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Schrodinger equation in spherical coordinates

Mark R. Hermann and J. A. Fleck, Jr.
Lawrence Liuerrnore National Laboratory, Livermore, California 94550

(Received 5 February 1988)

A spectral method previously developed, for solving the time-dependent Schrodinger equation in

Cartesian coordinates is generalized to spherical polar coordinates. The solution is implemented by
repeated application of a unitary evolution operator in symmetrically split form. The wave function
is expanded as a Fourier series in the radial coordinate and in terms of Legendre functions in the
polar angle. The use of appropriate quadrature sets makes the expansion exact for band-limited
functions. The method is appropriate for solving explicitly time-dependent problems, or for deter-
mining stationary states by a spectral method. The accuracy of the method is established by corn-

puting the Stark shift and lifetime of the 1s state in hydrogen, the low-lying energy levels for hydro-

gen in a uniform magnetic 6eld, and the 2p-nd dipole transition spectrum for hydrogen.

I. INTRODUCTION

In recent years interest has grown in the direct numeri-
cal solution of the time-dependent Schrodinger equation
for solving problems involving time-dependent interac-
tions. ' The use of time-dependent methods allows the
system to be described by the dynamics of an always-
square-integrable wave packet. Thus problems involving
ionization can be studied in the same straightforward
manner as problems involving purely bound-state pro-
cesses. Furthermore, the evolution of a wave packet in
time is of interest because of its close analogy with classi-
cal trajectories.

In several previous publications a spectral method
has been described for solving the time-dependent
Schrodinger equation in Cartesian coordinates with a
split-operator form of the unitary evolution operator and
a finite or band-limited Fourier series representation of
the tine-dependent wave function. The method is applic-
able at the same time to the time-dependent description
of the motion of a wave packet in a potential and to the
determination, by correlation and spectral techniques, of
the energy levels and corresponding energy eigenfunc-
tions for the stationary states that compose the wave
packet. The method has two very important advantages:
the unitarity of the evolution operator preserves the norm
of the wave function and thus guarantees conservation of
probability and unconditional stability of the method,
and the band-limited Fourier series form of the solution
allows spatial derivatives to be calculated with much
greater accuracy than is possible with finite-difference ap-
proximations.

The spectral method is both simple and efficient to ap-
ply in Cartesian coordinates because of the availability of
the fast-Fourier-transform (FFT) algorithm, but Carte-
sian coordinates are not the most convenient for solving
some physical problems. For example, an electron in a
Coulomb field perturbed by an external field, either static
or time varying, would be more appropriately described
in some type or curvilinear coordinates, such as spherical

polar coordinates. In this case an appropriate orthogonal
expansion set or basis could be the product of spherical
harmonics Ft (e, p) and the radial functions sinkirr/R.
One can apply FFT methods to the radial coordinate at
least, but nothing of comparable efficiency is available for
the angular variables. For some problems, however, it is
possible to use a computational grid with a large number
of radial divisions but with relatively few angular
divisions and, consequently, relatively few terms in the
spherical harmonic expansion to manipulate. Thus one
could achieve a significant gain in efficiency over a com-
putation in Cartesian coordinates, which would require a
large number of grid points in three orthogonal direc-
tions.

In this paper we extend the split-operator spectral
technique developed in Refs. 3—5 to spherical polar
coordinates. The end result is a scheme which parallels
its Cartesian counterpart in many ways including the
preservation of the unitarity of the evolution operator
and the guarantee of high accuracy, provided the solution
is known to be band limited in both its radial and angular
dependence. The key to the method is the use of an or-
thogonal angular polynomial set and a related set of
quadrature points and weights that permits a unitary
transformation between angle space and angular momen-
tum space analogous to the unitary transformation be-
tween configuration and momentum space inherent in the
FFT. A split-operator scheme, suitable for use in the
description of a hydrogen atom in a strong magnetic field,
is also derived. This scheme utilizes a band-limited
Fourier series in the axial or z direction and Landau func-
tions in the radial direction. Again the key to this
scheme is a quadrature set that permits a unitary trans-
formation between the radial quadrature points and the
Landau function expansion coefficients.

The resulting schemes are both versatile and accurate
and are suitable for solving true time-dependent prob-
lems, e.g. , the description of the interaction of an atom
with a time varying electric field, or for determining
eigenstates by correlation and spectral analysis, which is
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normally carried out by time-independent techniques
such as the variational method. In this paper, the em-
phasis is on the latter application, since our aim is to es-
tablish the accuracy and versatility of the method. Ap-
plications of the method to the description of strictly
time-dependent phenomena such as multiphoton absorp-
tion will be covered in subsequent articles.

In this paper we describe results for three diferent ap-
plications for which results are obtainable by other
methods: the Stark shift and lifetime of the 1s state of hy-
drogen, the energy levels of hydrogen in intermediate and
strong magnetic fields, and the calculation of oscillator
strengths and final state energies for dipole transitions in-
volving high Rydberg states of hydrogen. Agreement be-
tween the split-operator spectral-method results and
those obtained with the specialized-reference techniques
is in general very good, although the eSciency of the
spectral method is not necessarily competitive with the
method of choice. An advantage of the spectral method,
on the other hand, is its versatility. By turning a crank,
so to speak, one can apply it to a wide variety of prob-
lems with the expectation of very good accuracy. But its
most important advantage is that it can be applied with
relative ease to a wide range of time-dependent problems
that are at best cumbersome and diScult to solve by oth-
er methods.

The paper is organized as follows, In Sec. II the split-
operator method is adapted to spherical coordinates.
The spectral method for determining energy eigenvalues
from time-dependent solutions of the Schrodinger equa-
tion is reviewed in Sec. III. In Sec. IV the split-operator
method in combination with the spectral method is used
to calculate the energy shift and lifetime of the 1s state of
hydrogen in a static electric field. In Sec. V a form of the
split-operator method, based on Landau functions, is
developed for treating high magnetic fields. Calculations
of the energy levels of a hydrogen atom in a uniform
magnetic field are presented in Sec. VI, and in Sec. VII
final-state energies and dipole oscillator strengths for a
set of transitions in field-free hydrogen are calculated
from the time dependent evolution of a wave packet.

Future applications of the method will include studies
of the dynamics of high Rydberg states in external mag-
netic fields and microwave fields along with their implica-
tions for quantum chaos, the multiple photon ionization
of hydrogen by short intense laser pulses, and multipho-
ton processes involving vibrating and rotating diatomic
and polyatomic molecules.

II. DKVKLOPMKNT OF THK SPLIT-OPERATOR
SPEC.IRAL METHOD FOR SPHERICAL POLAR

COOR DIN ATKS

In this section the split-operator spectral method is
adapted to spherical polar coordinates. While the discus-
sion is directed towards the specific application of a hy-
drogen atom in an external electric or magnetic field, the
results are clearly applicable to any single particle prob-
lem that can be described in spherical polar coordinates
with axial symmetry.

The time evolution of the physical system is described

by the state function %(t ), which satisfies Schrodinger's
equation of motion

The Hamiltonian for a hydrogen atom in a static external
field can be written in atomic units and spherical polar
coordinates as

1 8 L 1H=- + ——+ W(r, g),
2m t}ri 2mr 2 (2)

where F and B are the electric and magnetic field
strengths in atomic units and a is the fine structure con-
stant.

A. Split-operator formalism

The formal expression for advancing the wave function
one time increment At is

which is approximated by the split-operator expression

@(r +g& )
—&(i ittl4m 9 Sr e

—i it t(L. /4mr (l2r)—
Xe —i Lh, t W(r, 8) —i h, t(L /4m —1/Zr)e

(i tttl4m 9 /Sr @(t)+0(gr ) (4)

Here, commutation errors give rise to the third-order er-
ror term in b,t. The wave function 4(t) is generated nu-
merically over successive time increments by repeated ap-
plication of the unitary operator in Eq. (4) on the initial
wave function 4(t=0). To execute this process, the
wave function 4(r, g, ttt, t ) is expanded in terms of spheri-
cal harmonics t(It( (8,$)I and radial Fourier functions
sin(kyar /Ro },where r =Ro defines the radial grid bound-
ary. These are, respectively, eigenfunctions of the total
angular momentum operator L and the radial kinetic
energy operator (}'/(}r . The choice of sin(kyar/Ro) en-
sures that the boundary condition 4(r =0)=0 is satisfied.
Since m is a good quantum number for the systems under
discussion here, the problem can be simplified by in-
tegrating over the azimuthal angle ((} and replacing the
angular momentum operator L, with its eigenvalue m.
For the sake of simplicity only the value m=0 is con-
sidered in the following discussion. The generalization to
arbitrary values of m is discussed in Appendix A.

The application of each individual exponential opera-
tor (propagator) in the split form of the evolution opera-

where H is meant to operate on the reduced wave func-
tion 4=r% and L is the total angular momentum
operator. The potentials for the interaction of a hydro-
gen atom with a hoinogeneous dc electric field (Stark
effect) and a magnetic field (Zeeman effect) are, respec-
tively,

@/star"(r, g) = Qr cosg,

IP zeeman( r, g }= aBL + a2B 2r2( 1 —cos2g )
1

2m ' 8m

(3b)
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tor in Eq. (4) must be preceded by a unitary transforma-
tion of basis to one that is diagonal for the operator in
question. Thus the propagators containing the radial ki-
netic energy operator and the total angular momentum
operator should be applied in radial and angular momen-
tum space, respectively. Propagators depending on po-
tentials, on the other hand, are applied in coordinate
space on an I r, , HJ I grid.

We consider first the transformation that diagonalizes
the total angular momentum operator L . Let us assume
that the wave function can be expanded in a finite num-
ber of Legendre polynomials as

L
4( r,lxlt ) = g fi(r(, t )Pt(xj ), xi =cosH)

1=0
(5a)

L

5, =w, g Pt(x;)PI(x ) .
I=O

(6b)

The expansion in Eq. (5a) is consequently exact at the
quadrature points Ix, I and, furthermore, the coefficients

I f&, l =0,L J obtained from Eq. (5b) are equal to those
that would be obtained by analytic evaluation of the in-
tegrals corresponding to Eq. (5b).

The radial functions fI(r, t), which are defined on an
equidistant radial grid of N points I r, ; —Ro ~ r,
&Ro; r, —r, , =2RO/NJ are in turn expanded in a
discrete N-term Fourier basis

ft(r, t)=
N/2

k = —N/2+1

nikrj /Rp
(7a)

where the coefficients are determined numerically by the
trapezoid integration rule

N

gk(l, t)=1/N g fI(rj. , t)e
j=1

(7b)

The boundary condition 4(r=O, H, t)=0 is guaranteed
by choosing 4(r, H, t =0) to be an odd function of r and
employing the negative and positive r axis in the calcula-
tion. This is equivalent to expanding 4(t, r, H) in terms
of sin(kyar/Ro) but is computationally more convenient.
The transformation and its inverse, defined in Eqs. (7),
are also exactly unitary, since

where the PI are normalized Legendre polynomials or the
spherical harmonics YI0. The expansion coefficients
f&(r;, t ), which are functions of the radial coordinate, can
be evaluated numerically by means of the Gauss-
Legendre quadratures

L+1
f,(r;, t)= g w, Pt(x, )@(r,,x, , t), (5b)

j=1

where the points x. are the L+1 zeros of the Legendre
polynomial Pt +,(x ) and the w, 's are the corresponding
quadrature weights. The use of the L+ 1 order Gauss-
Legendre quadrature points and weights {x., wj J guaran-
tees that the linear transformations of Eqs. (Sa) and (Sb)
are exactly unitary, or equivalently

L+1
5t t

= g w, P&(x )P&(x ), (6a)
j=1

(8a)

N/2

5~ =1/N g e
k = —N/2+1

(Bb)

and the inverse discrete Fourier transform, Eq. (7a) is em-
ployed to obtain the new set of radial functions ft(r, t).
(ii) The second propagator from the right in Eq. (4) is ap-
plied to the expansion in Eq. (5a) and results in the multi-
plication of each function f,(r, , t ) by

exp( i b,—t[l(i+1)/4mr; 1/2~r; ~]—J .

(iii) Eq. (Sa) is then used to reconstruct the wave function
4(r;,x, t ) in coordinate space. Next 4(r;,x~, t ) is multi-
plied by the interaction propagator

exp[ i b, t W—(~r;~, x )] .

The resulting wave function is then reexpanded using Eq.
(5b). To complete the cycle, steps (ii) and then (i) are re-
peated in the appropriate order.

The preceding computational procedure, although
more complex than the split-operator scheme in Carte-
sian coordinates, can be rendered computationally
efficient by vectorization. In particular, the FFT opera-
tions involved in Eqs. (7a) and (7b) as well as the matrix
operations involved in the transformations (5a) and (5b)
and steps (i)—(iii) are vectorizable.

The numerical procedure just outlined for use in spher-
ical coordinates parallels closely the procedure previously
developed for use in Cartesian coordinates in a number
of respects, which it is useful to summarize here. Both
methods utilize a unitary form of the evolution operator,
which guarantees unconditional numerical stability and
conservation of probability. In both methods the evolu-
tion operator is factored into propagators that are either
functions of position or of appropriate momentum opera-
tors. Each propagator is evaluated in a representation
for which it is diagonal, and the transformations that link
the different representations are guaranteed to be unitary
by the choice of appropriate quadratures. In both the
Cartesian and spherical polar coordinate versions the nu-
merically generated solutions, given the particular split
form of the evolution operator, are in principle exact for
solutions that are band-limited functions, i.e., for func-
tions that can be represented by a finite number of
Fourier and/or Legendre basis functions. In the
spherica1-polar-coordinate version the band-limited prop-
erty in momentum space is achieved by making the grid
spacing 280/N small enough to accommodate the band-

These are well-known properties of the discrete Fourier
transform and ensure that the functional representation
embodied in Eqs. (7) is exact at the grid points for a
band-limited function.

The application of the time-evolution operator in Eq.
(4) reduces to the following steps: (i) Each Fourier expan-
sion coefficient gk (I, t ) of Eq. (7b) is multiplied by the fac-
tor

exp( i h—t n k~/4rnRO)
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width and by making R0 large enough to ensure that the
wave function is negligible on the radial grid boundary.

In practice, very accurate solutions can be expected if
the magnitudes of the Fourier coefficients gk(l, t) are
small for the largest radial momentum values represented
on the grid and if the norms of the partial wave ampli-
tudes f& are small for the largest values of i represented in
the solution (5a). During the course of the calculations
both the radial and angular bandwidths of the wave func-
tion are continuously monitored to ensure that the wave
function being calculated is in fact band limited. If the
radial and angular spectra do not fall rapidly enough, a
larger radial and/or angular basis is needed or,
equivalently, a larger number of grid points in radius
and/or angle is required.

The size of the time increment ht is determined by the
energy bandwidth needed to solve the problem. For a
typical problem the condition ht (n/3b, E is usually
sufficient, where hE is the maximum excursion in either
the sampled potential or kinetic energies.

g„—f dte "4(t) . (13)

P(E)=—f dt w(t }e' 'P(t),
T 0

where w(t ) is the Hanning window function given by

w(t)=1 cos(—2nt/T) if 0 ~t ~T .

(14}

When Eq. (11) is inserted into Eq. (14), the result is

P(E)= y Ia„IZ(E —E„), (15)

The results obtained in Eq. (12b) hold for an infinite
time record of the correlation function P(t ). In practice
only a finite time record of duration, T, of the correlation
function is available. Consequently, the 5 functions in
Eq. (12b) are replaced by functions of the form
sin[ —,'(E E„—)T/(E —E„)],which have side lobes that
could overlap or be confused with true resonances. To
avoid this problem Eq. (12a) is approximated by

III. SPECTRAL METHOD FOR DETERMINING
ENERGY EIGENVALUES

which also displays a series of resonances located at the
energy eigenvalues. The line shape function X(E E„)is-
defined as

For the convenience of the reader, we review the spec-
tral method for calculating energy eigen values as
developed in Ref. 3. The bound-state spectrum of a
Hamiltonian can be constructed with the aid of the corre-
lation function

P(t )
—= (4(0)I4(t ) &

= f f fdr d(cos8)dg 4'(r, 8, &,0)@(r,8, &,t),

T i(E—E„)X(E E„}=——f dt e " w(t}
T 0

i(E—E )T
e
i(E E„)T—

[i(E—E„)T+2m)
e

2 i (E E„)T+ 2m.—
['(E—E„)T—2 )

e —1+
i (E E„)T 2n— — (16)

4(t)= ga„g„(r,8,$)e (10)

where

Hg„=E„f„,
then the correlation function takes the form

The spectral function, which is defined as the Fourier
transform of the correlation function in Eq. (11},

P(E ):—f dt ~'Pe(t ), (12a)

P(E)= g la. I's(E —E„), (12b)

displays a series of resonances corresponding to the ei-
genvalues of the Hamiltonian. Once the eigenvalues are
determined, the wave function can be constructed, apart
from a normalization constant, as

where the initial state 4(t =0) can be considered a test
function on the spectrum. If the time-dependent wave
function is expanded as a superposition of eigenstates of
the Hamiltonian

In contrast to sin[ —,'(E —E„)T/(E E„)]the sp—ectral
line-shape function X(E E„)has—no side lobes and con-
sequently can be used for accurate identification of ener-

gy eigenvalues, provided there is no significant overlap
between adjacent resonances.

The total time T limits the energy resolution of the
spectral function P(E) to DE =2m/T. At the same time
the sampling interval 8t should be suSciently small to
accommodate all of the bound states and a suitable por-
tion of the continuum by a factor of two or three.

To resolve closely spaced spectral lines, the energy grid
spacing 2~/T associated with the discrete Fourier trans-
form of the correlation function in Eq. (12a) must be
smaller than the smallest energy spacing in the spectrum.
Once spectral lines are resolved, a line-shape-fitting tech-
nique, reviewed in Appendix B, improves the accuracy
of the eigenvalue determination well beyond that
prescribed in the uncertainty relation DE=2~/T. This
same technique also yields an accurate determination of
the eigenstate probabilities Ia„I

.
The corresponding eigenfunctions are calculated by an

analogous modification of Eq. (13), which is

—f dt e " w(t)4(t)= g a& QJX(E„Ez). . — .

J
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If the energy grid spacing 2n/. T is refined enough to
give good separation between the resonances, then
X(E„E—)=.0 for E„&Eand to an excellent approxi-
mation the corresponding eigenstate is given by

T iEtP„=—f dre "w(t)4(t) .
T 0

The test function 4(t =0) is to some extent arbitrary;
it need only contain eigenstates of interest when
represented as a superposition of the complete set of
states of the Hamiltonian under consideration. Some-
times symmetry considerations will govern the test func-
tion. For example, to resolve spectra corresponding to
nearly degenerate eigenstates, which are differentiated on
the basis of appropriate symmetry operations, the initial
wave packet 4(t =0) can be symmetrized so that any one
member of a degenerate or nearly degenerate set of ener-

gy resonances is present in the spectral function P(E).
The spectra for hydrogen in an external magnetic field,
which can be labeled according to even or odd z parity, is
constructed by choosing the initial wavepacket to be an
even or odd function of z.
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IV. APPLICATION OF THE SPLIT-OPERATOR
SPECTRAL METHOD TO A HYDROGEN ATOM

IN A dc ELECTRIC FIELD

The application of a dc electric field transforms the
bound field-free hydrogen-atom spectrum into a continu-
um of ionizing states. Since perturbation-expansion tech-
niques are known to diverge when suSciently large fields
are applied, this problem has long served as a useful test
of various "exact" quantum-mechanical computational
methods. ' A solution of this problem would also pro-
vide a meaningful test of the accuracy and versatility of
the split-operator spectral method.

If the electron is initially in the bound state $0 with en-

ergy Eo, the application of an external dc electric field
will result in a mixing of the discrete state Po with a con-
tinuum of orthogonal ionizing states I PE j. Following a
standard Wigner-Weisskopf treatment of the problem, '

the energy of the discrete state is found to be shifted by
an amount hE, and the probability of observing the sys-
tem in the state Po decays exponentially with a lifetime

FIG. 1. Calculated energy spectrum for a hydrogen atom in a
uniform static electric field. Energy corresponding to the reso-
nant peak can be located using a line-shape-fitting technique.

I '. This behavior is represented by the relation

(19)

where

4(t =0)=$0 . (20)

ststk

[(P /e
'

/P )/ =e —r (21)

where H '"" is the Hamiltonian of Eq. (2) with W(r, O)
= W "'"(r, 8 ) If t.he complex eigenvalue Eo+ b,E
+i I /2 is then associated with the dynamics of the
discrete state (()0, Eq. (21) becomes

The width I measures the distribution of final continuum
states coupled to the discrete state Po.

Equation (19) can be replaced by the equivalent formal
expression

TABLE I. Comparison of the split-operator spectral method and analytic results for hydrogen-atom
Stark resonances and widths (a.u.).

0.03
0.05
0.06
0.08
0.10
0.15
0.20
0.25

ER

—0.502 084
—0.506 135
—0.509 252
—0.517 647
—0.527 521
—0.550988
—0.570 532
—0.585 370

ER

—0.502 074 25
—0.506 1954
—0.509 203 5
—0.517 56
—0.527 45
—0.551 20
—0.570 55
—0.5860

I /2'

0.000 000 4
0.000 038 3
0.000 247
0.002 29
0.007 32
0.0304
0.0609
0.0949

I /2

0.000 000 01
0.000 038 6
0.000 258
0.002 30
0.007 25
0.03000
0.06045
0.0940

'These resonance energies are expressed as Ez =0.5+LE, where hE is obtained from split-operator
spectral calculations employing 4096 grid points spanning a +80-a.u. grid.
Reference 9.
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(22)

The spectral method permits the energy shift bE and
the width I to be computed in a straightforward way by
the Fourier analysis of the correlation function

P(r )—= & C (0)le(r ) &
= &y, le-'"'"'"'ly, ), (23)

where exp( H"—'"t ) in Eq. (23) is replaced by the split-
operator approximation in Eq. (4).

The spectral function P(E) is calculated from the
correlation function P(t) using Eq. (14). The magnitude
~P(E ) ~

reveals a single peak (see Fig. 1, for example), and
the line-shape-fitting technique in Appendix 8 yields a
complex resonance energy whose value can be interpreted
as ED+ b,E i I—'/2 T.he linewidth displayed in Fig. 1 is
determined primarily by the record length T and is not a
direct measure of the decay width I .

Results of split-operator spectral calculations for the
Stark effect on ground-state hydrogen are given in Table
I, where values of the shifted ground-state energy
Eo+b,E and half-width I l2 as a function of dc field
strength are compared with the corresponding values
from Ref. 9. The spectral-method results in Table I were
obtained using a time step of duration 0.002 a.u. and
4096 radial points spanning a grid from —80 to +80 a.u.
and a 14-term angular expansion. In general the size of
the grid is dictated by the requirement that the wave
packet be negligible on the grid boundary to avoid spuri-
ous effects introduced by the imposition of periodic
boundary conditions. In cases where ionization is in-
volved the wave packet must eventually hit the boundary.
To prevent boundary reflections a pure imaginary short-
range contribution, which is appreciable only near the
boundary, is added to the potential. This imaginary con-
tribution to the potential acts as an absorber. It has been
established that the energy shift hE and the decay width

0.963

0.962

C

lg

0.961

C0
5
C

0.960
C0
CI

V 0.959

0.958
0

r r r r r e r e
g

r e r r r e e r e
y

e e r r r r r ~ r
y

e r e r r r e r r
g

e r r r e e e e r
g

e e ~ r r r r ~ r

40 20 30 40 50 60
Time (a.u.)

I are quite insensitive to the exact form of this absorber.
The electric field was turned on adiabatically and the

exponential decay of the initial state was allowed to de-
velop, typically over 4000 to 10000 time steps. After |;x-
ponential decay of the initial state had been established,
the correlation function and spectrum were computed,
typically over an additional 4000 time steps. Figure 2
shows a plot of the absolute value of the correlation func-
tion corresponding to Fig. 1 for a field strength F=0.05

FIG. 2. Absolute value of the correlation function corre-
sponding to Fig. 1. Measurement of time is begun well after
adiabatic turn-on of the electric field.

TABLE II. Convergence of Stark resonances and widths for hydrogen atom in calculations with the
split-operator spectral method. (All values in a.u.)

n„ +Ra ~max

a

F=O
(E, , r/2)
F=0.05 F=0.1

1024
1024
1024
1024
1024

2048
2048
2048
2048
2048

4096
4096
4096
4096
4096

80
80
80
80
80

80
80
80
80
80

80
80
80
80
80

4
6

10
14

4
6

10
14

4
6

10
14

0.492 75

0.498 06

0.499 49

0.50647
0.50647
0.50647
0.50647

0.506 21
0.506 21
0.506 21
0.506 21

0.506 13
0.506 13
0.506 14
0.506 14

0.000 051 9
0.000 051 6
0.000 0515
0.000 051 5

0.000 041 9
0.000 041 6
0.000 041 7
0.000 041 7

0.000 056 3
0.000041 3
0.0000394
0.000 038 3

0.528 71
0.528 73
0.528 73
0.528 73

0.527 77
0.527 78
0.527 78
0.527 78

0.527 49
0.527 56
0.527 54
0.527 52

0.008 09
0.008 13
0.008 13
0.008 13

0.007 46
0.007 51
0.007 51
0.007 51

0.007 22
0.007 30
0.007 32
0.007 32

'Binding energy for 1s state of field-free hydrogen.
E„=o5+as
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a.u. For this relatively low field, exponential decay of the
initial state takes a relatively long time to develop as can
be seen from the small undulations in the upper part of
the curve. The field was turned on over 2000 time steps,
and the correlation function begins after 20000 steps.
For this case, the complex eigenvalue that appears in
Table I was computed from the last quarter of the corre-
lation function.

The resonance energies and decay widths calculated by
the split-operator spectral method are in good agreement
with their analytic counterparts in Table I. The reso-
nance energies, which generally agree to four significant
figures, are in better agreement than the decay times due
to the necessity for avoiding transient effects for accurate
calculation of the decay times.

Table II shows the convergence of results for two
different field strengths as a function of radial zoning and
the number of spherical harmonics included in the calcu-
lation. Also given in Table II are field-free ground-state
energies Eo for hydrogen. Since the 1s state is spatially
compact and concentrated close to the origin, its calcu-
lated energy is quite sensitive to the numerical represen-
tation of the Coulomb potential on the grid. When
sufficiently small grid spacings are employed, however,
accurate spectra and eigenvalues can be generated.

These calculations of field ionization in hydrogen sug-
gest that the split-operator spectral method has sufficient
accuracy to describe the field ionization of hydrogen from
high Rydberg states by microwave fields' ' as well as
the rnultiphoton ionization of hydrogen by laser fields. '

The present method is, moreover, uniquely suited for
describing ionization processes where a well-defined short
pulse of radiation is involved.

; g]/( 2+z&)&/2 —i ht ho/2Xe ' ~ ' e

y eii ht/4m }s2/sz2@(t } (26)

The procedure for propagating the wave function one
time increment is analogous to that described in Sec. II.
The time-dependent wave function 4 (z,p, t } (the P de-
gree of freedom is integrated out) for a particular value of
the quantum number m is numerically evaluated on an
appropriate coordinate grid I z;,p/ I and then expanded in
terms of the eigenfunctions of ho

N

@ (z, ,p, , t)= g f„(z,, t)y„(p,),
n=0

where

h,y„(p)=P(n+-,'m+-,' ~m ~+ ,')y„(p)-.

(27)

(28)

Here the functions g„arethe so-called Landau func-
tions which can be explicitly written as'

' 1/2

(p)= 2Pn!
(n + (m()!

e
—Pp /2(p 2)(m[/2g (m((p 2)

(29)

and satisfy the orthogonality relation

where P=aB is the magnetic field strength parameter in
atomic units.

The time-dependent wave function is advanced over
one time increment in the split-operator approximation
by the formal expression

@(t+~t)— ~ ~ /4 e'/s",

V. SPLIT-OPERATOR METHOD
IN THE STRONG-MAGNETIC-FIELD LIMIT J X (P)X ' (P)P dP=5, ' . (30)

1 2

H=hO-
2m gz&

1

( 2+ 2)1/2 (24)

Here, ho is the two-dimensional Hamiltonian describing
the electron motion in the plane perpendicular to the
magnetic field and is given by

1 1 BB 1ho= +-
2m p apPap p gy2

iP + Pp2m 8 8m
(25)

The split-operator method developed for use in spheri-
cal coordinates in Sec. II is appropriate for treating a hy-
drogen atom in a magnetic field provided the magnetic
interaction energy is small compared to the Coulomb
binding energy, since accurate computations can be per-
formed with a reasonable number of terms in the angular
expansion. When the magnetic interaction energy is
comparable to or exceeds the Coulomb binding energy,
the number of terms in the angular expansion can be-
corne excessive, and it becomes more efficient to employ
cylindrical coordinates. The Hamiltonian for a hydrogen
atom in a strong magnetic field can be written in cylindri-
cal coordinates and atomic units as

X (pp2) Iml (31)

Here Ip /P)' /w2J are the N+I- rdoer Gauss-Laguerre
quadrature points and weights. Since the appropriate
Laguerre quadrature points are employed in the con-
struction of the expansion coefficients of Eq. (31), the
transforrnations and inverse transformations from Lan-
dau functional space to coordinate space [i.e., Eq. (27)
and Eq. (31)] are exactly unitary,

N+1
fi. ,.= g w, r. (P, )X. (p, },

j=l
N

&;, =w; g y„(p;)y„(p,) .

(32a}

(32b)
n=0

The expansion coefficients f„(z,t) are expressed as
Fourier series in z and are evaluated in a manner that
closely parallels the evaluation of the fI(r, t ) in Sec. II.

Since the Landau orbitals can be expressed in terms of
the Laguerre polynomials L„,the expansion coefficients
can be evaluated exactly by appropriate Gauss-Laguerre
quadratures as

N+1 p z

f„(z,t ) =(2P) ' g w, y„(p,)4(z,p, , t )e
j=1
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VI. NUMERICAL RESULTS
FOR A HYDROGEN ATOM

IN A UNIFORM MAGNETIC FIELD

The theoretical description of a hydrogen atom in a
uniform magnetic field is one of the basic nonseparable
problems of atomic physics and has as a consequence at-
tracted wide interest. The development of methods for
treating this problem over a wide range of field strengths,
including immediate field strengths, where the Coulomb
and magnetic field strengths become comparable, has
proven to be a significant challenge. 's

As an additional test of the versatility and accuracy of
the split-operator spectral method it has been used to
determine the effect of magnetic fields of varying strength
on the lowest energy levels of hydrogen. Calculational
results are presented for both spherical harmonic and
Landau basis expansions in Table III, where they are
compared with some of the extensive results obtained by
Rosner et al., ' using an adaptation of a Hartree-Fock
method by Froese-Fischer. The energies of the states in

Table III are designated by their zero-field-limit quantum
labels and their z parity (+). The results obtained by
Rosner et al. are assumed to be accurate in all the
significant figures listed.

Computations with the spherical harmonic basis were
performed with 10 to 12 spherical harmonics for the
lowest magnetic fields and up to 40 for higher fields.
Typical calculations with the Landau basis were per-
formed with a 40-term expansion. For the spherical har-
monic basis calculations, a 30 a.u. grid with 1024 to 2048
radial increments was used. Typical calculations were
performed using 16000 time increments. Although some
efFort was made to adjust the numerical parameters of the
problem to improve accuracy, no attempt was made to
optimize them. In addition, no effort was made to sys-
tematically study the convergence in accuracy as a func-
tion of the number of expansion terms. Energy eigenval-
ues for this problem could be computed from a somewhat
arbitrary set of initial wave functions as long as the one
used possessed the chosen parity and m value. We chose
a linear combination of field-free hydrogen orbitals with

TABLE III. Electron binding energies for a hydrogen atom in a uniform magnetic field. Compar-
ison between results obtained using the split-operator spectral method and results from Ref. 15. The
former are obtained using both a spherical harmonic and a Landau basis.

Spherical Landau Rosner et al. Spherical Landau Rosner et al.

0.005
0.05
0.5
2
5

10
50

0.005
0.05
0.5
2
5

10
50

0.005
0.05
0.5
2
5

10
50

1

4
6

0.382 57
0.413 20
0.463 59

2p m=1 (+)
0.134 71
0.200 86
0.456 86
0.793 77

0.456 31
0.787 55
1.1244
1.4633
2.6326

3d m=1 ( —)

0.06468
0.107 81
0.20648
0.282 37

0.206 57
0.285 80
0.338 95
0.376 11
0.442 79

2p m ——0( —)

0.129 86
0.162 42 0.161 8
0.26006 0.259 9
0.334 24 0.335 6

0.129 85
0.162 41
0.26001
0.335 70
0.383
0.413 38
0.463 62

0.134701
0.200 846
0.456 597
0.787 826
1.125 42
1.4655
2.635

0.064 678 2
0.107 812 1

0.206 567 4
0.285 802 7
0.338 956 1

0.376 1198
0.442 871 2

0.059 692
0.069 897
0.090182
0.098 234

0.063 824
0.081 180
0.125 44
0.15499

0.038 132
0.053 244
0.079022
0.082 371

3p m=0 ( —)

0.069 661
0.090 210
0.102 94
0.109 83
0.11402
0.121 29

3p m =1 (+)

0.125 44
0.15969
0.182 25
0.198 77
0.230 10

4d m=1( —)

0.079 320
0.094 681
0.103 37
0.108 83
0.11787

0.059 688
0.069 892
0.0902
0.102 95
0.109 85
0.11405
0.120 52

0.063 820
0.081 171
0.125 461
0.1597
0.1823
0.198 862
0.234 752

0.038 132 2
0.053 245 7
0.079 3594
0.094 698 7
0.103 3540
0.108 853 7
0.1178809

0.005
0.05
0.5
2
5

10
50

0.505 04
0.547 53
0.830 95
1.2796
1.7445
2.2082

ls (+)

1.7294
2.1586
3.4925

0.504 975 0
0.547 526 5
0.831 1680
1.280 798
1.747 797
2.215 399
3.78905

0.129 59
0.147 99
0.158 37
0.187 71
0.192 60
0.214 94

2s (+)

0.209 11
0.222 25
0.251 33

0.129 651 6
0.148 089 2
0.160469 0
0.188 81
0.208 89
0.223 81
0.256 169 5

'y =B/2c=(2. 12715X10 ' a.u./G)B(G).
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the specified parity and m value. The resulting spectra
displayed one or more resonances, and the energies corre-
sponding to the lowest lying resonance in the appropriate
spectrum are listed in Table III.

The agreement between the split-operator spectral cal-
culations and the results of Rosner et al. is in general
quite good and is frequently to four significant figures.
As would be expected, the table shows that split-operator
results are most accurate for the spherical harmonic basis
when the field strength is weak and most accurate for the
Landau basis when the field is strong. This follows from
the fact that for small magnetic fields the electron motion
is determined mainly by the spherically symmetric
Coulomb force, while for large fields the electron dynam-
ics is dominated by the magnetic field. For intermediate
fields the Coulomb and magnetic field energies can be
comparable, and accuracy requires large expansion sets
in either basis. Table III also shows slightly poorer accu-
racy for the spatially compact 1s state than for higher
states, which results from sensitivity of that state to the
sampling of the singular Coulomb potential on the nu-
merical grid.

VII. CALCULATION OF DIPOLE
PHOTO ABSORPTION SPECTRA IN ATOMIC
HYDROGEN USING THE SPLIT-OPERATOR

SPECTRAL METHOD

(33}

where go is the initial Coulomb state with energy Eo, I
is the field-free Coulomb Hamiltonian, p is the dipole
operator, and the propagator e ' ' is approximated b
the unitary split operator given in Eq. (4) with
W(r, 8)=0. Equation (33), it will be noted, has the form
of the overlap of a wave packet at time t on the same
wave packet at time t=0, as in Eq. (9). A numerical
evaluation of the photoabsorption cross section in the
electric dipole approximation can be obtained by evaluat-
ing the integral

The experimental generation of photoabsorption spec-
tra of atoms in strong external fields has become a topic
of considerable interest. ' The split-operator spectral
method offers some interesting possibilities for under-
standing these spectra and in this section we consider the
task of generating them. But in the interest of evaluating
the accuracy of the method we restrict our attention to
the generation of photoabsorption spectra for field-free
hydrogen in the low intensity, i.e., single-photon dipole
limit, where first-order perturbation theory provides ana-
lytic results for comparison.

It can be shown that the dipole photoabsorption cross
section can be computed from the Fourier transform of
the dipole correlation function. This method is easily
implemented using a split-operator propagator and the
numerical spectral-analysis technique described in Sec.
III and Appendix B.

The dipole correlation function can be expressed as

(4( 0}l+(t) &:—(tp ipe 'LLtlg &,
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FIG. 3. Calculated energy spectrum for 2p-nd bound-bound
transitions. Positions of peaks indicate final transition energies,
and heights of peaks are a measure of oscillator strengths.
Large tick marks indicate analytic values of energies. Reso-
nances start with n =3.
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where E is the final-state energy. Expression (34) has the
form of the energy spectrum (14).

The final-state energies E are obtained from the loca-
tion of the peaks of the spectral function (34), and the
corresponding dipole oscillator strengths

fo J=2~(&)—Eo)l&golplg, &I' (35)

are determined from the heights of the resonant peaks of

B.
the spectrum using the technique outlined in Append'ppen ix

In general, this method can be expected to apply not

o (E Eo ) = [(4m a o(E— Eo ) /T )]-
T

X f dt to(t)e' '(@(0)IW(t)&, (34)
FI&. 4IG. 4. Close-up of the energy spectrum shown in Fig. 3.

Resonances start with n = 16.
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only to bound-bound transitions, but to transitions in-
volving resonant states in the continuum as well, as was
demonstrated by the results for the Stark effect on hydro-
gen in Sec. IU. The spectrum of a hydrogen atom in a
strong magnetic field exhibits a structure rich in above-
threshold ionization levels due to the tight confinement of
the electron by the magnetic field. A treatment of these
levels will be described in a future publication.

The dipole photoabsorption spectrum for light polar-
ized in the z direction has been calculated for the
2p nd(-, m = I ) channel in field-free hydrogen and is exhib-
ited in Figs. 3 and 4. The initial wave packet was as-

sumed to have the form zlt2, where 1t2~ is the 2p orbital
of hydrogen. Figure 3 shows the complete spectrum gen-
erated by the calculation below the ionization limit, and
Fig. 4 shows a detailed plot of the spectrum in the energy
range between —2X10 a.u. and the ionization limit.
Tick marks on the horizontal scale indicate the analyti-
cally derived energy levels. Resonances in Fig. 3 start
with n =3 and in Fig. 4 start with n =16. A comparison
between the final-state energy levels and oscillator
strengths, calculated with the split-operator spectral
method and from analytic formulas, is presented in
Table IV. Figure 5 shows contours of equal probability

TABLE IV-. Comparison between split-operator spectral method (SOSM) and analytic (A ) values
for field-free hydrogen-atom %»~+„dtransition. Indicated are final-state energies E„andoscillator
strengths. Numbers in square brackets denote powers of ten.

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

45

SOSM
0.555 46[ —1]
0.31246[—1]
0.19998[—1]
0.138 88[—1]
0.102 03[—1]
0.781 20[—2]
0.61725[—2]
0.499 97[—2]
0.413 20[ —2]
0.347 21[—2]
0.295 85[—2]
0.255 09[—2]
0.222 21[—2]
0.195 31[—2)
0.17300[—2]
0.154 32[—2]
0.138 50[—2]
0.125 00[—2]
0.11338[—2]
0.103 30[—2]
0.945 16[—3]
0.868 04[ —3]
0.799 98[—3)
0.739 63[—3]
0.685 86[—3]
0.637 74[—3]
0.594 52[—3)
0.555 55[—3]
0.520 29[—3]
0.488 25[—3]
0.459 16[—3]
0.432 52[—3]
0.408 15[—3]
0.385 78[—3]
0.365 20[—3]
0.346 25[ —3)
0.329 50[—3]
0.313 32[—3]
0.296 69[—3]
0.283 15[—3]
0.269 17[—3)
0.254 13[—3]
0.237 46[ —3]

A

0.555 56[ —1]
0.312 50[—1]
0.200 00[—1]
0.138 89[—1]
0.102 04[—1]
0.781 25[ —2]
0.61728[ —2]
0.500 00[—2]
0.413 22[ —2]
0.347 22[ —2]
0.295 86[—2]
0.255 10[—2]
0.222 22[ —2]
0.195 31[—2]
0.173 01[—2]
0.15432[ —2]
0.13850[—2]
0.125 00[—2]
0.11338[—2]
0.103 31[—2]
0.945 18[—3]
0.868 06[—3]
0.800 00[—3]
0.739 64[ —3]
0.685 87[—3)
0.637 76[—3]
0.594 53[—3]
0.555 56[—3]
0.520 29[—3]
0.488 28[ —3]
0.459 14[—3]
0.432 53[—3]
0.408 16(—3]
0.385 80[—3]
0.365 23[—3)
0.346 26[ —3]
0.328 73[—3]
0.312 50[—3]
0.297 44[ —3]
0.283 45[ —3]
0.270 42[ —3]
0.258 26[—3]
0.246 91[—3]

SOSM
0.695 76[ —1]
0.121 88[—1]
0 wax 16[—2]
0.216 55[—2]
0.123 47[—2]
0.776 70[—3]
0.522 79[—3]
0.369 82[ —3]
0.271 78[—3]
0.205 87[—3]
0.159 84[—3)
0.126 67[—3]
0.102 14[—3]
0.835 98[—4]
0.693 10[—4]
0.581 17[—4]
0.492 21[—4]
0.420 59[—4]
0.362 27[ —4]
0.31427[ —4]
0.274 48[ —4]
0.241 06[—4]
0.212 92[—4]
0.18905[ —4]
0.168 63[—4]
0.15103[—4]
0.135 72[ —4]
0.122 43[—4]
0.11074[ —4]
0.101 09[—4]
0.921 81[—5]
0.836 94[—5]
0.766 73[—5]
0.707 39[—5]
0.651 61[—5]
0.596 69[—5]
0.607 47[ —5]
0.566 97[—5]
0.530 75[—5]
0.446 59[—5]
0.416 69[—5]
0.390 58[—5]
0.364 64[—5]

A

0.695 78[—1]
0.121 80[—1]
0.443 70[ —2]
0.216 29[—2]
0.123 31[—2]
0.775 64[ —3]
0.522 05[—3)
0.369 28[ —3]
0.271 38[—3]
0.205 56[—3]
0.15960[—3]
0.12648[—3]
0.101 99[—3]
0.834 70[—4]
0.692 03[—4]
0.580 26[ —4]
0.491 44[ —4]
0.41993[—4]
0.361 71[—4]
0.31380[—4]
0.274 03[—4]
0.240 72[ —4]
0.212 62[ —4]
0.188 73[—4]
0.168 30[—4]
0.15073[—4]
0.135 52[ —4]
0.122 30[—4]
0.11074[ —4]
0.10060[—4)
0.91665[—5]
0.837 58[—5]
0.767 35[—5]
0.704 78[—5]
0.648 83[—5]
0.598 66[—5)
0.553 54[ —5]
0.512 85[ —5]
0.476 06[—5]
0.442 70[—5]
0.412 40[ —5]
0.384 80[ —5]
0.359 61[—5]
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at various times for the wave packet used to generate the
spectra in Figs. 3 and 4.

The numerical results summarized in Figs. 3 and 4 and
tabulated in Table IV were obtained using 4096 radial
grid points spanning the range between —4000 and 4000
a.u. and two angular states, corresponding to l=1 and
m =1 and 1=2 and m =1. The calculation was run a to-
tal of 2 =10 time steps of duration ht =1.1 a.u. , which
defines an energy grid resolution of AE = 5 X 10 a.u.

It is seen from Table IV that numerically determined
energies agree with analytic values to four significant
figures through n =38, but accuracy declines after that.
Numerical oscillator strengths, on the other hand, agree
with their analytic counterparts for the most part to
three significant figures but decline in accuracy for n

values slightly lower than n =38. The loss in accuracy of
both energies and oscillator strengths at the highest n
values can be attributed both to the increasing overlap of
the spectral lines and to the encroachment of the highest
Rydberg states on the grid boundary. In any case, the
overall accuracy of the representation of the Rydberg
states out to n =38 is remarkable in view of the course
spacing of the radial grid, which is approximately 2 a.u.
It is clear that the number of time steps required to ana-
lyze a given Coulomb or Coulomb-like level scheme must
rise rapidly with the number of levels required. The fact
that the method can be used to generate accurate solu-
tions to problems requiring in excess of a million integra-
tion steps, is an impressive demonstration of the stability
and overall accuracy of the method.
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FIG. 5. Contours of equal probability calculated from the wave packet used to generate the spectra in Figs. 3 and 4. Times are in-
dicated in units of 2000 a.u.
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VIII. SUMMARY AND CONCLUSIONS J(m, m)( }J(m,m)( N 1 x2}m
+1

')
(A3)

We have generalized to spherical coordinates the split-
operator spectral method previously developed for Carte-
sian coordinates. This generalization is based on an ex-
pansion of the wave function as a Fourier series in the ra-
dial coordinate and Legendre functions in the polar an-
gle. The use of Gauss quadratures in the evaluation of
the angular expansion coeScients permits the high de-
gree of accuracy and stability that has already been
demonstrated for the method in Cartesian coordinates.

The method is applicable to explicitly time dependent
problems or to the determination of the stationary states
of quantum mechanical systems. In this paper the latter
application was emphasized to demonstrate both the ac-
curacy and versatility of the method.

We have shown that the method is applicable to prob-
lems involving ionization and the effects of large external
electric or magnetic fields on hydrogen. We have also
demonstrated that the method gives an accurate descrip-
tion of high Rydberg states of hydrogen. Our results will
form the basis for future applications to high Rydberg
states in external fields as well as the interaction of short
intense laser pulses with atoms and molecules.
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n=0

where the expansion coeScients are obtained from
Gauss-Jacobi quadratures as

L+1fm(r t )
—y wi J~(m, m)( )@m(r xJ t )( 1 x2) m/2—

j=1

(A4b)

Here I x, w ] are the related L + 1-order Gauss-Jacobi
quadrature yoints and weights. The use of the Jacobi or-
thogonal polynomials and related Gauss-Jacobi quadra-
tures guarantee that the linear transformations of Eqs.
(A4) are exactly unitary,

L+1
W.J m'm (X.)J m'm (X )

j=1
L

'J W' g J m'm (X }Jm'm (X.l,J
n=0

(ASa)

Consequently, for a band-limited function the expansion
coefficients f„(r,t ) are equivalent to those obtained from
analytic evaluation of Eq. (Alb). The remainder of the
formulation is identical to that outlined in Sec. II.

In the special case of m=0 the Jacobi polynomials
reduce to the Legendre polynomials.

Inserting expression (A2) into Eq. (Ala) gives

4 (r,xi, t) = g f„(r,t)J„' ' '(xj )(1—x. )

APPENDIX A: NUMERICAL EVALUATION
OF ANGULAR EXPANSION COEFFICIENTS

WHEN m+0

The time-dependent wave function 4 (r, e, t) for a
particular value of m is obtained by expanding the total
wave function in spherical harmonics ( Y) ), and integrat-
ing over the azimuthal angle (I), which results in

APPENDIX B: LINE-SHAPE-FITTING METHOD

The line-shape function X(E E„)can be —written

X(5)=V(5)——,'[V(5+ 1)+P(5 —1)],
where

P(5) =[exp(2mi5) 1]/2n—i5, P(0)=1,

(B1)

(B2)
K+1

4 (r,x, t)= g fi(r, t)P) (x), x=cose
1=m

(Ala} and

where the expansion coeScients are given by

f)(r, t ) =f dx I't (x )4 (r,x, t ) . (A lb)

Here P& are the normalized associated Legendre func-
tions.

The numerical stability and accuracy of the formula-
tion outlined in Sec. II for m =0 are a consequence of the
orthogonality relations in Eqs. (6), which result from the
use of appropriate quadrature points and weights and re-
lated orthogonal polynomials. The same task can be ac-
complished for the associated Legendre functions by ex-
pressing them in terms of Jacobi orthogonal polynomials
and employing Gauss-Jacobi quadratures to evaluate Eq.
(A lb). The required relationship is

5=(E E„)T/2m . — (B3)

Let us assume that a local maximum in the sampled
values of P(E) occurs for E =m bE, where b,E is the
sampling interval in the computation of the numerical
Fourier transform P(E ). In the range (m —1 }b,E
(E((m+1)bE, P(E) can, to an excellent approxima-
tion, be represented as

P(E)= IV„X(E E„), — (B4)

where E„is the desired eigenvalue. Let the following ra-
tio be formed from sampled values of P(E) in the neigh-
borhood of E

R =P[(m + 1)bE]/P[(m —1)b,E]

Pm (x) (1 x2)m/2J(m, m)(x) )t (} 1 (A2)

where J„' ' ' are the normalized Jacobi polynomials,
which satisfy

where

5'=E E„)T/2n . —

=X(5'+ I )/X(5' —1), (B5)

(B6)
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Making use of Eqs. (B2}and (B3), we can write Eq. (B5}
as

5'=[3r+(9r —8}' ]/2 . (B10)

(5' —35'+2)/(5' +35'+2) =R,
or equivalently

(B7)
The correct solution is the one which satis6es—

—,
' ~ Re5 —,'. In terms of the line-center offset parame-

ter 5', E„then can be determined from

5' —35'r +2 =0, (B8) E„=E—2m 5'/T, (B1 1)

where

r=(1+R)/(1 —R ) .

The solutions to Eq. (B8) are

(B9)

W„=P(mb,E)/X(5') . (B12)

and W„=~a„~,the weight of the state n in the wave
packet, can be obtained from
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