
y2s= exp i ——(BXR}grj.

0 1

M)
X q)2 r, + R [s, I

(4.6)

where the functions q& and y2 are eigenfunctions of the
atomic electronic Hamiltonians without mass correc-
tions, i.e., eigenfunctions to

2

pt
——BXrt +V([rtI) .1 e

I 2m
(4.7)

In formula (4.7) the nucleus of the atom A, B is chosen as
the origin of the electronic coordinates [rt I.

Having specified our dissociative wave function P we
return to our original problem of the missing screening.
We have calculated the electronic energy c, i.e., the ex-
pectation value of the Hamiltonian (3.5), for it=0 with
our dissociative wave function P and the diagonal term
Ad of the nonadiabatic couplings (3.9}. The results are

e= (P~%,~
(k=O)~$) =E„+Ett—C,

(4.8}
Ad= —(MpM&Mp} (Z~M2+ZpM~ )(BXR)'P

2
2

(MOM, Mz ) '(Z&M +ZOOM ) (BXR) +8

where the trivial Zeeman spin terms have been omitted.
Ez and Ez are the energies of the atom A, B in the pres-
ence of a magnetic field. The energetic contributions of
the atomic mass-correction terms ar'e contained in the en-
ergies E„and Ez up to a first-order perturbation theory
with respect to the functions y, and q2. C is an ir-
relevant atomic constant which cancels if the electronic
energy c and the diagonal term Ad of the nonadiabatic

coupling s are inserted into the nuclear equation of
motion

tions y& z and yzz also contain phases which provide the

gauge centering on the nuclei A and B, respectively. The
functions q, ~ and y2& therefore have the following struc-
ture:

e M2
y, „=exp +i —(BXR) g r;

2 0

dinates (momenta) which are referred to the molecular
center of mass of nuclei. ]

The most important feature of Ad in Eq. (4.8) is that its
first and second term are the negative counterparts of the
paramagnetic ( ~ B) and diamagnetic ( cc8 ) terms
occurring in the nuclear equation of motion (3.8). Insert-
ing Eq. (4.8) into the nuclear equation of motion (3.8) (for
k=O) and neglecting only the off-diagonal nonadiabatic
coupling elements or equivalently adding Ad to c.=c in
Eq. (4.1) provides the following equation of motion:

P +E~ +E~ —E y=0 . (4.10}

From Eq. (4.10) one immediately realizes the effect of a
complete screening of the nuclear charge against the
magnetic field, i.e., the disappearance of the paramagnet-
ic and diamagnetic terms in the nuclear equation of
motion. As can be seen from Eq. (4.8) the screening is
contained in the diagonal terms of the nonadiabatic cou-
plings. In order to obtain the correct free nuclear equa-
tion of motion for the dissociation limit it is therefore
necessary to include the diagonal term of the nonadiabat-
ic coupling elements. This statement is independent of
the region of the magnetic field strength, i.e., it applies
also for weak magnetic fields, since the diagonal term Ad
can be made arbitrarily large for large internuclear dis-
tances. In the general case, i.e., also far from dissocia-
tion, the inclusion of the diagonal term becomes more im-
portant for increasing magnetic field strength.

We remark that in the zero-field case and for real elec-
tronic wave functions the diagonal term of the nonadia-
batic couplings is simply the expectation value of the nu-
clear kinetic energy operator and its inclusion in the adia-
batic approximation scheme is known as a Born-Huang
adiabatic approximation. In the presence of a magnetic
Geld the wave functions are, in general, complex and we
therefore have all types of diagonal nonadiabatic cou-
pling terms, especially derivative coupling terms. In fact,
the derivative coupling terms cause the canceling of the
paramagnetic ( ~B) terms in the nuclear equation of
motion.

We conclude with the statement that a meaningful
description of nuclear dynamics in the presence of a mag-
netic field is only possible under inclusion of the diagonal
term of the nonadiabatic coupling elements. The in-
clusion of the diagonal terms provides not only a
modification of the adiabatic approximation, as it does in
the zero-field case, but also dynamical corrections due to
the presence of the derivative diagonal coupling term.

T

M2 e
2M M ' 2

2

B. Screened Born-Oppenheimer approximation

Mi e+ gz g p +—BXr,
2M2MO

(4.9)

with the notation of Eq. (4.7). [The reader should note
that within this section the summation index I labels the
electronic coordinates (momenta) which have the nucleus
of the corresponding atom as the origin of the coordinate
system, whereas the indices i and j label electronic coor-

In Sec. III we presented the nonadiabatic couplings
and nuclear equations of motion for a heteronuclear dia-
tomic molecule. We obtain the nuclear equations of
motion in the Born-Oppenheimer approximation from
the fully coupled nuclear equations of motion by neglect-
ing the nonadiabatic coupling elements. In the zero-field
case and for our internal coordinate system this neglect is
equivalent- to the assumption that
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y)=01

aR
(4.11) Pi((}01&= —— (Z, M2+Z~M, )BXR i/0 & .

2 M0

holds. Equation (4.11}is the usual assumption to derive
the Born-Oppenheimer approximation in the absence of
an external field. There are now two possibilities to gen-
eralize the condition (4.11) to the case of the presence of a
magnetic field. The first possibility was implicitly used in
Sec. III and reads as follows:

(4.12)

Equation (4.12) is motivated by the fact that ~((} & con-
tains the phase P from Eq. (4.5) and therefore Eq. (4.12)
is equivalent to the following condition:

(4.13)

&=0. (4.14)

instead of Eqs. (4.12) and (4.13), where% is given by Eq.
(3.3}. In the zero-field case we have %=R = (M0/
M, M2)P, i.e., the canonical conjugated momentum is
equal to the nuclear relative velocity and the condition
(4.14) becomes identical with (4.11). In the presence of a
magnetic field Eq. (4.14}is equivalent to the condition

P~p &= —— (Z, M2+Z2M, }BXR
0

0 I

(4.15)

The second term on the rhs of Eq. (4.15) again cancels if
we use the fact that P contains the phase P

with P =PP0 . Equation (4.13) is the analogue of condi-
tion (4.11) for the case of the presence of a magnetic field.
For a homonuclear diatomic molecule, we have P—= 1 and
our condition (4.12) becomes identical with the condition
(4.11) of the zero-field case. Using Eq. (4.12) in the fully
coupled nuclear equations of motion (3.8) we arrive at the
nuclear equations of motion in the Born-Oppenheimer
approximation (3.10}. The latter were used in the litera-
ture ' for the special case of the H2+ ion to calculate
its rovibrational spectrum in a strong magnetic field. In
this approximation scheme the diagonal terms of the
nonadiabatic couplings contain, as shown in Sec. IVA,
the screening of the nuclear charges against the magnetic
field and therefore must be included in the nuclear equa-
tion of motion.

An alternative possibility to derive the nuclear equa-
tion of motion in an adiabatic approximation is motivat-
ed by the fact that we have had to set the nuclear relative
velocities equal to zero in order to obtain a well-defined
electronic Hamiltonian from the total Hamiltonian of the
molecule. Since the electronic wave functions are calcu-
lated for fixed nuclear relative coordinate it suggests itself
to use the condition

(4.16)

The electronic wave functions $0. still are strongly
dependent on the internuclear distance. Only in the dis-
sociation limit of the molecule into atoms this dependen-
cy is well known and described by the gauge-centering
phases given in Sec. IVA [see Eq. (4.6)]. Apart from
these gauge phases the electronic wave function shows a
smooth behavior with respect to the internuclear dis-
tance. Hence Eq. (4.15) is the mathematical formulation
that the electronic wave function, apart from all gauge
phases is taken to be independent of R.

Equation (4.14) provides a new kind of adiabatic ap-
proximation which we call the screened Born-
Oppenheimer approximation. The nuclear equation of
motion in the screened Born-Oppenheimer approach
which results from the condition (4.14) reads as follows:

P + k +a~(k;R) —E y +g A'Jy. =0 .

(4.17)

The screened Born-Oppenheimer approximation is ob-
tained by ignoring all nonadiabatic coupling terms A,J.
The paramagnetic and diamagnetic terms of the nuclear
equation of motion in the Born-Oppenheimer approxima-
tion (3.10) are not present in the screened Born-
Oppenheimer approximation (4.17). They are now in-
cluded in the diagonal term of the nonadiabatic coupling
elements. The nonadiabatic coupling elements which ap-
pear in the fully coupled nuclear equations of motion are
now given by the appealing expressions

(4.18)

with

P+ —(M, M~M0) '(Z, M2+Z2M, )BXR
M)M2 2

e mJK

2 MMiM2

The screened Born-Oppenheimer approximation has the
advantage that its nuclear equation of motion (4.17) is
well behaved in the dissociation limit of the molecule into
atoms. In analogy to the zero-field case the diagonal
term of the nonadiabatic couplings A. - then provides
only small corrections to the nuclear equation of motion
(4.17) in the dissociation limit. For the general case, i.e.,
also far from dissociation, it is left to future investigations
to find out to which extent the screening of the nuclear
charges takes place. This will clarify the importance of
the diagonal terms of the nonadiabatic couplings in the
different approximation schemes.

Finally, we remark that the off-diagonal elements of
the nonadiabatie coupling terms are identical in both of
the two approaches, i.e., A-'=A-' for j&j'. Moreover,
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the nuclear equations of motion which we obtain by add-

ing the diagonal terms of the nonadiabatic couplings A"
to the nuclear equation of motion in the Born-
Oppenheimer approximation or alternatively by adding
the diagonal terms A" to the nuclear equation of motion
in the screened Born-Oppenheimer approximation are
identical.

V. A SPECIAL CASE: THE HOMONUCLEAR
DIATOMIC MOLECULE

+ gp;+ —Bxgr,
i

T

+ P+ BXR + V([r;I;R),
,0

(5.1)

where Z is the nuclear charge number of the nuclei. The
Hamiltonian (5.1) is much simpler than in the heteronu-
clear case. It contains, in particular, no mass-correction
terms which include mixed electronic and nuclear de-
grees of freedom. Furthermore, there exists no coupling
of the pseudornomentum to the nuclear degrees of free-
dom. The mass-corrected electronic Hamiltonian, which
can be obtained from Eq. (3.5) by setting JM, equal to zero,
reads

'2

(kXB) gr;+g p; ——BXr;e l e

'2
+ gp, +—BX+r, +V(tr, ];R), (5.2)2MO, . 2

and the nuclear equation of motion, which results from
Eq. (3,8), reads

2

P+ BXR + k +ej(k;R)—E
0 2

The total Hamiltonian for a homonuclear diatomic
molecule which can be obtained from Eq. (3.1) by assum-
ing equal nuclear charges and nuclear masses of the two
atoms simplifies to

'2
k~ — (kXB) gr;+g p, ——BXr;

l

for example, the H2+ ion in the presence of a magnetic
field. However the first two terms of Eq. (5.4) depend im-

plicitly via the wave functions IPJ. I on the magnetic field
strength and we therefore expect the nonadiabatic cou-
pling terms to depend considerably on the magnetic field
strength.

The problem of the missing screening is resolved analo-
gously to the heteronuclear case. The electronic energy e
and the diagonal term Ad of the nonadiabatic couplings
read in the dissociation limit of the molecule into neutral
atoms A2 ~ A + A as follows:

e=2E„+C,

Ad= —eZ (BXR) P —e Z2 (BXR)~—8 .
1 2 2

Mo 8MO

(5.5)

We again see that the explicit magnetic-field-dependent
parts of A in Eq. (5.5) are the negative counterparts of the
paramagnetic and diamagnetic term in the nuclear equa-
tion of motion (5.3). The screening of the nuclear charges
is therefore contained in the diagonal term of the nonadi-
abatic couplings. We remark that the screening of the
paramagnetic ( ~B) term arises from the derivative cou-
pling term [second term in Eq. (5.4)], which is equal to
zero in the zero-field case, whereas the screening of the
diamagnetic term ( cc8 ) comes partially from the cou-
pling terms of the zero-field case and partially from the
additional explicit magnetic field-dependent coupling
term [first and third term in Eq. (5.4), respectively].
Again the same conclusions hold as they were already
drawn for the case of a heteronuclear molecule in $ec.
IV A.

Finally, we present the nuclear equation of motion in
the screened Born-Oppenheimer approximation and the
corresponding nonadiabatic coupling elements A . The
latter can be obtained from Eq. (4.18) and read

'2

AJJ
=

pi P+ BXRJJ M J

+g AJJ yj =0, (5.3)
+ . P+ BXR ' P.

0
(5.6)

= 2
JJ M0

& 0, IP'lb, ' &+2& P, IP I P,' &P

+—ZB XR.& Q) l P l pJ. &

with the nonadiabatic coupling elements
'P

(5.4)

2 2 1

2M
P + k +e (k;R)—E y. =O. (5.7),

The nuclear equation of motion takes on the following
appearance:

Apart from the nonadiabatic couplings also present in the
zero-field case, we have for a homonuclear diatomic mol-
ecule only one additional explicit magnetic-field-
dependent coupling term [last term in Eq. (5.4)]. This
term vanishes if the molecular axis is parallel to the mag-
netic field direction, which is the equilibrium position of,

As already discussed in Sec. IVB the advantage of the
nuclear equation of motion in the screened Born-
Oppenheirner approximation is its correct behavior in the
dissociation limit of the molecule into atoms. The diago-
nal term of the nonadiabatic coupling elements (5.6) then,
in general, provides only small corrections to the total en-

ergy E.
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VI. ATOMIC PSEUDOMOMENTA
GAUGE-CENTERING PHASES,

AND OFF-DIAGONAL NONADIABATIC COUPLINGS

MoPT= exp. +i(k„—kz} $r; —grj + R
J

In Sec. V we investigated the case of vanishing pseu-
domomentum k. In this section we will provide a brief
discussion of some aspects of the case of nonvanishing
pseudomomentum for a homonuclear diatomic molecule
In the following k denotes the total pseudomornentum of
the neutral molecule and k~ and ka denote the pseu-
domomenta of the atoms A and 8, respectively. In the
dissociation limit of the molecule into neutral atoms we
have no interaction between the two atoms and as a
consequence there exist two constants of motion: the
atomic pseudomomenta k„and k~. They obey the fol-
lowing commutation relations:

[kA ~A]=[ka ~8]=[kA a]=[ka ~A]=0
where %„and ff~ are the atomic Hamiltonians for the
atoms A and 8. The electronic and nuclear equations of
motion for the molecule in an adiabatic approximation
contain no information about the individual atomic pseu-
domomenta k „and ke; only the sum k =k „+k~ enters.
The same statement holds if we take the dynamical
corrections, due to the diagonal term of the nonadiabatic
couplings, into account. The effects of the atomic pseu-
domomenta must therefore be contained in the o+
diagonal nonadiabatic coupling elements. Nevertheless,
it is possible to understand some of the effects of the
atomic pseudomornenta in a qualitative way by the fol-
lowing simple considerations.

In our pseudoseparation of the center of mass of the
molecule in Sec. II we have separated the phase

Xexp —i—BX g r; —g r- R
J

(6 4)

where R is the relative coordinate of the two nuclei and
[r, } and [r } denote the relative coordinates of the elec-
trons, which are located at the nucleus A and B, respec-
tively, to the center of mass of nuclei. The second part of
the phase (6.4) is nothing other than the gauge phases dis-
cussed in connection with Eq. (4.6) in Sec. IVA. They
shift the gauge origin from the origin of the coordinate
system to the nuclei of the atoms. We therefore conclude
that for a molecule in the dissociation limit, the gauge-
centering phases [second part of the phase (6.4)] are
closely related to the separate center-of-mass motions of
the atoms in the molecule. This might be also valid far
from dissociation, although the atomic pseudornomenta
are in this case no longer conserved quantities. %'e re-
mark that, although we have shown it only for the special
case of a homonuclear diatomic molecule, the preceding
statement holds also for an arbitrary molecule. In the
case of a heteronuclear diatomic molecule the corre-
sponding phase to Pr in Eq. (6.4) also contains the phase
P from Eq. (4.5}.

From the phase (6.4) it can be seen that if one neglects
its first part one implicitly assumes the equality of the
atomic pseudornomenta, i.e., k„=k~. The first part of
the phase (6.4) may be useful to fix the boundary condi-
tions k„and kz in, for example, describing collision ex-
periments. If we include it in our dissociative wave func-
tion (4.4) we obtain the total waue function

exp +i k ——BX+r& Rs
e

1

yT =~[PTqp( [r; —R/2 };[ s; } )pp( [r& +R/2 }
'
[ s& } )],

(6.2)
(6.5)

exp +i k„——BX+r„, Rs
e

exp +i kz ——8 X Q r~ . .Rs
e

1

(6.3)

where Rz and Rz are the center-of-mass coordinates of
A 8

the atoms A and 8, respectively. [r„,. } and [rz. } are the
electronic relative coordinates to the nuclei of the atoms
A and B, respectively. The phase PT which transforms
the molecular phase (6.2) to the atomic ones (6.3) reads in
molecular coordinates as follows:

from our total molecular wave function [see Eqs. (2.6)
and (2.7)]. In Eq. (6.2) Rs denotes the center-of-mass
coordinate of the molecule and [r&} the electronic rela-
tive coordinates to the center of mass of nuclei. Since we
discuss the case of well-separated atoms we have
k=k„+k~ with conserved pseudornomenta k„and k~.
Analogously, the phases which can be eliminated from
the total atomic wave functions are of the form

with Pz from Eq. (6.4). The total energy calculated with
the total wave function (6.5) by using the electronic Ham-
iltonian (5.2} and the diagonal term Ad [see Eq. (5.5)] of
the nonadiabatic coupling elements reads as follows:

E = k2~ + k2~+QEA
1 2 1

(6.6)

The energy E now contains the correct k „and kz depen-
dencies which we would not obtain if we would have ig-
nored the (k„—kz)-dependent part of the phase PT in

Eq. (6.5). Turning to the Born-Oppenheimer approxima-
tion (with diagonal corrections or screened) the nuclear
equation of motion (4.10) or (4.17) replaces the first part
of the phase PT by the free wave exp(iP R} with
P =(Mp/4M)(k„—k~) . The difference between the
two phases is due to the neglect of the off-diagonal cou-
plings.

Finally, we briefly discuss the interrelation between the
off-diagonal nonadiabatic matrix elements and the atomic
pseudomomenta. It is well-known that in the zero-field
case the off-diagonal nonadiabatic coupling elements can
be made arbitrarily large by increasing the relative veloci-
ty of the collision partners. Since we have separated the
center-of-mass motion before performing an adiabatic
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separation we expect the off-diagonal nonadiabatic cou-
pling elements not to be very sensitive to the magnitude
of the pseudomomentum k. However, the relative veloci-
ties may be large in the case of collisions, i.e., we may
have large ~k„—ks ~. Such a situation increases the mag-
nitude of the nonadiabatic coupling terms. For bound
states it is the large amplitude motion which increases the
off-diagonal nonadiabatic coupling elements and there-
fore restricts the range of validity of the approximation
scheme.

VII. SUMMARY AND CONCLUSIONS

In order to obtain a correct treatment of the center-of-
mass motion we performed, as a first step, the pseu-
doseparation of the center of mass for an arbitrary neu-
tral molecule in a homogeneous magnetic field. The ex-
istence of a constant of motion, the pseudomomentum k,
enabled us to reduce the center-of-mass dependency of
the Hamiltonian to a motional Stark effect.

As an internal coordinate system we chose the relative
coordinates to the center of mass of nuclei which is espe-
cially adhpted to an adiabatic approximation. We re-
mark that another choice of the reference point (defined
by the nuclei) of the internal coordinate system would not
lead to essential simplifications of the formulas. Our re-
sulting Hamiltonian contains series of paramagnetic
( ~8) and diamagnetic ( cc8 ) terms involving nuclear
and electronic degrees of freedom. Nevertheless, we suc-
ceeded in rearranging the Hamiltonian in a unique
manner so it takes on a rather simple form. This form
enabled us to identify the specific (mass-polarization) and
exact normal-mass-correction terms (reduced masses,
gauge-centering corrections). This identification is of
particular importance in a magnetic field. We have seen
that the mass corrections which shift merely the gauge
origin in the electronic part of the Hamiltonian can and
must be included exactly in any calculation which takes
mass corrections into account. Otherwise one would ob-
tain divergences in the limit of infinitely separated atoms.
Furthermore it is known that corrections due to re-
duced masses and mass-polarization terms play an impor-
tant role in the high-field region (see below).

With our total molecular Hamiltonian we performed
an adiabatic separation of the electronic and nuclear de-
grees of freedom. In order to obtain a mass-corrected
electronic Hamiltonian which is well behaved in the dis-
sociation limit of the molecule into atoms it was essential
to set the nuclear relative velocities equal to zero. As fur-
ther results we derived the nonadiabatic coupling ele-
ments and the equation of motion for the nuclei.

A serious problem arises for the nuclear equation of
motion in the Born-Oppenheimer adiabatic approxima-
tion. The screening of the nuclear charges by the elec-
trons against the magnetic field is ogssing. The nuclei ap-
pear as naked charges whereas in reality they are
screened. We have resolved this problem by investigating
the diagonal term of the nonadiabatic coupling elements
in the dissociation limit of the molecule into neutral
atoms. The diagonal terms of the nonadiabatic couplings

contain the screening of the nuclear charges and there-
fore must be included in the adiabatic approximation
scheme in order to obtain a reasonable description of nu-
clear dynamics in the presence of a magnetic field. Be-
cause of the complexity of the wave functions, the deriva-
tive coupling terms now also contribute to the diagonal of
the nonadiabatic coupling elements. In contrast to the
zero-field case it is therefore not sufficient to perform a
Born-Oppenheimer or Born-Huang adiabatic approxi-
mation.

We finally introduced the screened Born-Oppenheimer
approximation which provides the correct free nuclear
equation of motion in the dissociation limit of the mole-
cule. The diagonal term of the nonadiabatic coupling ele-
ments now contains the paramagnetic and diamagnetic
terms of the nuclear equation of motion in the Born-
Oppenheimer approximation. In analogy to the zero-field
case, the diagonal term of the nonadiabatic couplings
then provides only small corrections to the nuclear equa-
tion of motion in the dissociation limit. For bound states
it is left to future investigations to determine how com-
plete the screening is and to compare the importance of
the diagonal term of the nonadiabatic couplings in the
different approximation schemes.

A problem which will be also the subject of future in-
vestigations is the restriction of the range of validity of
the adiabatic approximation scheme by the explicit and
implicit magnetic field dependences of the off-diagonal
nonadiabatic coupling elements. Nevertheless, some
qualitative remarks can already be given here.

As already mentioned, it is known ' that mass correc-
tions play an important role in the very-high-field region
where their energetic contribution becomes comparable
with the Coulomb binding energy of the molecule. Since
the off-diagonal nonadiabatic coupling elements contain,
in general, the higher-order mass corrections they are not
expected to be any more negligible in the very-high-field
region. Another case of nonadiabatic effects is due to the
symmetry lowering in the presence of a magnetic field.
Electronic states which are, because of their different spa-
tial symmetry, not allowed to couple in the zero-field case
may now couple. Their energies may, therefore, no
longer be allowed to cross each other as a function of the
internuclear distance. In this case already a weak mag-
netic field may suffice to introduce relevant nonadiabatic
effects. For stronger fields the energy levels are shifted
substantially by the increase of binding energy and the in-
teraction terms of the spins with the magnetic field. On
the one hand energy levels which are well separated in
the zero-field case may come closely together and in-
teract. On the other hand near degeneracies or degenera-
cies may be resolved by separating the involved energy
levels. Another point which wi11 substantially modify the
potential energy surfaces and the nonadiabatic coupling
elements is the increase of the relevant number of degrees
of freedom in the presence of a magnetic field. For a dia-
tomic molecule we have already two relevant nuclear de-
grees of freedom: the internuclear distance and the angle
between the molecular axis and the magnetic field.

Finally, we mention that the electronic Hamiltonian as
well as the nonadiabatic coupling elements contain the
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effect of an antiscreening, i.e., polarization of the mole-
cule. The origin of this polarization are the Stark effects
occurring explicitly in the electronic Hamiltonian and
implicitly in the nonadiabatic coupling elements by their
dependencies on the separate centre of mass motions of
the atoms. This antiscreening is, however, only of
relevance for extremely strong magnetic fields.

¹teadded in proof .The importance of the phase P
[see Eq. (4.5)] for the wave function of a heteronuclear di-
atomic molecule was discussed extensively in Sec. IV. In
Sec. VI we showed the physical significance of this phase.
For the sake of completeness we give here the Hamiltoni-
an (3.1) of the heteronuclear diatomic molecule in its uni-
tarity equivalent (and simpler) form

P 'gfP= k2 — (kXB). gr; — JKR +g p,
——8 r,.

2M M 0

'2

+ gp, +—BX gr; — JIt,BX R

2

+ P+ — (Z, Mz+Z2Mf)BXR + V(Ir;};R) .
2M] M2 2 Mo

A similar unitary transformation holds for the case of an

arbitrary molecule.

APPENDIX: THE EQUATIONS OF MOTION
FOR AN ARBITRARY MOLECULE

r, =—[r,&'],1

l

with&' from Eq. (2.3). r =0 (for all a) then implies

1= —.[r,&]=0,
l

(Al)

(A2)

with & from Eq. (2.9}. The commutator (A2} is equal to
the condition

For the case of an arbitrary molecule we obtain the
mass-corrected electronic Hamiltonian from the total
Hamiltonian (2.9) by setting equal to zero all relative ve-

locities of the nuclei. The corresponding equations of
motion for the nuclear relative coordinates are

1 1 . , eZa
p

— g'p& +— (BXr,)
a 0 P a

e 1 g' ( BXJKprp)
0 n P

+— (ZM —Z Mo) BX+r; =0,
0 a

(A3)

where Z is the total nuclear-charge number. Z and M
are the nuclear-charge number and mass of the individual
nuclei, respectively. p is the canonical conjugated
momentum of the nuclear relative coordinate r . Fur-
thermore, we have used the abbreviation Atp=(ZttM„
—Z„MP) [see Eq. (2.5)).

Using conditions (A3) in the total Hamiltonian (2.9) we
obtain the following mass-corrected electronic Hamil-
tonian

Jo =—
el (kXB) gr, — g'JK r +g p,

——BXr +— B g'J)tt r,
n a n a

2

2

+ gp;+ —BX+r;—— + BXg'A r +V((r;};Ir }) . (A4)

The resulting nuclear equation of motion (see Sec. IV A) takes on the following appearance:

p+ —Z BXr-+2-
2

g'p + BXg'JR r +
3

BXQ'M r

+ k +e (k;Ir }) Ey.(k;Ir })+g—A 'y'(k;Ir })=0 (A5)
1

2M

with the nonadiabatic coupling elements A. ' given by
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2
1 e m

2Ma a J a I

Z m
+

2 PJ BX+r; P' +g' (() p —— Z BX+r,
8 MM, ' J M 2M p, +—Z, BXr,

g'p —— ZBX+ r, P., g'p + BXg' JK r
a a

+ Bxx'M, r, p, Bxxr;
4 M2M

(A6)

The integration in the matrix elements is over the electronic coordinates only and (P ~p~~P ') means (PJ ~p P '), etc.
Finally, we present the nonadiabatic couplings belonging to the screened Born-Oppenheimer approach,

Aq~
= g' PJ i + g'Mp~p

Mo
g'Mp~p '

P,' +g' P, ~ + g'Mp~p PJ p —
P, g'Mp~p P, g'p

J

(A7)

with ~& from Eqs. (A2) and (A3). The corresponding nuclear equation of motion reads as follows:

p, — g'p + k +e,(k;Ir I) Ey (k;—Ir I)++AJJy'(k; Ir I)=0.
J

The screened Born-Oppenheimer approximation is—as usual —obtained by ignoring the coupling terms AJJ'.
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