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The open-shell coupled-cluster (CC) method is applied to the excited 2p states of Be. With the
2s and 2p configurations included in the model (P) space, the CC equations prove very diScult to
converge. When they do converge, very large (&5) excitation amplitudes are observed, and the
second 'S corresponds to the intruder 2s3s configuration, rather than the desired 2p . The inclusion
of 2s3s (but not 3s ) in the model space, which thereby becomes incomplete, improves convergence
significantly, and gives energies in very good agreement with values known from other sources.

I. INTRODUCTION

Open-shell or multireference many-body perturbation
theory' (MBPT) and coupled-cluster (CC) methods7 24

start out with the selection of a low-dimensional model
(or P) space, in which an effective Hamiltonian is defined.
The effect of the complementary Q space is taken into ac-
count while calculating the matrix elements of the
effective Hamiltonian, using an appropriate truncation of
the wave operator. The eigenvalues of the effective Ham-
iltonian approximate some desirable eigenvalues of the
physical Hamiltonian.

Most derivations of the multireference MBPT and CC,
starting with Brandow, ' depend on a particular choice of
the model space. The orbitals are classified as core,
valence, or particles (unoccupied). The core orbitals are
always occupied, and all possible distributions of the
remaining electrons in the valence orbitals give rise to
determinants included in the P space (there may also be
valence holes, i.e., unoccupied core orbitals, but the situa-
tion is not fundamentally different). Such model spaces
have been called "complete. " This recipe is appropriate
when the open-shell orbitals are close in energy, which is
not the case for most atomic and molecular excited
states. It is often impossible to select valence orbitals so
that no Q-space determinants (with one or more non-
valence orbitals) lie close to or even within the energy
range spanned by the P space. This situation leads to the
so-called "intruder states, "~6 which destroy the conver-
gence of the expansion. A clever way of circumventing
the problem in low-order (up to third order) MBPT has
been devised by Freed and co-workers. They arbitrari-
ly assigned the same energy to all valence orbitals, and
managed to obtain very good results for a variety of
atoms and molecules. Their method is equivalent to a
different partitioning of the Hamiltonian, so that an extra
potential term, diagonal and one electron, is included in
the perturbation, with effects showing up in higher order
only. Pushing the method to higher order may therefore
present diSculties, and the stratagem would fai1 in CC,
which entails infinite-order summation of such perturba-
tion terms, so that the extra term would be summed away

without any effect on the convergence problem.
A general, incomplete model space MBPT has been

proposed by Hose and Kaldor and used in extensive cal-
culations. A similar CC method has been described by
Jeziorski and Monkhorst. '6 Significant theoretical pro-
gress has been trade in recent years in understanding in-
complete model spaces. ' ' ' ' The number of appli-
cations has also increased considerably. '9 3z The main
interest in CC applications with incomplete model spaces
has been aimed at calculating one-electron excitation en-
ergies, 2'3 where a natural choice of P determinants in-
volves one hole and one particle with respect to the
closed-shell ground state. This is a special case of
"quasicomplete" model spaces. ' Sinha et a/. have
shown that the energy calculation for the particular case
of a 1h-1P space is operationally equivalent to the
complete-space procedure. The first applications of a
more general type of incomplete model spaces appeared
recently.

The 2p levels of the Be atom provide a good test case
for the study of the intruder state problem. These levels
are strongly perturbed, with the 'D lying below the P.
The 'S level has never been observed, 3 3s and extensive
CI calculations 9 indicate that it lies just above the 2s ion-
ization limit. The Zs3s 'S lies below all the Zp states,
thus acting as an intruder state and causing severe con-
vergence problems. Salomonson et al. ' tried to calcu-
late the Be Zp levels in the numerical CCD (coupled
cluster with double excitations) model, but could not get
convergence. All the anomalies disappear for the higher
members of the isoelectronic sequence, where the level
ordering is as predicted from the independent particle
model. Indeed, the numerical CCD model' converged
easily for the C + ion.

Various strategies for solving the problem are dis-
cussed in this work. They include the application of
averaging and projection techniques for iterating the CC
equations within the complete model space, and the addi-
tion of the intruder 2s3s configuration to the model
space, which thereby becomes incomplete. All the calcu-
lations are carried out in finite basis sets, as our main in-
terest involves molecular applications; this should not,
however, affect the conclusions.

38 6013 1988 The American Physical Society



6014 UZI KALDOR 38

II. METHOD III. APPLICATION TO Be

S=Si+S2+

= y {~;~JIj+-,' y {~;uJi~la/, ]skJI+ (2)

where s', ski, . . . , are excitation amplitudes, and the cur-

ly brackets denote normal order with respect to a refer-
ence (core) determinant. The summation is carried over
connected terms only. The equations determining the ex-
citation amplitudes for a complete model space may be
derived from

[S,HO] = {Q VQ —0V,tr I „„„,
V,~= VQ,

(3)

(4)

where Ho and V result from the partitioning of the Ham-
iltonian in the usual way,

H =Ho+ V (5)

Mukherjee has shown that a similar formulation may be
derived for a general model space. The model space P'
with m valence electrons is chosen on physical grounds,
and may be incomplete. Model spaces P' ', k &m, are
then constructed by deleting m-k orbitals in all possible
ways from the P' ' determinants. An operator is desig-
nated k-o~en if it corresponds to a P'"'~Q'"' transition,
where Q' ' is the complement of P'"', otherwise it is k-
closed. The construction of the P' ' spaces causes all m-
closed operators to be k-closed for all k (m; m-open
operators may, however, be k-closed (in other words, an
orbital change transforming every P' ' determinant to
another P'"' function may take some P' ' determinant to
a Q' ' term). The basic equations for the k-valence sec-
tor are then

[S,HO]'"', = {VQ —QV,s I'"', „„„,

Two differences between Eqs. (6) and (7) on the one hand
and (3) and (4) on the other hand should be noted. The
classification of the transitions at the k-valence level into
P~P and P~Q has to be done according to their effect
on m-valence states; and the equations for V,z. are impli-
cit [Eq. (7)] rather than explicit [Eq. (4)]. The former re-
quires some additional, not very dilcult bookkeeping.
The latter involves a few diagrams not encountered in
complete model spaces, and the solution of a set of equa-
tions for V,N matrix elements. As the new diagrams are
relatively simple and the equation system is of low dimen-
sion, incomplete model spaces are not more diScult to
handle than complete ones.

The basic method used in previous work ' follows
Lindgren's' choice of a normal-ordered wave operator,

0= {exp(S) I
= 1+S + —,

'
{S ] +

S is the excitation operator describing connected single,
double, . . . , excitations,

All calculations were carried out in the 6-311G basis of
Krishnan et al. , augmented by diffuse s and p orbitals
with exponents /=0. 0207 and 0.0069, with three sets of d
orbitals added, )=0.765, 0.255, 0.085 (the spherically
symmetric d combination is left out). This set is expected
to provide only a fair description of the 1s shell correla-
tion, but a very good representation of the 2s and low ex-
cited orbitals. Single and double virtual excitations are
included in the summation (2), giving the CCSD approxi-
mation,

S=Si+S2 . (8)

TABLE I. Total energies with Be + and Be orbitals (hartree).

Be + Hartree-Fock
correlated

Be+
Be Hartree-Pock

correlated

Be'+ orbs

—13.610 377
—13.625 730
—14.292 476

—14.633 618

Be orbs

—13.625 953
—14.292 170
—14.571 942
—14.633 315

The reference state for the calculation must have
closed shells. Be + is used here, with orbital energies of
—5.667 19, —0.665 74, —0.519 25, —0.265 96, and
—0.22797 hartree for the 1s, 2s, 2p, 3s, and 3p orbitals,
respectively. The first three may be compared with the
numerical Hartree-Fock values of Salomonson et al. ,

'

—5.66717, —0.66609, and —0.51945 hartree. A corn-
plete model space calculation, with the valence orbitals 2s
and 2p, was tried first. It should be observed that the or-
bital energy spectrum does not lead one to expect any
problems, as the Zs and 2p are well separated from all the
rest. The coupled-cluster equations were solved in the
usual manner, first for the core (Be +

) state, then for one
added valence electron, and finally for two valence elec-
trons (Be states). While the first two stages converged
rapidly, requiring five iterations each (the convergence
criterion is that all excitation amplitudes agree to six de-
cimal places), the third stage proved rather difficult. Two
techniques were used to achieve convergence: strong
damping of the excitation amplitudes in consecutive
iterations (the input to the n + 1 iteration was taken as a
linear combination of the input to the nth iteration and
its output in a 3:1 ratio), and repeated use of the reduced
linear equations (RLE) method. ' The latter is essentially
solving for the linear combination of excitation amplitude
vectors obtained in previous iterations which gives the
smallest error when inserted in the CC equations. The
RLE equations rapidly become linearly dependent, and
when that happens we use their solution as a new starting
guess for the CC cycle. Convergence was finally achieved
after 195 iterations. The largest excitation amplitude was
5.12, corresponding to the 2p ~2s3s excitation. Other
very large amplitudes () 1) were found for 2s ~2s3s,
2s ~2s4s, and 2p ~2s4s. These large amplitudes result
from the inversion of atomic level ordering relative to
that predicted by orbital energies.

As mentioned above, core (Be +
) orbitals are used. To
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TABLE II. Be ionization potentials and excitation energies (eV).

Be+ 'S IP
S~(2p) P

2S~ ( 3g)2P

Be 'S IP
'S (2p) P
'S~(2p) 'P
'S~(3s)'S
'S~(3s)'S
'S~(2p )'D
1S (2p2)3P
1S (2p 2) lS

Expt. '

18.206
3.959

10.939

9.320
2.725
5.277
6.457
6.779
6.997
7.402
9.505'

Be orbs

18.128

9.283
2.821
5.406
6.473
6.840

Be'+ orbsb

18.142
3.971

9.283
2.721
5.323

(6.802 }
7.075
7.403

(6.802)

Be + orbsc

18.142
3.971

10.900

9.283
2.721
5.323
6.432
6.765
7.075
7.403
9.520

'References 37 and 38.
(2s, 2p) complete model space.

'With the 2s3s configuration added to the model space.
This value formally belongs to the (2p )'S state. However, because of the very large 2p'~2s3s excita-

tion amplitude, it actually describes the (2s3s)'S state.
'Not observed experimentally. This is the evaluated value of Ref. 39.

assess the effect of using these orbitals for Be states,
another set of calculations was performed with Be atom
Hartree-Fock orbitals, with the 2s orbital serving as a
valence hole. Table I shows that the change in the total
energies of the ground state of Be and its ions is 3 X 10
hartree or less, indicating that the summation inherent in
the CCSD method takes care of the difference in orbital
description. Another worthwhile observation is that the
Be energy obtained with Be + orbitals and a single refer-
ence state is —14.633 468 hartree, so that the inclusion of
the 2p configuration in the model space is not necessary
if one is only interested in the ground state.

The more interesting results of the calculation are the
ionization potentials and excitation energies. The values
obtained with the complete model space described above
are shown and compared with experiment ' in Table II.
As can be expected from the excitation amplitudes, the
second 'S state corresponds to 2s3s rather than 2p; it is
not possible to obtain the 2p 'S energy this way. Anoth-
er set of computations was therefore performed, with the
2s3s configuration moved from Q to P, forming an incom-
plete model space (an attempt to include 3s as well led to
divergence). Equations (6) and (7), rather than (3) and (4),
were used to derive the detailed expressions for the exci-
tation amplitudes. Convergence was somewhat faster (90
iterations), and the largest excitation amplitude

(2s3s ~2s4s) was 0.49. All states of interest came out in
their proper places (Table II), giving very good agreement
with experiment.

IV. SUMMARY AND CONCLUSION

The open-shell coupled-cluster method has been ap-
plied to the 2p states of Be. The 2s3s states, which lie in
zero order well above the 2p, are pulled below them by
correlation effects. The 2s3s 'S level appears as an in-
truder state, with the result that the coupled-cluster
equations for a model space including the 2s and 2p
configurations are extremely diScult to converge; when
they do converge, very large excitation amplitudes ap-
pear, and the eigenvalue of the 'S effective Hamiltonian
approximates the 2s3s rather than the 2p energy. An in-
complete model space, which includes the 2s3s
configuration in addition to 2s and 2p, gives much fas-
ter convergence and good agreement with excitation en-
ergies known from experiment or from extensive
configuration interaction studies.
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