
PHYSICAL REVIEW A VOLUME 38, NUMBER 12 DECEMBER 15, 1988

Relativistically corrected Schrodinger equation
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The relativistically corrected Schrodinger (RS) equation [(m~c +p'c')'~ + V E)—%'=0 is some-

times used to describe charged fermions, which are subject to strong Zitterbemegung. Since, howev-

er, equations of this type describe bosons with weak Zitterbeuegung effects, it is mandatory to
screen the Coulomb potential V in an r range of order h /mc, and also to add a screened spin-orbit
potential. Thereby the singularity problems with Coulomb potentials are avoided. While the Pauli
Hamiltonian must not be used in variational or eigenvalue equations, the RS Hamiltonian may be.
An effective potential for the RS equation is derived, which yields relativistically corrected energies
and wave functions for fermion systems with Coulomb potentials. Accurate numerical solutions for
an unshielded single-center Coulomb potential are presented.

I. INTRODUCTION

Relativity plays an important though not dominant
role in the valence shells of heavy elements. The same
holds in several other fields, for instance, for "onium"
systems like quarkonium, hadroniurn, etc. Relativistic
quantum field theory and even the classical Dirac equa-
tion are still difficult to apply to many-particle and multi-
center problems. For those problems, nonrelativistic ap-
proaches with additional corrections in order to account
for the relativistic effects in an approximate manner are
desirable. They are both conceptually and computation-
ally simpler.

It is common practice to begin with a Schrodinger-type
eigenvalue equation (working with two-component spi-
nors in the case of spin —,particles). Relativistic kinemat-
ics may be accounted for by adding the so-called
velocity-mass term h = —p /8m c to the nonrela-
tivistic kinetic energy. The corresponding rather ubiqui-
tous Pauli eigenvalue equation is, however, very ill
behaved and has, for instance, no bound states at all.
Another popular approach is to use the square-root ex-
pression (m c +p c )' for the relativistic kinetic ener-

gy, an approach which is still not completely satisfactory
in the case of singular interactions, e.g., the Coulomb po-
tential V = Z/r. —

These approaches are at best suited for bosonic sys-
terns. For fermions, the potential energies have to be
corrected also, even at the lowest order of approximation.
Conventionally the Coulomb interaction is corrected by
the Pauli-type spin-orbit and Darwin terms
[h =(Z/2c r )E.s, h =(Zm. /2m c )5(r)]. As in the
case of the velocity-mass correction h", they must not
be used in variational eigenvalue equations, but only in
first-order perturbation theory. Furthermore, it should
be noted that h vM is only valid for p (mc, and h so and
h only for r )Z/mc . Thus, potential corrections are
needed which are applicable in the inner regions of the
very deep Coulomb potentials.

The shift of the total energy due to the relativistic
correction of kinetic and potential contributions leads to

a significant shift of the classical turning points, if the po-
tential gradient is small. This is, for instance, the case for
the outer turning point in a Coulomb potential. Al-
though the particle moves there with nonrelativistically
low velocity, its motion is appreciably modified. Many

phenomena in atomic, molecular, and solid-state physics
depend sensitively on the wave function in the outer re-

gion, i.e., in the "chemically active" valence shell. There-
fore it is important to have an approach which simultane-
ously yields both reasonably accurate energies and wave
functions.

Our aim is to develop a variational two-component ei-
genvalue equation for multicenter multiparticle systems.
The first step is to improve on the Pauli-type one-particle
potential corrections mentioned above. These correc-
tions may easily be developed for solvable one-particle
one-center systems, and may then be adapted to more
general cases (for instance, to molecular self-consistent
field problems). A relativistically corrected Schrodinger
one-particle model Hamiltonian is made plausible in Sec.
II. The form and the coefficients of a model potential ap-
propriate for the Coulomb interaction are determined
analytically in Sec. III. Numerical results for this model
of hydrogenlike atoms are presented in Sec. IV. The re-
sults are summarized and discussed in Sec. V. In the Ap-
pendix we comment on the pure Coulomb square-root
case and on the velocity-mass term.

II. RELATIVISTICALLY CORRECTED
SCHRODINGER EQUATION

Significant progress has been achieved in deriving
rigorous two-component formalisms in the configuration
space of N electrons. ' In general the equations define
an effective Hamiltonian in an implicit and rather in-
volved form. They have successfully been implemented
on the computer, but they are not specially suited for in-
terpretative purposes because of their complexity. On
the other hand, Pauli type equations (t-hough conceptual-
ly not being completely satisfactory) have also been im-
plemented successfully within the frameworks of the Xa
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and the pseudopotential approaches. ' Here we shall
develop a model Hamiltonian at an intermediate level.

The classical relativistic energy expression for a free
particle may be written in three nearly equivalent forms,
namely,
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Pmc +a pc =E . (lc)

(mc —U) +(pc —A) =(E —V) (KG), (2b)

After introducing an external scalar potential U (which
modifies the effective mass) and a four-vector potential
(A, V), according to the minimal coupling rule one ob-
tains

[(mc —U) +(pc —A) ]'~ =(E —V) (RS), (2a)
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FIG. 1. Relativistic energy corrections with respect to the
Schrodinger energy E~"": h=(E"'—E '"')c'/Z for the hy-

drogenic ground state vs Z/c, from the Dirac (D), square-root
(SR), and Klein-Gordon (KG) equations.

or

P(mc —U)+a (pc —A)=(E —V) (D) . (2c)
mc +R+V —E R @RS

'

mc2+R V +ERs @Rs =0

Upon quantization, these equations are no longer
equivalent since the p operator and the r-dependent po-
tential operators do not commute. This is seen most
clearly in the following equivalent formulations:

{m c +p c (E" V)— —

+ [(m 2 4+p2 2)1/2 V(r)] I
tlrRS 0

(3a)

[ + 2 (ERG V)2]qlKG ()

Im c +p c (E V)—+[a—pc, V(r)] Jq' =0.
(3b)

(3c)

(mc —U)+(pc —A) l2(mc —U) =(E —V) (4)

in the most direct manner.
Some aspects of these three equations can be under-

stood more easily, if they are written in two-component
particle-antiparticle form. We have found that

From here on we have assumed U=O and A=O. The
corresponding relativistic energy corrections of the
positive-energy ground states for the case V= Zlr, as-
a function of Z, are shown in Fig. l. If El, (Z) is expand-
ed as g;a;c (Z/c)', the leading coefficient of the relativ-
istic correction a4 is given by b, (Z =0) in Fig. 1, and a5
is given by the slope (d b /dZ)z —p. Bound states are only
obtained for Z values below some bounds, ' which are in-
dicated in Fig. 1 by dashed vertical lines.

The correct wave equations for spin-0 and spin- —,
' parti-

cles are the Klein-Gordon (KG) and the Dirac (D) equa-
tions, (2b) and (3b) and (2c) and (3c), respectively. The
so-called relativistically corrected Schrodinger (RS) or
square-root equation (2a) and (3a) exhibits the similarity
with the classical relativistic energy expression (la) and
with the conventional Schrodinger equation

(Sa)

is equivalent with Eqs. (2a) and (3a), where
@Rs qgRs+ @Rs and+

R =p /2m+[I 1+(p/mc) I
'~, V]

Equation (Sa) can be derived in a similar way as the
Feshbach-Villars representation of the Klein-Gordon
equation,

mc2+ T+ V —EKG T 'A(KG

mc +T
(Sb)

where T=p /2m. Equation (Sb) has the same structure
as the standard representation of the Dirac equation,
written explicitly as

mc +V —E
c(o"V)

D
c (cr.V) ++

mc' —V+ED =0. (Sc)

Of course, 4'+ are two-component spinors.
The diagonal terms of the Klein Gordon equa-tion (Sb)

are the nonrelativistic energies (of order mc ) of particle
and antiparticle with frequency factor E and energy
6 = ~E~. The off-diagonal p /2m coupling is of order c
so that the lower component of a particle state is of order
c . Thus the relativistic corrections become of even or-
der in c, the leading one for the kinetic energy being of
order c, and for the potential energy being of order—4
C

The RS equation (Sa) differs from the KG equation (Sb)
in two respects. First, the diagonal potential (o, V) is
modified by a commutator of V with the square-root
operator [i.e., with terms of order (p/c) in the region of
large p; and of order (p/c) in the region of small p].
Second, the off-diagonal coupling is similarly modified.
Consequently, the V-dependent relativistic energy correc-
tions will contain terms of even and odd powers of c,
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starting with c
Upon linearization, one obtains the Dirac equation (Sc)

with off-diagonal p coupling of order c ', so that the lower

component becomes of order c '. Consequently V-

dependent relativistic corrections already appear in the
order of c . We note that a linear momentum vector p'
in the Hamilton equation implies spin (both in the relativ-
istic and nonrelativistic theories', but a linear momen-
tum value ~p~

' does not. For instance, substitute ic~p~ for
c(o"7) in Eq. (Sc). This is an equation without spin, but
with a spin-independent potential correction of order—2c

Summarizing, the coupling of the upper and lower
components in the Feshbach representations (S) is of or-
der k =(p/2mc) or k =(p/2mc) for an equation with
linear or quadratic momentum, respectively. The trans-
formation to a pure free-particle basis is represented by a
matrix of the form

1+O(k ) O(k)F-
O(k) O(k2)

= I+o„XO( k) +0( k) .

component formalism' yields Eq. (9) with V' = Vo.
We note that for very small r ~0 any realistic potential V
of an extended nucleus goes like V~ Vo, which, however,
does not imply V' ~ Vo.

For large r, corresponding to small p, the nuclear po-
tential V= —Z/r is weak. Then the conventional Pauli
approximation is applicable. V' consists of V and of the
spin-orbit term -I sir The Darwin term -5(r) van-
ishes for large r. The velocity-mass term -p is just the
low-p first-order correction of the square root in Eq. (9) to
the nonrelativistic kinetic energy.

For small r, corresponding to large p, the different
decoupling procedures for the Dirac equation all yield pc
for the kinetic energy. This is the leading term of the
square root of Eq. (9) for large momenta. The spin-
independent leading term for the potential becomes
V' =( Y+pV p)l'2, where p=p/p. That is, V' is ob-
tained by smearing or averaging V a bit. The leading
spin-dependent term for V = Z/r is V1—, —Vl s.

The following ansatz interpolates between the large-r
and small-r behavior:

The potential, which a pure free particle feels, is thus

V'ff=F '(o, V)F

= V[o, +o„XO(k)+o,XO(k )+ ], (8)

Ver —ZX '
1/r for r &Ra

a —br for r Ro

1/r for r )R~,
+Z(l s/2c )X '(f/ ) f ( (10)

where the odd operator cr„couples upper and lower com-
ponents [differing by order 0 (k ')]. Therefore the poten-
tial energy contains relativistic correction terms of order
k . That is of order (p/2mc) or (p/2mc) if the momen-
tum is linear as in Eq. (Sc) or quadratic as in Eq. (Sb), re-
spectively. These are the so-called Zi'tterbewegung
corrections. The diff'erent behavior of the eigenvalues of
the RS and KG equations (Sa) and (Sb), on one hand, and
of the D equation (Sc), on the other hand, is exhibited in
Fig. 1. Consequently, if a Schrodinger-type equation
(containing p ) is to be used to simulate energies and den-
sities of the Dirac equation (containing p ), cr-, p-, and
V-dependent modification terms of order c have to be
added, yielding an effective potential V' . In other
words, the relativistically corrected Schrodinger equation
should be of the form

[(m 2c 4+p 2c 2
) 1/2+ Veff Eeff]jef

—(jef Eeff)jeff 0 (9)

We note that in a more general approach one might also
add U' and A' terms to the mass and momentum
terms under the square root. For instance, it has been
shown that the Zitterbemegung correction can also be
simulated by a scalar potential U with U~O for r~ 0D

and U~ —const XZc for r~0. '

III. EFFECTIVE MODEL POTENTIAL
FOR COULOMB SYSTEMS

A. Plausible ansatz for V'

The condition of smooth continuity at Ro and RI, fixes

the parameters a, i2, f, and g,

a =3/2R11, f=3/R1S,

b=1/2R11, g =2/R1, ,

The remaining parameters Ro and RI, can be determined

analytically through the requirement that for low nuclear
charges the model energy E' of hydrogenlike atoms
should coincide at some order of perturbation theory
(with respect to the nonrelativistic Schrodinger Hamil-
tonian as Ho) with the Dirac values E

E„„=c/[I+(Z/cy) ]'

with y =n —k + (k —Z /c )' (12)

where we have assumed m =1. Specifically, for 1$

E11=c —Z /2 —Z /8c +O(Z /c ),
for' 2$ p ~ y2

E21=c2—Z /8 —SZ /128c +O(Z /c ),

(13a)

(13b)

We note that our strategy differs from the one of
Karwowski and Kobus, ' who do not require the poten-
tial to behave correctly asymptotically. Our V' is a local
approximation to the "effective Hamiltonian" of Chang
et al.4

B. Analytical determination of the parameters

For a constant potential V= Vo, any type of transfor-
mation procedure from the Dirac equation to a two-

and for 2p3&2

E22 =c —Z /8 —Z /128c +O(Z /c ) . (13c)
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/(10 a )
(2p„,iH"i2p„, ) =c'—Z'/8

—Z (7/384c +1/48c )

+O(Z R 0,Z /c, Z RI, ),
(2p ia' i2p )=c —Z /8

—Z (7/384c —1/96c )

+O(Z RD, Z /c, Z R )

(14c)

(14d)

Comparison of (13a) with (14a) or of (13b) with (14b)
yields the consistent first-order expression for R 0,

Ra=&5/2c+O(Z/c ) . (15a)

Similarly (13b) and (14c) and (13c) and (14d) both yield

Ri, =O(1/c) . (15b)

The next higher terms may be obtained by second-order
perturbation theory which, however, is far from trivial.
The coefficients have been determined by numerical tech-
niques. The results are (compare also Fig. 2)

Ro=c '[&5/2 —0.75(Z/c)], (16a)

nuc c)

100 Z

R„=c 'f (Z/c) =c '[3.2 —1 7(Z/c).+1.5(Z/c) ] .

(16b)

IV. NUMERICAL RESULTS

First-order perturbation theory yields

(»iiq IH'
I 1&&&2 ) =c Z /2 Z—(5/8c 2—R 0/5)—

+O(Z RO, Z /c ),
(2s imp iH i2siy2 ) =c Z /8

—Z "(13/128c —R 0/20)

+O(Z RQ, Z /c ),

(14a)

(14b)

FIG. 2. R parameters of Eqs. (10) and (16) in units of 10 'ao
vs nuclear charge. (a) Ro fitted to the 1$&» Dirac energies, (b)
RI, fitted to the 2pi» Dirac energies, and (c) nuclear radius
R nuc (I} /2c (Ref. 30).

Equation (9) with V= Zlr (s—ee Appendix) and with
V' [Eqs. (10), (11), and (16)] has been solved by the
basis-set-expansion method using 25 to 30 even tempered
optimized Cartesian Gaussians. All matrix elements
were calculated analytically including those of the
square-root operator, which were determined exactly in p
space by using Fourier-transform techniques. ' '

In Table I the relativistic energy corrections
(E '"' E"') of the P—auli approximation, our model, and
the Dirac approach are compared for hydrogenic 1s»z,
2s»z, 2p»z, 2p3/z and 3s»z states. E '"' is the nonrela-
tivistic Schrodinger energy. On the average there is an
improvement over the Pauli first-order perturbational re-
sults, the main advantage, however, being the variational
character of the model approach.

Therefore we can directly determine relativistically

TABLE I. Relativistic energy correction (F. ""—E"')c /Z of hydrogenlike ions. E""has been cal-
culated with the Pauli approximation, the present model, and the Dirac approach.

Z

55
55
55

90
90
90

Method

Pauli
Eq. (8)
Dirac

Pauli
Eq. (8)
Dirac

Pauli
Eq. (8)
Dirac

1$1»

0.125
0.125
0.125

0.125
0.136
0.136

0.125
0.162
0.162

2$1 /2

0.0391
0.0392
0.0391

0.0391
0.0402
0.0427

0.0391
0.0449
0.0515

2p

0.0391
0.0391
0.0391

0.0391
0.0427
0.0427

0.0391
0.0515
0.0515

2p3»

0.0078
0.0078
0.0078

0.0078
0.0076
0.0080

0.0078
0.0075
0.0083

3$ &/z

0.0139
0.0139
0.0139

0.0139
0.0142
0.0151

0.0139
0.0155
0.0178
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TABLE II. Relative relativistic orbital contraction 100 (r "'—r"')/r "'(e/Z) . Model values
(Dirac values in parentheses) of hydrogenic orbitals.

r2
2

p
2

r'
r'
r'

Z

8
55
90

8
55
90

8

55
90

1s 1/2

82(58)
78(59)
73(62)

50(33)
46(35)
44(38)

90(50}
66(57)
77(76)

2S I/2

68(67)
67(68)
63(68)

36(37)
36(38)
36(40)

82(63}
71(72)
74(96)

2P I/2

79(79)
79(79)
79(79)

43(44)
44(45)
47(48)

63(63}
61(72)
77(96)

2P 3/2

20(18)
22(18)
21(19)

13(10)
12(10)
12(10)

12(12)
15(13)
16(14)

3& i/2

53(53)
52(53)
50(55)

26(28)
26(29)
28(31)

63(50}
56(57)
58(74)

corrected expectation values from the model wave func-
tions 4' . r, r', and r ' expectation values in Table II
show the relativistic orbital contraction as compared to
the nonrelativistic Schrodinger values. There is rough
qualitative agreement between our model and the Dirac
values.

V. DISCUSSION

The relativistic corrections for the Hamiltonian of a
particle in an external field may be divided up into three
contributions (using the Schrodinger description as the
reference).

(i} In general there is the unique, purely kinetic
velocity-mass effect ——p /8c, which contributes, e.g. ,
——5Z /8c to the energy of a hydrogenic ls state (see
the Klein-Gordon result in Fig. 1).

(ii) Furthermore, there are potential-dependent effects,
which also depend on the details of the relativistic kine-
matics. The power of p in the basic Hamiltonian deter-
mines the order of 1/c of the lower component in the
Feshbach representation. The latter determines the
transformation F [see Eq. (6)] to free-particle and free-
antiparticle states, i.e., it determines the smearing of the
position operator for pure particles (x~F 'xF, the so-
called Zi tterbewegung effect). This in turn determines the
order of the correction terms to the effective potential
acting on a pure quasiparticle in the field. In the Klein-
Gordon case this correction is only of order 1/c, while
in the Dirac case it is of order lic (e.g., +Z /2c for
the hydrogenic ls energy), i.e., it is of the same order as
the velocity-mass effect (see Fig. 1}.

The square-root case is more complicated. The Hamil-
tonian contains p, as in the Klein-Gordon case, but un-
der the square root. The Taylor expansion of the square
root in terms of p has a finite convergence radius.
Whether one can make use of the simple p power-
expansion behavior depends on the importance of the
high-p values, which in turn depends on the potential.
For "weakly" attractive potentials [for instance, for a
screened Coulomb potential as that given by Eqs. (10),
(11), and (16), with

~
V~ Sc ], the high-p values are not

dominant and the relativistic potential energy contribu-
tion is of order c . For an unscreened Coulomb poten-
tial, however, this contribution becomes of order c (see
Appendix and Fig. 1).

(iii) If the momentum appears linearly and in explicit
vector form in the original Hamiltonian, spin-dependent
effects appear. Namely, the different relations emerging
for the different components of p can only be fullfilled by
multidimensional representations of the Galilei or
Lorentz group.

Dirac fermions are characterized, in addition to the
relativistic kinetic energy effect, by relativistic potential
energy effects [of types (ii) and (iii), both of order c ]. If
one wants to describe fermions (for instance, electrons or
quarks) by the "simple" bosonic square-root Hamiltonian
(2a) it is necessary to introduce a screening of the original
potential, which accounts for the larger Zitterbemegung
(and also for the spin) of the Dirac fermions. That is, one
must introduce the relativistic potential effects for fer-
mions of order c explicitly into the square-root equa-
tion by an effective model potential and thereby sirnul-
taneously eliminate the next higher term of odd order.
One must not use an unshielded Coulomb potential when
modeling the behavior of charged ferrnions by the
square-root equation. One must also not use the Pauli
Hamiltonian for variational calculations despite the fact
that the equation (H '"" E)4=0 is p—resented in may
textbooks; this equation does not even have a discrete
spectrum. '

We have here worked out a square-root model equa-
tion (9) with screened Coulomb and spin-orbit potentials,
which can easily be used in variational calculations of fer-
mionic systems. The effective potential is given by Eqs.
(10), (11), and (16). The shielding is of order h/mc. The
results are more accurate than those of Pauli first-order
perturbation theory. Especially, one easily obtains rela-
tivistically corrected wave functions and expectation
values. Furthermore, since Eq. (9) is not of the Dirac-
Feshbach type with upper and lower components, there
do not occur any problems with variational instability.
By not explicitly introducting the negative sign of the
square root one also easily avoids the continuum dissolu-
tion in corresponding many-particle calculations.
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TABLE III. Power-expansion coefficients for the ground-

state eigenvalue of the square-root Coulomb equation. Third di-

gits (in parentheses) may be inaccurate.

APPENDIX: SQUARE-ROOT EQUATION
WITH UNSCREENED COULOMB POTENTIAL

The square-root equation with unshielded V= —Z/r
has been discussed frequently. ' ' Several authors
have independently derived the same analytical expres-
sions for the energy of l =0 states,

21,22,25

26

6

13

This work

8

+—
5
8

5
8

6

+0.67(0) (numerical)

+
3

m =0.8488

+0.84(2) (numerical)

E„,=c /[1+(Z/nc) ]'
=c Z I—2n +3Z ISn c O—(Z Ic ), (17) gH II—etr Hschr (c4+ 2c2)1/2 c2 2/2

while Tzara obtained an implicit relation for E",
which can be shown to differ from (17) by terms of order
—O(Z /c ). Numerical results have been published
which were said to corroborate Eq. (17), or conversely
to agree with the Dirac energies of Eqs. (12} and (13}.
Equation (17) corresponds to E & E & E '"' &E",
while we have obtained E &E &E &E '"' for the
appropriately treated Coulomb potential.

The simplest approach is to expand the square-root
operator in a Taylor series of (p/c) and to apply pertur-
bation theory. In first-order one correctly obtains

—Z /2n —5Z /8n

+divergent terms of order Z /c (18)

This result does not coincide with that of Friar and
Tomusiak. 23

Farazdel and Smith have noted recently that the
power expansion of the square root has a finite radius of
convergence. They have challenged the usefulness of this
expansion and its application even in lowest order of per-
turbation theory. However, what one may conclude is
that the first three terms of an expansion of E„, are
correctly recovered by the convergent terms of Eq. (18),
and that the remainder cannot be represented by a power
series of Z "/c

A more successful approach is by explicitly introduc-
ing

—35Z /16c + (19)

We note that odd powers of c appear, although the
square-root Coulomb operator contains c only. Second-
order perturbation theory for the 1s state yields an addi-
tional energy correction [Hardekopf and Sucher'
(private communication)] of —8Z /5mc3+0 (Z /c4), re-
sulting in

Ei, =c —Z l2 —5Z l8c +8Z /3mc +O(Z Ic ) .

(20)

In order to check this result we have solved Eq. (9) with
V= —Z/r numerically, as described in Sec. IV, for a
series of Z values. The coefficients a; in the power expan-
sion E(Z}=g,a, c (Zlc)' were then determined by
fitting to the numerical energies. There is agreement be-
tween all authors concerning the first four coefficients:
a0=1, a2= —

—,', and a, =a3=0. Results for the next two

coefficients are presented in Table III. The present nu-
merical results corroborate the analytical expansion (20}.

in closed form. First-order perturbation theory for the 1s
state in momentum space yields a closed expression in
terms of hypergeometric functions. ' The power expan-
sion of this result yields [compare with Eq. (18)]

E&, =c Z I2 —5Z l8c—+64Z /15nc
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