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Extensive variational calculations on the S ground state of Be+ are reported. Using a 401-term
expansion of Hylleraas-type functions, the nonrelativistic ground-state energy is determined to be
—14.324760 a.u. , which is the lowest upper bound to the ground-state energy reported to date for
this system. The Fermi contact interaction is determined to be 12.4980 a.u. , which is in very close
agreement with the experimental value of 12.503 88 a.u. The nuclear-magnetic shielding factor and
the molar diamagnetic susceptibility are evaluated to be 0 = 1.415 401 X 10 a.u. and
g= —5. 15443X10 cm mol ', respectively. The electron density at the nucleus, the moments
(r;"), n = —1, 1, 2, and 3, and (r;,"), n = —1, 1, and 2, are also reported. The specific mass shift
(mass polarization contribution) is determined to be 2.758 X 10 a.u. The rate of convergence of
the calculation is discussed. The role of one versus two spin eigenfunctions in the basis set is dis-
cussed with respect to its bearing on the calculation of the Fermi contact interaction.

I. INTRODUCTION

A major development in atomic physics over the last
several years has been the emergence of ion-trapping
techniques for making spectroscopic measurements of ex-
tremely high accuracy. ' The Be+ ion has been
featured prominently in a number of these studies.
This ion has served as a prototype for the development of
an improved atomic clock. A particular hyperfine transi-
tion of the S ground state of Be+ has recently been mea-
sured' with an uncertainty of approximately one part in
10' . The high accuracy of this measurement has led
Wineland to remark, "In all of physics, only a few mea-
surements can boast a higher accuracy; those experi-
ments measure similar transitions in neutral cesium
atoms. "

In this study, detailed variational calculations on the S
ground state of the Be+ ion are reported. The purpose of
these calculations is to address several issues. A principal
goal is the construction of a wave function of near-
spectroscopic accuracy. Spectroscopic accuracy is taken
by various workers to imply an error for the nonrelativis-
tic energy of approximately 1 rMhartree or less. For sys-
tems with more than two electrons, extremely few calcu-
lations approach the 1-phartree level of inaccuracy. ' At
this limit, a meaningful comparison with experiment
must include consideration of relativistic effects. A
second objective is to provide information on the rates of
convergence of the energy and a selected set of expecta-
tion values, as a function of the size of the basis set. One
property of particular interest in this paper is the
hyperfine coupling constant. A recent calculation of the
hyperfine coupling constant for the 5 ground state of Li I
has been reported using as extended basis set of
Hylleraas-type functions. An observation of that study
was that the hyperfine coupling constant converged less
satisfactorily, compared with several spin-independent
properties. ' Based on that finding, an attempt was made
in the present study to assess to what extent the conver-

II. THEORY

The theory underlying the present variational calcula-
tions has been reviewed in a number of sources of which
the article by Hylleraas is particularly readable. ' A
brief sketch is as follows. The trial wave function em-
ployed is

/=A g CqP~q,

where A is the antisymmetrizer and C„ the variationally
determined expansion coeScients. The basis functions
are of the form

P„(r&, r2, r3, rz3, r3&, r &2 )

=r,"rz"r3"r23r»"r, z exp( a„r, p„r2 —y„r3), ——

(2)

where the exponents i„,j„,k„, I„, m„, and n„are each
~0. In Eq. (1) g„denotes the doublet spin eigenfunc-
tions, which take the form

g„=a(1)P(2)a(3)—P(1)a(2)a(3) (3a)

gence of the hyperfine coupling constant might be im-
proved, by using a better balance between the two spin
eigenfunctions employed in the calculation.

The present investigation has two other goals. The
high accuracy of the reported calculations should make
them a useful benchmark for more approximate compu-
tational schemes. A longer-range goal is to obtain an in-
direct semiempirical evaluation of the Lamb shift using
experimental ionization potentials. This can be achieved
by equating the total ground-state energy to the sum of
several energy terms, which in principle can be separately
evaluated. ' ' This goal awaits accurate calculations of
the relativistic corrections, a project that has been initiat-
ed in the author's group.
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or

g„=2a(1)a(2)P(3)—P(1)a(2)a(3)—a(1)P(2)a(3) .

(3b)

The nonrelativistic Hamiltonian employed is

3
H= g

i=1

4 3 3—
—,'v,' ——+ g g

i=1j &i iJ

The mass polarization contribution is not included in H;
it is evaluated using first-order perturbation theory.
Atomic units are employed throughout unless a state-
ment to the contrary is made (the molar diamagnetic sus-
ceptibility and hyperfine frequency being two exceptions
to the use of a.u.).

Evaluation of the matrix elements (P„~H~P„) is the
most intensive part of the computer calculations. All ma-
trix elements considered in this work can be reduced to
the evaluation of integrals of the form

I(i j,k, l, m, n, a, b, c)

j k f ~ p
—ar& —br2 —cr3i;r, r3P23l 3,r, 2e dridrzdr3 . (5)

III. COMPUTATIONAL DETAILS

A. Choice of basis functions

The procedures involved in evaluating these integrals
that have been employed in the present work can be
found in several places in the literature. ' ' A more
recent investigation has considered the evaluation of a
generalized version of the I integrals appearing in Eq. (5),
which allows for the inclusion of the additional factor
e "" "" ""in the integrand, where a&& a3&, and

a&3 are suitably chosen constants. Both the nature of
the analytic results obtained by Fromm and Hill and
the added flexibility (the constants a, z, a», and a23 could
also be optimized) should allow for more efficient calcula-
tions on three-electron atomic systems to be made.

ed with the second spin eigenfunction included. When
both spin eigenfunctions occur for a particular spatial
component, they are computed together as a pair, which
results in a considerable reduction of computational
effort. The first 115 entries in Table I represent the initial
group of entries for co=5. After term 325, entries were
selected on the basis of the expected contribution to the
energy expectation value. This is to some extent a matter
of guess work, though past experience with the method
proved to be of considerable value.

The order of the first 210 terms can be decided by ex-
amination of the early entries of Table I. All terms of a
given co are grouped together and added in order of in-
creasing co. For a given value of ~, the right most index
of the set (n) is selected with the largest value. This is
then decreased, while the next index (m) is increased.
The pattern that emerges should be clear on inspection of
Table I.

The orbital exponents were kept fixed during the
course of the calculation, that is, a&=P&=a and y„=y.
The values of a and y were selected as follows. The 30-
term Hylleraas wave function of Perkins was optimized
on a grid accurate to 0.01. The best energy obtained was
just a few phartree away from the energy calculated using
the values a=3.80 and y=1.15 given by Perkins. Since
the final choice of exponents will obviously depend on the
size and selection of terms used in the test basis set, it was
decided to stick with the values just cited. This choice
has the advantage that it allows a segment of the present
work to be tested against the 60-term calculation of Ho,
who also used these values.

B. Accuracy controls

Possibilities for significant figure loss occur at several
stages of the calculation. The principal points for con-
cern are (i) the integral evaluations, (ii) the matrix ele-
ment calculations, (iii) the diagonalization scheme, and
(iv) the evaluation of the expectation values. Each of
these items is addressed below.

The I integrals defined in Eq. (5) can be reduced to in-

tegrals of the form

The selection of the initial set of basis functions was
made in the most unbiased manner possible. Define

W(i,j,k, a, b, c)

= f "x'e '"dx f "y'e «dy f "z"e "dz .
0 X

co =i +j +k + I +m +n,

where the set (i,j,k, l, m, n) is the exponents appearing in
Eq. (2). All possible choices leading to values of op=0, 1,
2, 3, and 4 were included in the calculation. This leads to
a total of 210 basis functions. Basis functions that in-
clude the second spin eigenfunction [Eq. (3b)] are includ-
ed unless excluded by symmetry. Beyond co=4, the max-
imum possible number of terms increases rapidly. A
table of the number of basis functions as a function of ~,
including the breakdown into numbers for the two spin
eigenfunctions, can be found in Ref. 15.

The terms beyond 210 are show in Table I. An asterisk
on an entry signifies that the spatial component is repeat-

For special cases, both the 8'integrals and the I integrals
are evaluated by truncation of an infinite series. All other
8' integrals and I integrals are evaluated to essentially
machine tolerance. For wave functions of the size report-
ed in this study, it is not possible to determine the effect
of small errors in the W integrals and I integrals (arising
from inappropriate cutoff conditions in the evaluation of
the infinite series), on the final expectation values. In
connection with our previous work- on Li I, such studies
have been carried out for some small-term wave func-
tions. ' The cutoff parameters for evaluation of the
infinite series were set at 10 ' . It is expected at this lim-
it that the accuracy of the integral evaluations has no irn-

pact on the number of significant figures reported for
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each expectation value. The 8'integrals and I integrals
are expected to have approximately 18 significant figures
for those evaluated by series expansion, and approximate-
ly 28 significant figures for all other integrals.

The individual matrix elements are constructed from
terms that typically have differing signs, which leads to
the possibilities of significant figure 1oss on combining the
positive and negative contributions to each matrix ele-

TABLE I. Terms 211 to 401 employed in the basis set. An asterisk indicates that the same ijklmn function was employed with
both spin functions.

Number
of terms

211
212*
214*
216*
218
220
222
223'
225
227'
229
230
232
233
235
237
239'
241
242'
244
246
247
248*
250
252'
254
255'
257
258*
260
262
263
264
266
267
269*
271
273*
275
277*
279*
281*
283*
285
287
288*
290*
292*
294
296
297*
299*
301

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1

2
0
0
0

1

1

1

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1

1

1

1

1

1

1

1

3
2
1

2
3
5
1

3
2

0
0
0
0
0
0
0
0
0
0
0
0
1

1

1

1

1

1

1

1

1

2
2
2
2
2
2
3
3
3
3
4
4
5

0
0
0
0
0
0
0
0
1

1

1

4
3

0
3

1

1

0
0
0
0
0
0
1

1

1

1

2
2
0
0
0
0
0
1

1

1

2
0
0
0
0
1

1

0
0
0
1

0
0
0
0
0
0
0
0
1

1

1

0
0
0
0
0
0

0
0
0
0

0
1

2
3
4
5
1

2
3
4
2
3
0
1

2
3
4
1

2
3
2
0
1

2
3
1

2
0
1

2
1

0
1

0
0
1

2
3
4
0
1

2
0
0
Q

0
0
0
0
0
0
0
0

5
4
3
2
1

0
3
2
1

0
I
0
4
3
2
1

0
2
1

0
0
3
2
1

0
1

0
2
1

0
0
1

0
0
4
3
2
1

0
3
2
1

0
0
0
0
0
0
0
0

1

1

Number
of terms

303*
305
306'
308
310*
312*
314
316
318*
320
322*
324
326*
328*
330'
332*
334'

338'
340
341
342'
344*
346
348'
350*
352
353
355

358
360
362'
364*
366*
368*
370
371*
373*
375*
377
378*
3.80*
382*
384
386*
388
390*
392*
394*
396
398*
400*

0
1

0
1

0
1

0
0
1

0
0
0
1

0
0
2
1

0
0
0
2
0
0
0
1

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1

1

1

0
0
1

1

0
0
0
0

2
1

3
2
2
1

1

3
2
2
1

1

4
5

4
3
3
3
1

0
2
2
1

0
2
1

0
2
0
0
1

2
6
5
4
6
0
2
1

3
0
1

2
2
5

5

7
6
3
0

1

1

0
0
0
0
0
0
0
1

1

2
3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4
0
3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0

0
0
1

1

2
2
3,

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
5
0
0
0
0
0
6
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

7
2
5
6

2
2
0
0
0
0
0
0
0
0
0
3
0
0
1

0
1

2
0
5
1

3
4
0
2
0
0
0
6
0
5
4
0
1

2
1

7
5
6
5
8
7
3
4
0
2
0
0

0
2
0
0
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ment. As part of a major rewrite on the software in-
volved in this work, approximately 20000 matrix ele-
ments for each of several expectation values were recalcu-
lated and checked against prior calculations. Both calcu-
lations were done on a machine with 18 decimal digits of
precision. One matrix element was found to differ from
its previously calculated value by 1 in the 12th significant
figure. This difference was traced to a loss of six
significant figures in forming the matrix element from its
component contributions. Typically, the loss in
significant figures amounted to two to three in forming
the individual matrix elements in the test run.

In the present investigation, the specific mass shift
(mass polarization) matrix elements were computed along
the lines described in Ref. 22. Part of each specific mass
shift matrix element is computed at the same stage as the
kinetic energy; the second part is computed independent-
ly. Since the two parts of a particular matrix element in
many cases have opposite signs, a check for loss of
significant figures was explicitly made in the evaluation of
each specific mass shift matrix element. Of the 80601
matrix elements, one case was found where seven
significant figures were lost, and three examples where six
significant figures were lost. The impact of this loss in
precision for a few matrix elements, on the final expecta-
tion value, depends, of course, on the size of the ap-
propriate variationally determined coefficients that multi-

ply these matrix elements.
The accuracy of the matrix elements is dependent on

what I integrals are required in the evaluation. For ma-
trix elements not dependent on I integrals evaluated by
truncation of an infinite series, approximately 24 or better
significant figures are obtained. This estimate allows for
a generous though realistic estimate of the significant
figure loss that occurs in combining the positive and neg-
ative contributions of a matrix element. For those matrix
elements dependent on the I integrals with series cutoff,
approximately 15—16 significant figures are expected,
though exceptions could certainly arise. For the specific
mass shift matrix elements, approximately 99.991% of
them are expected to be accurate to approximately 13
significant figures, with just a couple being restricted to
12 significant figures.

Since it is not practically possible to carry out a propa-
gation of errors analysis from individual matrix elements
to the final expectation values, a more realistic assess-
ment of the reliability of the number of significant figures
in the reported expectation values can be found by deli-
berate truncation of the number of significant figures for
all matrix elements. Separate diagonalizations and ex-
pectation value evaluations were carried out using 18, 16,
14, and 13 significant figures for each matrix element.
None of the final expectation values derived from the
final 401-term wave function are changed in the first
seven significant figures, on dropping from matrix ele-
ments with 18 significant figures to matrix elements with
13 significant figures. The biggest changes observed were
approximately an increase of 2 in the eighth significant
figure for the Fermi contact term and 7 in the ninth
significant figure for the electronic density evaluated at
the nucleus. With appropriate round up to the next digit,

a change of 1 in the last reported significant figure for
both of these expectation values is obtained. For this
same reduction in significant figures for the matrix ele-
ments, the energy expectation value is found to change by
1 in the 12th significant figure.

The matrix diagonalization routine employed is based
on Nesbet's procedure. This routine has been exten-
sively tested in the past and found to be reliable in com-
parison with known results. The cutoff tolerance was
tested sufBciently that we expect the digits reported for
the final expectation values are all significant.

Each final expectation value was evaluated by combin-
ing the sum of all positive and the sum of all the negative
contributions. This gives an indication of the possible
loss of significant figures in the final expectation values.
Typically, 3—4 significant figures are lost when the two
contributions of opposite sign are combined. Tests for
linear independence in the basis set have not been made
for the present wave function calculation. In previous
calculations deliberate introduction of linear dependence
has been studied. The resulting numerical problems led
to program abort. The same behavior would be expected
in the present calculation.

The calculations of the matrix elements were carried
out on a Cray 1S at Cray Research, Inc. using double pre-
cision (approximately 29 decimal digits of precision).
Calculation of the matrix elements in double precision
certainly minimizes si.gnificant figure loss, but adds great-
ly to the computational overhead. The two parts of the
specific mass shift matrix elements were put together on
the Honeywell DPS8l49 at the University of
Wisconsin —Eau Claire (UWEC). The matrix diagonali-
zations and expectation values were also evaluated at
UWEC. This work was all in double precision (18 de-
cimal digits of precision).

IV. RESULTS

The principal results of the calculations are assembled
in Tables II and III. The shorthand notation for expecta-
tion values is employed:

(8a)

(8b)

the Fermi contact interaction

f =4m(5(r, )o„}, (10)

and the expectation value required in the evaluation of
the specific mass shift, ( V;.VJ }.

and f is normalized. Besides the energy components, and
moments of r," and r,", Table II also gives the electron
density at the nucleus:

(9)
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S
Ch
QO

I

Q Q
45

Q Q

t~8+
OO r r QQ
OO

t Q
OO W 0 Q
OO

Q

I

Q

Number
of terms

20
60

100
160
220
280
340
401

Energy

—14.315 676
—14.323 719
—14.324 607
—14.324 653
—14.324 723
—14.324 729
—14.324 747
—14.324 760

Scale factor g

0.999 804 2
0.9999180
1.000041 6
1.000 029 3
1.000009 4
1.000 008 1

1.000 004 3
1.000 000 9

Table III lists the ground-state energy and the scale
factor q defined by

—,'( v)

TABLE III. Ground-state energy for S Be tI and scale factor
for wave functions of different size.

OO
OOQ

cv a
oO

OO

Q Q

Q
OO

OO t M ChQ
OO

Ch
OO

I

OO ~ ~ OO

Ch
Q Q F W OOQ ~ W 'P Q Qce ~ ~ vl

OO
Ql W Vl

Ch rt Q Q

OO

Q
IPl
e4

I

OO

I

IPj

where ( V) and ( T) are the potential energy and kinetic
energy, respectively. All reported expectation values
have been appropriately scaled using the values of g tabu-
lated in Table III.

Calculations were also carried out with only the single
spin eigenfunction given by Eq. (3a) included in the basis
set. The basis set for this calculation was ordered in ex-
actly the same manner discussed above. The results ob-
tained for the various expectation values are presented in
Table IV.

The standard bracket notation is employed (except in
Tables II and IV) to denote the uncertainty in the preced-
ing digit or pair of digits. For experimentally determined
quantities employed in this work, the errors are one stan-
dard deviation estimates, though in some cases, no state-
ments are made concerning this matter. The uncertain-
ties associated with computed expectation values are
based on rough evaluations of the convergence of the par-
ticular expectation value. This is complicated by the
nonsmooth convergence exhibited by several of the ex-
pectation values.

A. Nuclear magnetic shielding constant

Ch
OO

00 OO

Q
Q

Q
Ch

Q
Cv)

Q
IPj

The nuclear magnetic shielding constant (diamagnetic
shielding factor) is determined from the formula

~=l~'(0 X —„0).
where a is the fine-structure constant. Using the value
a=7.29735308X10, the shielding constant for Be+ is
determined to be 1.415401(1)X 10 ~ a.u.

o
~ H
e0

V gg

C4

b

c

B. Diamagnetic susceptibility

The molar diamagnetic susceptibility is defined by

—Xga ao r. (13)
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0

0

0

V
cd

cd

U'

~ IIII2

8
z

Ch
QO

O

rt ~ O
QO

O
QO

O O

QO
QOrt O
QO

O O

O N
QO

t O
QO

QO

m O

OO

QQ~
QO LPh

I

QO

O rt

I

3

2= —0.292015 3141X10 (P g r; P)i=1
(14)

and the expectation value is expressed in atomic
units. For the S ground state of Be+ the molar
diamagnetic susceptibility is determined to be
y= —5. 15443(4) X 10 cm mol

C. Specific mass shift

The nonrelativistic form of the specific mass shift is

given by

where N~ is Avogadro's constant and ao is the Bohr ra-
dius. Using the value N„=6.022 1367X 10 mol ' and
ao =0.5291 772 49 X 10 cm leads to g in units of
cm mol ' as

0
~ ~
V
C

V
C4)

V

24

V

0

0
bQ

~ pl

0
~ ~

0
~ W

V

4J

cd

CQ

0

"0

0
bO

OP

cd

0
~ &

4)

Q

8

E

z

0
~ & gCt

Q

QO

e O O

QO

Q

QO
O &

ChO

I

QO
QO

QO QO

QO QO
O O '4

QO

QO QQ QO

& O

OO

OO&W
Vl

I

QO QO

QO

O ~
QO

Ch

t
QO

a O t QO
Ch

t

b

QO
QO

~t QOWtOQ'4V)O
QO

~EsMs ~ ~i jp
'Se

(15)

where p is the reduced electron mass
m, M9& /(m, +M9& ) and M9 is the nuclear mass. The
value of M9 =9.0099879u is taken from the most re-

cent atomic mass tables of Wapstra and Audi and has
been corrected for the mass of four electrons. The
specific mass shift is given in Table V along with some
previous theoretical evaluations for this quantity.

Beryllium has only one stable isotope. As a conse-
quence, no experimental transition isotopes shifts have
been measured for Be II. ' This is unfortunate, since the
latter property is a very sensitive test of how well electron
correlation is accounted for in a trial wave function.

The value of AEsMs, like the transition isotope shift, is
a sensitive measure of electron correlation. The value of
b,EsMs reported in Table V (based on the 401-term wave
function) should be the most accurate estimate available
for this quantity for the S Be+ ground state.

V. DISCUSSION

A. Nonrelativistic energy

Table VI gives a summary of some of the more accu-
rate calculations of the nonrelativistic energy, ENR, of
the S ground state of Be+. The present result for ENR is

the lowest upper bound reported to date. Two empirical
estimates of the nonrelativistic ground-state energy are
available in the literature (see Table VI). The present cal-
culation yields an energy of -30—47 phartree above the
respective literature estimates. The lack of accurate
values for the relativistic contributions and uncertainties
associated with estimating the Lamb shift make it impos-
sible to assess the accuracy of either of the empirical esti-
mates for ENR.

The Hartree-Fock energy for the S Be+ ground state
has been evaluated to be —14.27739 a.u. (Ref. 37). The
present calculation therefore accounts for 99.9% of the
correlation energy.
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TABLE V. Specific mass shift, AE&Ms, for the Sground state of Be+.

Wave function

Flannery and Stewart'
Prasad and Stewart
Davis and Chung'
Present work

Present work

Type

Open shell
CI
CI

Hylleraas
(single spin
eigenfunction)
Hylleraas
(both spin
eigenfunctions)

Number
of terms

226

AEsMs

5.038 x 10-'
2.760 X 10
2.738 x 10-'
2.758(7) x l 0-'

2.758(7) X 10

'Reference 32. An alternative mathematical form for EEsMs is evaluated in this work.
Reference 33.

'Reference 34. The explicit number of terms used for the S ground state of Be+ is not reported, but it
is indicated that at least 52 (and less than 110) terms are used. CI denotes configuration interaction.

B. Convergence characteristics

Inspection of Table III reveals the relatively slow con-
vergence of the calculation. This result is not totally
unexpected, and has been noted elsewhere for similar cal-
culations involving basis sets of Hylleraas-type functions
of moderate size. ' ' ' ' ' For systems with three (or
more) electrons, exceedingly few Hylleraas-type wave
functions of the size reported herein are available in the
literature. Hence there are relatively few comparisons
that can be made as to what extent the convergence
might be tied to the form of the basis functions versus the

size of the basis set.
The present basis set is more biased toward the short-

range nuclear region —the region important for calculat-
ing an accurate EzR. At the point that the calculation
terminates, it is the electron-electron potential energy
and the kinetic energy that are changing most
significantly. From terms 360 to 380, the following
changes (in phartree) are obtained: —5.7, 2.9, and -0. l,
for the electron-electron potential energy, the kinetic en-

ergy, and the electron-nuclear potential energy, respec-
tively. The corresponding changes for terms 380—401 are
—1.6, 1, and 0.4. If the empirical estimates of ENR are

TABLE VI. Upper bounds to the nonrelativistic ground-state energy of 'S Be rr.

Wave function

Weiss'
Davis and Chung
Perkins'
Ho'
Muszynska et al. '

Pipin and Woznicki'

Present work

Present work

Empirical estimates
for the nonrelativistie
ground-state energy

Type

CI
CI
Hylleraas
Hylleraas
Combined CI-
Hylleraas
Combined CI-
Hylleraas
Hylleraas
(single spin
function)
Hylleraas
(both doublet
spin functions)

Number
of terms

45

30
60

100

170

226

401

Energy

—14.323 50
—14.323 557
—14.324 57
—14.324 696
—14.324 714

—14.324 72

—14.324 758

—14.324 760

—14.324 79'
—14.324 807'

'Reference 35.
Reference 34. For the number of terms employed, see footnote c in Table V.

'Reference 26.
Reference 27.

'Reference 36.
'Reference 37.
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accepted, it is clear from the numbers just cited that the
convergence of the energy expectation value has slowed
considerably. Two other factors should, however, be
considered. The restriction to fixed exponents may undu-

ly slow the convergence, particularly as s orbitals with
more diffuse character are included as the size of the
basis set increases. While this undoubtedly influences the
rate of convergence of the calculation, it is probably not
the critical factor. This remark is based on observations
from a Hylleraas-type calculation with optimization of
exponents in progress on the S ground state of Lit. In
this study, slow convergence is also observed. The
second factor to consider is the relatively modest number
of basis functions to account for the tail region of the
electron cloud. The rate of convergence of the molar di-
amagnetic susceptibility and of the moment (r; ) will in

part reflect how well the outer region of the electronic
charge cloud is described by the basis set.

The charge cloud in the near nucleaz region is not fully
described, as reflected in the rate of convergence for the
electronic density at the nucleus p(0) (see Table II). Basis
functions that include a logarithmic functional depen-
dence on electronic coordinates and more accurately de-
scribe the electronic density in the near nuclear region,
as have been employed with great success for two-
electron systems, ' certainly merit attention. Unfor-
tunately, considerable technical diSculties arise in the
evaluation of the integrals that are required with the use
of such basis functions.

A general observation is that all the expectation values
shown in Tables II and IV do not converge monotonical-
ly. This is true in several cases even after a large number
of basis functions have been added. Such behavior makes
attempts at determining extrapolated estimates for the
expectation values of limited value.

H~=hAJI J, (17)

where po is the vacuum permeability, g, is the electronic

g factor (incorporating bound state corrections), gt is the
nuclear g factor, p~ and p~ are the Bohr and nuclear
magneton, respectively, I is the nuclear spin operator, S,-
is the electron spin operator for electron i, 5(r;) is the
Dirac 5 function, h is Planck's constant, J ig the total
electronic angular momentum operator, and AJ is the
hyperfine coupling constant. The energy splitting for the
S state occurs between the (I+—,') and (I—

—,') levels

(J=
—,
' }. For Be, I =—', and the total angular momentum

F=2 and so

and

hbv=E(F =1) E(F—=2)= 2h —A, ~2 (18)

A»2 —5v (19)

The connection between the coupling constant (expressed
in MHz) and the expectation value f is (using a conven-
tional grouping of terms)

P0PsPw gePtf
'n

2~ha03 3I
(20}

Two accurate measurements of Av are available. For the
S ground state of Be+ Vetter and co-workers have

determined using optical pumping techniques that

hv= 1250.018(5) MHz

giving A &&2
= —625.009(3) MHz. A most recent investi-

gation using electromagnetic trapping techniques yields
the value

A &i2= —625.008 837048(10) MHz .

C. One-spin versus two-spin eigenfunctions

Table IV lists the expectation values evaluated using
only one spin eigenfunction [Eq. (3a)]. There are a total
of 226 such terms in the overall wave function. A com-
parison of the results in the final columns of Tables II and
IV shows that the expectation values are fairly insensitive
to the second spin eigenfunction, the one exception being
the Fermi contact interaction. For the latter case, a de-
crease of approximately 0.061 a.u. (0.5%) is observed,
which brings the calculated value into much closer agree-
ment with the experimental result (see below). These re-
sults are not totally unexpected and support observations
made elsewhere in the literature. ' ' '

D. Fermi contact interaction —comparison with experiment

3

HF '3pogegrpsprvI g 5(r; }S;, (16}

which can be rewritten as an effective operator:

As indicated in the Introduction, an accurate calcula-
tion of the Fermi contact interaction is a principal goal of
the present investigation. The Fermi contact operator
evaluated in this work is

where f is defined in Eq. (10). Using the most recent
values of Ps, Pz, h, and a0 Eq. (20) simPlifies to

A 1/2
=95.410 67( 7 ) (21)

The electronic g factor for Be+ has recently been deter-
mined to be 2.002 26206(42) and the unshielded magnet-
ic moment, pB„has been evaluated to be pB,= —1.177 432(3)pN. Employing these values in Eq. (21),
leads to

A iy2
= 49.985 2(2)f (22)

Table VII compares some accurate evaluations of f for
the S Be+ ground state. The A»2 value reported by
Das and by Heully et a/. has been converted to f us-
ing Eq. (22). The experimental f value has also been eval-
uated using this equation. An earlier comparison of cal-
culations of f values for Be+ may be found in Ref. 48.
The finite nuclear mass can be incorporated by multipli-
cation of the reported f values by the factor
(1+m, lM9B } =0.9998174. fhis reduces the f value

evaluated from the 401-term wave function to 12.4957
a.u. The agreement between theory and experiment is
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TABLE VII. Fermi contact interaction, Eq. (10), for the S ground state of Be+.

Wave function

Martin and Weiss'
Garpman et al.
Das'
Heully and

Martensson-Pendrill'
Present work

Present work

Experimental value

Type

CI
MBPT
MBPT
MBPT

Hylleraas
(single spin
eigenfunction)
Hylleraas
(both spin
eigenfunctions)

Number
of terms

45

226

401

(4tr5(r; )tr„)

11.93
12.56
12.32( 12)
12.24

12.559

12.498 0(40)

12.503 88(5)

'Reference 44.
Reference 45.

'Reference 46.
See text for the evaluation of this value.

'Reference 47.
'Determined using Eq. (22) and the experimental result from Ref. 9. MBPT denotes many-body pertur-
bation theoric approach.

gratifying, the absolute percent error being -0.07%.
Part of the difference between the present theoretical
value and the experimental result is expected to be a fair-
ly small relativistic correction. A rough estimate of the
relativistic correction to f has been given by Garprnan
et al. as -+0.02. It is to be noted that the very close
agreement between theory and experiment requires the
inclusion of the second spin eigenfunction in the calcula-
tions.

VI. CONCLUSIONS

The principal result of this study is the lowest upper-
bound estimate for the nonrelativistic ground-state ener-

gy of BeII. The Fermi contact interaction, a property
generally known to reflect in a sensitive manner the quali-
ty of the wave function in the region at the nucleus is cal-
culated to within an error of 0.07% of the experimental
result. The importance of including the second spin
eigenfunction to achieve the aforementioned accuracy for
the Fermi contact interaction is established. It is possible
that for much larger basis sets, accurate calculations off
can be made with a single spin eigenfunction. A study is

in progress on Li I to attempt to resolve this question.
The general rate of convergence of the energy expecta-

tion is observed to be rather slow. It would appear that
probably another couple of hundred terms in the basis set
would be needed to approach a 1-JMhartree uncertainty
for E&R. Efforts are in progress to test out this assertion.
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