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Half-dressed sources are defined as sources deprived partially or totally of the cloud of virtual

quanta which surrounds them in the ground state of the total system. Two models of a half-dressed

point source S are considered, the first in the framework of the theory of massive scalar fields and
the second in quantum electrodynamics (QED). In both cases the detector is modeled by a second
fully dressed source T of the same field, which is also bound to an oscillation center by harmonic
forces. It is shown that when S at time t =0 is suddenly coupled to or decoupled from the field, the
detector T, which is initially at rest, is set in motion after a time t =Rp/c, where R p is the S-T dis-

tance. Neglecting the reaction back on the field due to the oscillatory motion of T, the amplitude of
oscillation for t = ~ is obtained as a function of Rp. Thus the time-varying virtual field of S is

shown to be capable of exerting a force which excites the model detector. For the QED case, this
force is related to the properties of the energy density of the virtual field. This energy density

displays a singularity at r =ct, and the mathematical nature of this singularity is studied in detail.
In this way it is shown that the energy density of the time-dependent virtual field is rather different
from that of a pulse of radiation emitted by a source during energy-conserving processes. The
differences are discussed in detail, as well as the limitations of the model.

I. INTRODUCTION

The sources of a quantum-mechanical field are known
to be surrounded by a cloud of virtual quanta even in the
ground state of the whole system. ' In these conditions
one usually refers to the system in terms of a dressed
source, in the vicinity of which the quantum fiuctuations
of the field are different from their zero-point values in
the absence of the source. ' In elementary-particle
theory one may envisage situations where the cloud of
virtual particles, following a traumatic event, is suddenly
shaken off the source, leaving the latter partially deprived
of its original cloud. In these cases one speaks of a half-
dressed source, an extreme (and idealized) situation being
the bare source when the stripping is total. These are ob-
viously nonequilibriurn situations, and one expects that
processes should take place to regenerate the normal
cloud of virtual particles around the source. A semiquan-
titative analysis of the regeneration process has been per-
formed in a QED framework for a free electron, and ex-
tended to high-energy QCD (quantum chromodynamics)
cases where gluon exchange is the dominant source-field
interaction mechanism. A complementary situation
arises when an initially fully dressed source of a field is
suddenly annihilated, leaving the virtual particles, be-
longing originally to the cloud dressing the source,
without the physical support of the latter. This second

type of situation has been analyzed for simple cases.
Switching off of a fixed hadronic source in a Klein-
Gordon field is a problem in quantum mesodynamics
(QMD), and it is known to lead to the release of mesons
originally belonging to the cloud of the hadron. The pro-
cess of this release has been discussed in terms of global
quantities, such as the number of mesons being released
and the total energy delivered to the meson field. The
released mesons have been interpreted as real particles.

In both QED and QMD cases, a complete quantitative
analysis of the detailed time development of the virtual
cloud is still missing, although preliminary results of such
an analysis have been published recently. This is in
sharp contrast with the situation related to the emission
of real photons in a spontaneous-decay process of a QED
source; in this case, in fact, detailed calculations of the
real electromagnetic field surrounding an atom during
the emission act do exist. On the other hand, the desira-
bility of a similarly quantitative approach for the time-
dependent virtual cloud is also high, in view of the grow-
ing interest in this sort of problems. In general, one
would like to answer the following questions.

(i) How does one characterize the amount of virtual-
particle cloud at a given point in space during the time

development of the system?
(ii) How is it possible to obtain a space-time description

of the transformation of the virtual quanta into radiation
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after decoupling a source from the field?
(iii) Should one also expect emission of real radiation

during regeneration of the virtual-particle cloud of an ini-

tially bare source?
(iv) Is it possible to think of an experiment to detect the

time evolution of the virtual field in a nonequilibrium sit-
uation of the kind described above?

The answers to the questions above are very much in-

terrelated. It is instructive, however, to outline briefly
the discussion of each of them separately. An answer to
question (i) has been given in a series of papers, in terms
of the total energy density of the meson or of the photon
field for QMD and for QED models, respectively. ' A
preliminary answer to questions (ii) and (iii) has been pro-
vided by a theory presented in another recent paper,
where the time dependence of the energy density in the
dressing-undressing process of an isolated source has
been obtained for simple QMD and QED models. In all

cases considered the dressing-undressing process of an
isolated source was shown to take place within an ex-

panding sphere of radius r=ct centered at the source.
Moreover, the process was shown to yield asymptotically
at any point in space the equilibrium configuration of the
virtual energy density corresponding to the ground state
of the coupled source-field system for dressing, and to the
bare zero-point vacuum for undressing. The energy den-

sity distribution in all cases studied was shown to possess
a singularity at r =et, but the nature of this singularity
was not investigated.

The main aim of this paper is to provide an answer to
question (iv). In fact, here we will limit ourselves to
describing a gedanken experiment, which follows the in-

troduction of a model consisting of a source S whose cou-
pling with the field (scalar or electromagnetic) can be sud-
denly switched on or off, and of a detector consisting of a
second source T, constantly coupled to the field by forces
of the same nature as for S, placed at a distance rp from
S. In addition, T is also bound to an oscillation center by
harmonic forces as in Fig. 1, and the time development of
the field induced by changes in S is monitored by the os-
cillatory motion of T, which is assumed to be initially at
rest. In a certain sense this model may be considered as

an elaboration of a model recently discussed by Drum-
mond for QED. Within the framework of this very
idealized model, in Secs. II and III we shall be able to
give a quantitative discussion as to the virtual or real na-
ture of the time-dependent field which is being detected
by T. In an effort to shed some light on the peculiar
features of the motion of T in the QED case, in Sec. IV
we will take up again the problem of the energy density
at r =ct of the virtual photon cloud, and we will discuss
in some detail the structure of the expanding singularity
as we11 as some of the integral properties of the elec-
tromagnetic energy density. This shall give us a chance
to discuss in Sec. V energy conservation and the integral
transform of the photon field, and to provide partial
answers to questions (ii) and (iii) above, at least in the
QED case. Finally, we will summarize our results in Sec.
VI.

II. DETECTION OF HALF-DRESSED STATES IN QMD

A. General procedure

H =HF+ H'+H~,

HF = —,
' f I iII2(r)+c [Vp(r)] +ju c p (r) Jd r

= g AQ)kQkuk
k

H'= —g J p(r)P(r)d r

1

(2.1)

2cok V
(Pk~k+Pk~ k )

(c2k2+pzc2)l/2pJp(r)e /krd3r

Consider two rigid meson sources S and T of densities

p, (r) and pz(r), respectively, with S fixed at the origin
and T, of mass mp, bound by a local harmonic force of
constant E to point Rp. The actual position of T under
the action of the local harmonic force is rp, with

xp=rp —Rp as in Fig. 1. We take the Hamiltonian of the
system to be

p(r) =p, (r)+pz(r), Hr = po+ —,'Exo .2

2mp

P(r) in (2.1) is the scalar field amplitude, which can be ex-
pressed in terms of Bose creation and destruction opera-
tors as

$
P(r)= g

2coj, V

1/2

(& eik.r+&te ik r)—(2.2)

FIG. 1. Source-detector configuration in space. The cou-
pling of the field with source S at the origin can be turned on
and off. The spring represents harmonic forces binding detector
T to oscillation center Ro.

Vbeing the quantization volume of the field. Moreover c
is the velocity of light, p=mc/A is the inverse Compton
wavelength of the meson of mass m, g is the meson-

source coupling strength, and pp is the kinetic momen-

tum of source T. One also has
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—ik. r 3p„=p,„+p,„, p,„=fp, (r)e d r,
H'=H', +H2, (2.3)

fi

2.„V

1/2

(P'kak+P kak ') .

Specializing to unit point sources, one has

pi(r) =&(r), pq(r) =&(r—rp), p~k ——1,
1/2

—ik ro
P2k=e

H2 gg

H', = —gg
L

' 1/2

(a„e

(ak+ak ),

—ik-ro y ik ro+ake ) (2.4)

2cok V
L

1/2 —ik Ro t ik Ro
(ake '+a ke ')

+tgxp' g
2cop V

' 1/2 —ik Ro t ik Ro
k(ake —ake ),

where the "dipole" approximation

(2.5)

H =Ho+HT+HTF,

Hp = g fipikakak —g g
k 2cok V

' 1/2

1/2

(ak+ak)

(2.6)

2tpk V

—ik Ro y ik Ro
(ake '+a ke '),

has been used. One should expect (2.5) to be fairly good
if the distance between the two sources is much larger
than the Compton radius of the meson, since in this case
S and T can exchange essentially virtual mesons of long
wavelength. In order that (2.5) be valid, we shall assume
that the displacement of T from its equilibrium position
is small compared with the wavelength of the mesons.

Substitution of (2.4) and (2.3) into (2.1) leads to

B. Force acting on the oscillator

Case A. The field Hamiltonian is given by Ho as in

(2.6). The bare vacuum ! 0) is the ground state of

HF ——g iritpkakak . (2.9)
k

We take as the state of the field at t =0+ that obtained by
dressing the test body alone, or Tp! 0), with

Tp =exP( —n p l2 )exP g Xpka k
k

X exp —g Xpka k
k

1 —ik.RO

2Apik V (2fjtok V) ~

(2.10)

plays the role of the force operator acting on the test
body Tat point Ro.

Thus our program will be the following. First we ob-
tain the time development of the field from Ho alone,
starting from an appropriate initial configuration of the
system which corresponds to a half-dressed initial state of
S. The time-dependent field obtained in this way will be
used to evaluate a time-dependent quantum average of
the force operator Fo acting on the oscillator degrees of
freedom of the test body T, thereby yielding an effective
Hamiltonian for the latter. This is eventually studied to
discuss the influence of the time-dependent dressing of
source S on the motion of test body T.

As for the initial conditions, we shall always assume
that test body T is completely dressed, and consider the
two cases in which source S is completely bare at t =0
(case A) and the complementary case in which S is com-
pletely dressed but it becomes suddenly decoupled from
the field at t =0 (case B). In a more pictorial way, the
two cases can be described as those of source S "appear-
ing" at t =0 (case A) and of source S "being removed" at
t =0 (case B). The energy density of the field has been
obtained previously for both cases when S is isolated.
Since the procedure is similar when T also is present, we
shall not discuss it in detail, and we only outline its appli-
cation to the situation of interest here.

HTF =igxp' g
2cok V

1/2 —ik Ro g ik Ro
k(ake ake

This state evolves at time t into

! t ) =exp — Hpt Tp! 0)—

l
HTF =xp'Fp Fp:Pp = [H P ] (2.7)

In view of (2.5), one has k xp «1 and HFF can be con-
sidered as small with respect to Ho. In other words, the
displacement due to the oscillations of source T may be
considered to have a small influence on the field generat-
ed by the two sources considered fixed at the origin and
at Ro respectively. We shall neglect this influence, which
is equivalent to neglecting the reaction of T on the field
due to its oscillations. Moreover, it is evident that HTz in

(2.6) can also be expressed as

where

T=exp( n/2)e px— QXkak exp
k

~ Rtk

i~ I
1+e

2cok V2

QXkak
k

(2.12)

=exp —At T exp — HFt T 'Tp!—0), (2.11)

Thus operator

Fp ig g-—
2coi, V

1/2
ik Ro y

—ik Ro
k(ake ' —ake ') (2.8)

n=g
—ik-Ro

! 1+e
2A'mk V

1 —ik.ROX„= » g(1+e ') .
(2ficok V)'
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Using (2.10) and (2.12) one obtains in a straightforward
way T T0exp —H~t T0 F0T0exp ——HF t T0 T—1 l l —]

fi

l
T0 'T exp —HF t T 'F0T exp ——HF t T 'T00 g F

2'„V

1/2

k[ [(&g+&g—&pg)e

2tok V

' 1/2

kI [(a„+Xo„—y„)e

ik Ro„]e (2.13)

ik.Ro
+Xpq]e ' —H. c. I (2.20)

and, for the radial component of the force,

and (t ~Fpz ~t)= ——g Im g k Roe 'e
V

(t ~Fp~t)= ——g Im g ke '(1 —e ")
k COk

(2.14}
Changing the sum into an integral leads to

(2.21)

Rather than working with a vector, it is more convenient
to project F0 in the R0 direction, obtaining

1 1 ~ ik Ro(t
~ Fott ~

t ~= ——g Im g, k'Roe
V k

X(1—e ") . (2.1&)

Changing the sum into an integral and performing the
latter in a fashion parallel to that described in a previous
paper finally yields

,g' ' f '&(t', Ro)dt',
4~c Mo Ro Mo o

2.16
V( t, R p ) =cJp [pc ( t Rp lc )

'—]8(t Rp lc ), —

where Jo is the Bessel function of integer order and 8(x)
is the usual Heaviside function.

Case B. The field Hamiltonian for t ~0 is obtained
from (2.6) by eliminating the interaction between S and
the field, and it is

«
I Fp~ I

t & =—
BR R BR

t', R0 dt'= —e
0 P

(2.23)

This is the well-known derivative of the Yukawa poten-
tial (case A)

aRp

X —e ' —f V(t' Ro)dt', (222)
p 0

where V(t, R p) is the same as in (2.16).
Unfortunately we have not been able to evaluate ex-

plicitly the integral in V(t, Ro). A few qualitative con-
siderations, however, are useful to understand the physi-
cal meaning of results (2.16) and (2.22). When the bare
source "appears" at t =0, the force (2.16) acting on the
test oscillator T remains zero until t =R0/c. After this
time it oscillates until it settles to the asymptotic value
obtained by using

Hp = gflCot QgQg
k

' 1/2 —ik Ro y
ik.RO—g g (Qge +Gee )

2a)k V
(2.17)

On the other hand, when the source is removed at t =0,
the force acting on the test oscillator remains of the static
Yukawa type until t =Ro/c, due to the vanishing of the
integral in (2.22) for t &Rp/c. After this time, the force
oscillates and it settles to zero asymptotically (case 8),

The state of the field at t =0+ is T
~

0), where T is the
same as in (2.12}. This state at time t evolves into i F,„ i

&=0, (2.25)

l l=exp —A pt exp — HF t Tp
'T

~

0—), (2.18)

in view of (2.23).
This behavior is an interesting example of causality

built in the relativistic formulation of the meson detector
problem.

with Ho given by (2.17) and

In a way sitnilar to that leading to (2.13) one has

(2.19)

C. Dynamics of the detector oscillator

We assume for simplicity that the motion of the detec-
tor oscillator can only take place along the direction of
Rp, and we also put ( t

~
Fp„~ t ) = (Fp~ ). According to

the program outlined in Sec. II A, we neglect the reaction
due to oscillatory motion on the field, and we study the
eff'ective oscillator Hamiltonian
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2 I 2
eff' T+ TF& T Pp+2 0 ~

2mp

HTF xp(FpR ~ (2.26)

use an entirely classical and well-known approach for
forced oscillations. ' In these conditions, and assuming
the oscillator to be at rest in equilibrium at t =0, in the
case of an essentially bare source S (case A) we obtain

which is a time-dependent Hamiltonian, in view of (2.16)
and (2.22).

We shall imagine that the detector oscillator's mass mp
is so large that a quantum description would reveal essen-
tially an effectively classical behavior. This enables us to

I

xp(t)=1m e f (FpR )e ' 'dt', (227)
0 copmp

where cop=+E/mp is the natural frequency of the test
oscillator. Integrating by parts and using (2.16) yields

x()(t) = Im g V(t', R )dt'
4~C ()Rp R() ()Rp R()/c

g f e
—ice) J [pc(t 2 R2/c2))/2]dt

pm 4mc BR0 R BR
(2.28)

Clearly xp(t) vanishes for t & Rp/c as expected.
Ignorance of the explicit form of V(t, R p ) prevents us from obtaining the detailed behavior of the detector amplitude

for short times. For large t, however, we may use (2.23), and (2.28) tends asymptotically to

1 1 () 1 () 1 —pRp
x()(t)=- 8

~02mp 4~g ()Rp Rp QR0 p

+ Im

Moreover, "
2

copm p 4mc ()Rp Rp BRp R, /c
(2.29)

f —R (
2 2/C2]l/2

e 'I [ c(t' R /c )—' ]dt'= — e
C (

2 — 2/C ))/ (2.30)

which can be substituted into (2.29) to obtain

1 1 2 1 1 -PR0
x()(t)= — g p+ e

copmp 4mc Rp Rp

+ Im
t icop) 1 2 1 2 2 2 )/2 1 —Rp()c —cup/c )'"

e g )(t —tpp/c + e
tppmp 4nc' Rp . Rp

(taboo) . (2.31)

It is easy to convince oneself that the first of the two terms on the rhs (right-hand side) of (2.31) is the shift of the oscil-
lation center of detector T due to the static asymptotic part (2.24) of (Fp„),whereas the second term represents oscilla-
tions which survive for large t. This second part can be written explicitly as

2 2 2 2 1/2 1 0~ ~0
2 g (p —cop/c ) + e cos(ci)pt ) (top &)(2c ),

copm p 47Tc R p 0

2g
1 1 2 1 1

cos[Q)pt R p(happ/c p ) ] (top/c —)(( ) sin[(c)pt R p( top/c —p )
2 2 2 1/2 2 2 2 1/2. 2 2 2 1/2

~pmp 4~g Rp Rp
(p)p&pc) .

(2.32)

We see that the amplitude with which the detector is left
to oscillate is severely reduced by the presence of the ex-
ponential for cop &p/c at a relatively large source-
detector distance Rp. On the other hand, this exponen-
tial damping of the oscillation amplitude is absent for
top& p/c, in which case it is substituted by an R p behav-
ior at large S-Tdistances.

This behavior can be qualitatively understood in terms
of Fig. 2, which displays the stop band in the dispersion
relation of the meson medium between frequencies 0 and

pc. This stop band is obtained from the meson spectrum
in (2.1), and its physical origin is related to the minimum
energy %pc which is necessary in order to create a meson
from the vacuum. It is obvious that the propagation of
virtual mesons, capable of resonantly exciting the oscill-
tor, from the source out to the oscillator location, is hin-
dered if cop happens to be located within this stop band,
because these mesons are "rejected" by the vacuum, very
much like phonons trying to propagate in the forbidden
gap between the acoustic and the optical branches in an
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FIG. 2. Dispersion relation of the meson field in arbitrary
units. p ' is the meson Compton radius. The stop band be-

tween 0 and pe originates from the minimum energy Ape re-

quired to create a meson from vacuum.

insulating crystal. On the other hand, if cop & pc, some of
the virtual mesons which propagate freely from S to T
shall be able to resonate with the test oscillator, and this
explains the absence of the damping exponential in the
second part of (2.32).

In conclusion, we have shown that the simple detector
model discussed is capable of detecting the regeneration
of the virtual meson cloud which develops around an ini-

tially bare source. A similar analysis, which we do not
report here, can be performed for the case of the source S
disappearing at t =0. Finally, we like to mention that a
quantum treatment of the detector oscillator T does not
seem to add much to the concepts that we have discussed
for the classical treatment.

III. DETECTION OF HALF-DRESSED STATES IN QED

A. General procedure

HF= J[E~(r)+.B (r)]d r,
8m

H'= 2a „E~ (0)E~„(—0)——,'a „E~ (ro)E~„(ro—),
(3.1)

Hr po+ pit "o HM=——X&i I
i)(i

~

(i=T,S),

Here we consider two sources of ground-state static
polarizability a and a, such as two neutral atoms or
molecules; more generally, we may assume electrical an-
isotropy with static polarizability tensors a „and a „.
The geometrical arrangement is the same as in Fig. 1,
with S at the origin and T (of mass mo) bound by a local
harmonic force of constant E to point Rp. As for the
source-field coupling, we will take the simplest Craig-
Power (CP) form, which is quadratic in the field com-
ponents and which does not involve atomic operators. '

Thus the Hamiltonian of the system is

H =HF+H +Hz-+H~,

appearing in (3.1). In fact, if one is to assign a well-
defined physical meaning to this Hamiltonian in the
framework of molecular QED, one must remember that
the CP Hamiltonian is derived from a multipolar one (in
dipole approximation) where the physical meaning of E~
is really the transverse electric displacement, and not the
transverse electric field. ' It can be shown that in the
course of the unitary transformation leading from the
multipolar to the CP form, this interpretation of E~ does
not change, and it is well known that the transverse dis-
placement coincides with the total electric field outside
the source; this ensures gauge invariance of our E~. We
hope to discuss this aspect of the CP Hamiltonian in a
forthcoming paper. Moreover, if in this scheme one
wishes to maintain the physical meaning of a' as the
ground-state electric polarizability of the sources, one
should remember that the inAuence of the sources on the
field modes resonant with any of the internal frequencies
is badly misrepresented by (3.1), which consequently can
be considered as a fair approximation of the true Hamil-
tonian only for the low-frequency, or long-wavelength,
virtual photons. In turn, these are the only photons like-
ly to reach regions far away from each source in view of
their relatively long lifetime (the "radiation zone").
Thus the validity of the conclusions derived on the basis
of (3.1) shall be limited to situations where the distance
between S and T is large enough to place each source in
the radiation zone of the other.

On the other hand, one may also legitimately pretend
that (3.1) is a model Hamiltonian which describes an
abstract source-field system in QED, much in the same
sense as (2.1) for a scalar field in QMD, which should
possess internal mathematical consistency, and which
should be valid for any intersource distance (at least in
our scheme of pointlike sources).

We are now ready to outline our approach. We expand
E~(r) and B(r) as

27TACOk
Ej(r)=i g V

' 1/2

(ez az e'"' —e„';a„e '"'),

B(r)= i g—
k,j

' 1/2
27TRcok

(bg;agje'"' —bkjag~je '"'),

(3.2)

a)k ——ck, be
——k X e),j,

where &uk is the frequency of the field modes, ekj being
polarization vectors and k the unit vector in the direction
of k. The creation and destruction operators a k and ak-
are usual Bose operators pertaining to the kj photons,
and Vis the quantization volume.

Introducing (3.2) into (3.1) one has

where HM has been added here for completeness, l label-
ing the internal molecular eigenstates, since in reality we
will take both S and T to be permanently in their lowest
possible eigenstate with l =0.

Some care must be used in interpreting the quantities

HF = g ffcok a k a g-

apart from zero-point terms (ZPT). Moreover,

(3.3)
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and

E~ (0)E~„(0)=— g Qcpz to& [(ek . ) (ek )„ak ak —(ek } (ek )„ak ak +H.c. ]
2~

kl'k2'J 1 'J2

2mB i(k]+ k2)-ro
( o} )n( o}=

V X Q~k)~k, [( k)j )m( k&J2)n k)J(ak&J&
klk2, J I J2

(3.4)

I 2 0—(ek 1 ) (e„*j

)„akim

a„e ' +H. c.]

=E)m (Ro)Ezn ( Ro)

2~ i(k& +k2)'Ro
i —

v
xo' X Qtpk)tpk~[(k(+k2)(ek(J) )~(ek2i~)„ak)J(ak2&~e

"& "2)J& J2

i(k) —k2).RO—(k) —k2)(ek, ) (ek J )„ak, a), , e —H. c.], (3.5)

where we have approximated
k'(k kk2) ro ki(k +k ) Ro[1+.(k +k ) (3.6)

H =HM+HP+HyF+H

H() HF ,'a „E——~
——(0)EI„(0)

,'a „E) (Rp—)E—)„(Rp), (3.7)

HTF a [E) (rp)EJ (rp) E) (Rp)E) (Rp)]

Like in the meson case, condition (3.6) implies

This is a "dipole" approximation of the same nature as
(2.5), and it involves the assumption that the displace-
ment of the T oscillator should be small in comparison
with the wavelength of the radiation exchanged between
S and T. This is certainly compatible with the restric-
tions on the applicability of (3.1) to physical systems dis-
cussed at the beginning of this section, because distant
atoms or molecules are likely to exchange Inostly long-
wavelength photons. We shall come to this point again
later on in the course of this paper. In view of (3.5), it is
convenient to rearrange terms in (3.1) to obtain

1S

B. Dynamics of the Seld

From (3.3) and (3.5), the field Hamiltonian for case A

HzF &~Hp, and it becomes Plausible to neglect aPProxi-
mately the effects on the field due to the harmonic dis-
placement of source T.

Our program here runs parallel to that outlined in Sec.
IIA. Thus we first evaluate the field using Hp alone,
thereby neglecting the reaction of the oscillations of
detector T. Successively we feed this result into H~F,.
consequently Hz-+HzF becomes an effective Hamiltonian
for the detector, which we use to obtain its dynamics un-
der the influence of the time-dependent dressing of source
S. The initial conditions for the field are the same as
those considered in Sec. IIA, namely, T with its full
dressing cloud, and S completely bare at t =0 (case A) or
S suddenly decoupled from its fully developed cloud at
t =0 (case B). A special subsection shall be dedicated to
a discussion of the energy density, which is necessary
here to obtain much more information about the energy
density than in a previous paper.

i(k ) +k2) 'RoHp= gRp)zak ak + —,'a „. g +to& p)z [(ek ) (ek )„ak ak (1+p „e )
k,j ki k2» J2

—(ek ~
) (ek ) ak ak,. (1+P „e )+H c ],i(k I k2).RO (3.&)

where we have introduced p „=a „/a
In contrast with the meson case in Sec. II, here we have found it convenient to develop our theory in the Heisenberg

representation. The solution of the relevant Heisenberg equations, up to terms linear in a (i.e., quadratic in e) is

—!cd( ( s 77 I

+ —,
' „& g U rpkrok I [(ek~') (ek~ )„+(ekj ) (ek& )„](1+p „e )e "Fkz,(t)ak. (0)

k', j'
I—[(ek,') (ek,. )„+(e„',)(e„*.j'}„][1.+p „e ']

—I CtJI f
Xe Gkk(t)akj (0)], (3.9)
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where

'(~k ~k )'
e

Fkk.(t) =
k+ k')

e
Gkk (t)=

Nk +COk~
(3.10)

Remember that we are considering case A, with the S source completely bare at t =0, in the presence of the complete
virtual cloud dressing source T, which we evaluate by perturbation theory at 0 (a). The corresponding state is

T 2M —i(k"+k"') Ro
~

0') =
~
0)+(Eo Hp—HM—) —,'a „g ~ cok co-k {e-f-J ) {ef J -)„-az J,-a&-J-e '~ 0),mn y Qlt Qltl ~ II III

sJ ~J

(3.11)

where
~

0) is the ground state of Hp+HM of energy Eo (bare vacuum}. From (3.9) and (3.11) we obtain, neglecting
O(a ),

(0' [ag J (t)ag...(t) [0') =[(0'
~
af, J {t}a„J(t}(0')]'

l(APk +A)k )t
= —VQJ, a, [(ez J ) (ef, , )„+(ef, ) (e„', )„]e

T ~(k1 +k2)'Roa „e
coA, +cok

(3.12)

Moreover, we find at the same order in a,

(0'[a)~, (t)a„, (t) ~0')=0, (0')a„,J (t)ag, (t) (0')=5g,g,5J.J,
—=Z (3.13)

For case B, with S suddenly decoupled from its complete cloud at t =0, the field Hamiltonian is obtained from (3.8)

by putting P „=0,and the initial state, dressed by both S and T, is

~0')= ~0)+(Eo HF HM) —'
—,'a „—nn y Qgf f f/' egg f/'k,k,J,J

X(eq J ) (eq-J-)„(1+p „e )a„-,'.a„-,' ~0) . (3.14)
—i(k"+k"') Ro

The ca]culations are developed along the same lines as for case A. The final result at order a is

( 0'( a, , J( )ta„,/ (t)
~

0') =[(0'
~
at J (t)a„' J (t)

(
0') ]'

(~k1+~k2)t
Q—to—k an't, [(ef.,J. ) (eg,J )„+(ef..J, ) (ef.J. )„]&

~a +~k 1 2
1 2

(3.15)

and, at the same order in a,

(0'( a~ J (t)a~ (t) (0') =0, (0'( a~ J (t)a~ J (t) ~0') =5~ ~ 5J =Z (3.16)

The Z appearing in the second part of (3.13) and of (3.16) are space independent and time independent. They cannot
contribute any net force acting on the oscillator degrees of freedom of T, nor any space dependence to the energy densi-

ty, and we shall completely disregard them in the future.

C. Coupling of the detector oscillator to the electromagnetic field

HTp in (3.7) is obtained in second quantization using {3.5}. Then, considering first case A as usual, from (3.12) and
(3.13) we obtain, after some algebra,

(0'(HTp )0')= —a „a xo V g I[(5 —0 k )(5 „—k'k'„}+(5„kk„}(5~—k 'k' —}]mn pq
k, k'

'("+k') 0 kk ~ —i(k+k )cf

k+k' (3.17)
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where V involves differentiation with respect to RQ, and
where polarization sums have been performed as usual. '

Transforming sums into integrals in (3.17},performing
angular integrations, and defining

f (k, k', Ro) =2jo(kRoj)o(k'Ro)

}( ice

ct -------- ————————----
I

)R. );

1
2 jo(kRo), j)(k Ro}

k'RQ

+go(k'Ro ) I) (kRo )
0

1 1+6 j,(kRo), j,(k'Ro),
kRQ 0

(3.18)

k k'f f f(k, k', R ) e '"+" '"dk dk'=I(t, Ro),

-iR. ).

FIG. 3. The broken line is the integration path for F(g} in

the g=rt+icr plane. +iRO are the two sixth-order poles of
F(g}. The path is always parallel to the rt axis, but the integra-
tion technique is different for the cases ct )Ro and ct & Ro.

(3.19)

we obtain

(0'jHT+ ~0')= —a a xo VRe[I(O, Ro} I(t, Ro))—.TF 2 0

(3.20)

Introducing

which has two poles of the sixth order at g=+iRo, as
shown in Fig. 3, and which vanishes as

~ g ~

for
In this plane, I(t,Ro) is obtained by contour

integration along a path parallel to the positive g axis, as
shown by the dashed line in Fig. 3 for RQ&.ct. Evalua-
tion of ReI(t, Ro) yields

—(k+k')q
k+k' 0

(3.21)
ReI(t, Ro) = e(Ro ct) — g—(Ro —ct)

23~ 1 23m 1

4

to decouple k and k' integrations in (3.19), and after a
lengthy procedure involving Bessel function integra-
tions' and the properties of the hypergeometric' func-
tion 2F&, we obtain

3z —2z RQ+3RQ
I(t,Ro)=16f F(z)drt, F(z)=

0 (z'+R ')

, 5'(Ro ct) — —,5"(R,—ct)
5m. 1, 7m. 1

2 RQ 12 R()

5"'(R
o ct) — —5'"(R

o
—ct),

12 R,' ' 60 R'

(3.24)
z=g+ict . (3.22)

In order to evaluate the real part of the integral in

(3.22), we continue F(z) into the complex g=rt+icr
plane, thereby obtaining

3P—2g Ro+3Ro
F(g)= (3.23)

((2+R 2 )6

ReI(O, Ro)= 23m 1

4 RQ'

and from (3.20) we have (case A)

(3.25)

where derivatives of the 5 function are with respect to
R o ct. Since R o&—0,

(0'
~ HTF

~

0'}= — a a c)rixo V [1 e(Ro ct)]+— 5(Ro —ct) 6'(Ro —ct)—+ 5"(Ro—ct)—s T 23 23 10 , 7

4~

35(RQCt )+25(Rp —Ct )
3RQ 15RQ

(3.26}

For case B, when source S is suddenly decoupled from the field at t =0, one follows the same development, starting
from expressions (3.15) and (3.16). Here we shall only report the final result (case B)
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(0'
l
HTF l

0') = — a a cfixo.V — e(R p c—t) —
6 5(Rp c—t)+ 5'(Rp c—t) — 5"(Rp —ct)

1 s z 23 23 10 , 7

4~ Ro Ro Ro 3Rp

, 5"'(R, c—r) —,5'"(R,—cr)
3Ro 15Ro

(3.27)

D. Dynamics of the detector oscillator

Like in the meson case of Sec. II, we take mp large enough to permit a dassical treatment of the dynamics of T, and
assume only radial displacement xp of the oscillator. Furthermore here we restrict our considerations to case A, since
case B follows rather trivially.

We put (O'
I HTF 10 ~ xp(FOR ~

(Foz ) = a a cubi —
s [1 e(Rp—ct)]— —5(Ro ct) — 5—'(Ro ct—)

1 g g 161 161 83
pR

Rp Rp Rp

58 „10„, 7
, 5"(R,—cr)—,5"'(R, cr) — —,5'"(R, cr) — —,5"(R, cr)—

3Rp 3R() 15Ro 15Rp
(3.28)

It should be noted that in (3.28) all the 5-function derivatives are now with respect to ct. Thus the effective Hamiltoni-
an for detector T, which is analogous to (2.26) in the QMD case, is

2 1 2
Heff HT+HTF ~ HT Po+ &"o ~ HTF xo(FOR ~

2mp 2
(3.29)

where (Fo„) is explicitly given by (3.28), and plays the role of an effective time-dependent force acting on T. Thus we
can apply (2.27) to obtain the final amplitude of oscillation of T under the action of the time-dependent field created by
S during the dressing event.

Using the properties of the 5 function' and substituting (3.28) into (2.27) yields

xo(t)= — a a1

4' 17l p cop

83 ~o

Rp c

2 4
161 c 161 58 ~o 7 o
Rs [ I —cos[coo(t —Ro/c )]]+ — + sin[cop(r —Rp/c )]

Rp 3Rp c 15Rp c

3
10 p 1 ~o

+ cos[coo(t Rp/c)] —e(ct —Rp) .
3Rp C 15Rp C

(3.30)

It should be noted that xo(t =Ro/c+a)
&xo(t =Ro/c —e), where e is an infinitesimal. This is

due to the complicated nature of the R p
——ct singularity

of (Fpz ) in (3.28), and in particular to the presence of
the odd derivatives of the 5 function. This feature im-
plies a sudden displacement with infinite velocity of the
oscillator detector at t =Ro/c, and it is clearly at vari-
ance with physical intuition. This might have been ex-
pected, because our treatment of the oscillatory motion
of T is nonrelativistic; moreover, it is also to be connected
with the assumption of sudden appearance of a point
source (S) at t =0, which is rather unrealistic, too. In
this sense we deem that this feature of the solution should
not be the cause of particular worry, but should rather be
taken as an indication of the limitations of our model.

Contrary to the meson case, the absence of a stop band
in the photon spectrum eliminates the exponential depen-
dence of the oscillation amplitude of the detector on the
S Tdistance, although again-xo(t) vanishes for t & Ro/c.
The Rp dependence of xp(t), however, introduces some
rather interesting features, since it is evident from (3.30)
that for Ro &c/coo the oscillation amplitude is directly
proportional to the static Rp van der Waals force,
which is a consequence of the virtual nature of the ex-

panding photon cloud. At the opposite end of the scale,
for Rp & c/coo, the oscillation amplitude becomes propor-
tional to R p, which is similar to the behavior of a detec-
tor under the action of the e.m. field emitted by a normal
source, such as an atom decaying from an excited state to
the ground state via real processes. ' It should also be
noted that the distance c/coo at which the apparent na-

ture of the expanding virtual photon cloud changes, as
seen by the detector, depends only on the physical param-
eters of the detector itself.

In summary, we have shown that in principle it is pos-
sible to detect the growth of the virtual photon cloud
which develops around an initially bare and neutral

source, such as an atom or a molecule. Like in the QMD
case discussed in Sec. II, a quantum treatment of the os-
cillatory motion of T does not seem to add much to the
concepts discussed here.

IV. THE ELECTROMAGNETIC ENERGY DENSITY
OF HALF-DRESSED STATES

As mentioned in Sec. I, the time-dependent energy den-
sity of a half-dressed source has been investigated recent-
ly both for the meson case and the electromagnetic case.
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In that work, however, only the behavior of the energy
densities at any point r&ct was reported, since the atten-
tion was not focused on the singularity appearing at
r =ct. On the other hand, the singular behavior of the
e.m. energy density is also important for the dynamics of
the detector oscillator in Sec. III, since the force acting
on T is proportional to the matrix elements of HTF as
given by (3.7), which in turn, for electrically isotropic
sources and in our dipole approximation, is proportional
to the gradient of this electromagnetic energy density.
We remark that this is not the case for the scalar field of
Sec. II, where force (2.8) is proportional to the gradient of
the field amplitude rather than to the gradient of the
meson energy density.

These considerations lead us to investigate in more de-
tail the electromagnetic energy density of a half-dressed
source, including the r =ct singularity. Thus we take up
the analogous of case A for one isotropic source at the
origin, which at t =0 is completely bare, and we wish to
obtain the energy density at any point r as a function of
t )0. The energy density operator for the field Ej is aver-
aged on the initial bare vacuum

~

0). The time-
dependent quantum averages of the two-particle opera-

i(—k&+k2)Cr
X 1 —e

Xdk, dkz+c. c. , (4.1)

where f (k„kz, r) has been defined previously. Thereby,
using (3.19), we obtain

(0
~
Ej(r}

~
0) = [I(O, r) I(t, r)+—c.c. ] . (4.2)

Use of (3.24) yields finally

tors (4.1) can be easily obtained form (3.12) and (3.13) by
using real polarization vectors for simplicity, by putting
a =P=O and by using a „=a5 „. Performing the po-
larization sums according to the usual rules, transforming
sums over k into integrals, and performing the angular
parts of the latter yields

(0
~
%,1(r)

~

0) =
2

ah'c
z [1—e(r ct)]+ 6

5—(r ct)—1 23 23

(4m) r r

10, 7 „1„, 15'(r ct)+ —5"(r ct) 5—'"(r —ct)+ —5'"(r ct)—
r 3r 3r 15r

(4.3)

As for the energy density of field B, an analogous pro-
cedure yields

and integrate along the same contour as in Fig. 3 for
F(g) with poles at g=+ir instead of +iRo.

The integration procedure gives

(0
~

B (r)
~
0) = —2 [L(0,r) —L(t, r) +c.c.],

where

(4 4)

ReL (t, r) = —e(r —ct) — 5(r ct)——7~ 1 7m. 1

8 r 8 r

z2
L (r, r)=64r f G(z)drl, G(z}=

0 (z+r )

z=g+ict .
(4.5)

+ 5'(r ct)+——5"—(r c—t)—1, a 1

4 r' 24r4

5"'(r ct}+ 5'"—(r ct) —. —
Following the procedure adopted in Sec. III C, we define
in the complex g= g+ic~ plane

(4.7)

G(g)=
($2+ 2)6

(4.6}
Substitution of (4.7) into (4.4) yields

(0
~
%,s(r)

~
0) = — abc —7[1—e(r ct)]+ 5(—r —ct) — 5'(r ct) ——5"—(r c—t)—7 7 2, 1

(4m) r r r 3r

3
5"'(r —ct) — 5'"(r ct)—

3r 15r
(4.8)
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A few remarks are in order.
First, the finite parts of (4.3) and (4.8) coincide with

those previously obtained by Persico and Power. The
infinite part, which develops on the surface of a sphere of
radius r =ct, has a rather complicated behavior. The last
term in 6'", however, is equal in both expressions; this is
similar to the behavior of a real electromagnetic wave
emitted by a point source, whose energy density decreases
like r from the source, and in which the "electric" and
"magnetic" parts of the energy density are equal. In
agreement with the remarks at the end of Sec. III, this
seems to confirm that the energy density acquires gradu-
ally some of the characters of a real pulse at large dis-
tances from the source.

Second, it should be noted that in the energy density
problem discussed here, the pointlike, static nature of the
source does not provide a finite scale length for this gra-
dual change, whereas in the detection problem discussed
in Sec. III this finite scale length is provided by the detec-
tor itself in the form of the quantity c/ oi.oThis is related
to an apparently inconsistent aspect of results (4.3) and
(4.8) for the energy densities, namely, that the sharpness
of the singularity is incompatible with the dipole approxi-
mations in (2.5) and (3.6) for finite values of the detector
amplitude xo. This difficulty, however, does not exist for

a source of finite dimensions, where preliminary calcula-
tions have shown that the singularity is smeared out over
a region of linear dimensions comparable with those of

the source, in these circumstances in fact the only re-
quirement for the validity of dipole approximation is that
xo should be smaller than the linear dimensions of the
source, a condition which is not very restrictive. Thus
the (admittedly rather artificial) remedy in the present sit-
uations of pointlike sources is to make xo(t) in (3.30)
infinitesimal by letting the oscillator mass mo and force
constant E diverge simultaneously, in such a way that
E/mo (i.e., the oscillator frequency coo} is constant. In
this way the consistency of dipole approximation with re-
sult (3.30) is legitimated by a limiting procedure.

Finally, we also remark that the energy densities for
the complementary problem, in which the source is sud-
denly decoupled from the field at t =0, are easily ob-
tained from (4.3) and (4.8) by substituting e (r ct) —for
1 —e(r ct) an—d by changing the sign of the 5 parts.

V. INTEGRAL PROPERTIES OF THE FIELD
OF A HALF-DRESSED ELECTROMAGNETIC

SOURCE

We now wish to discuss some integral properties of the
virtual electromagnetic energy density of a single half-
dressed source.

(i) First we consider a fully dressed ground-state
source of polarizability a „, whose Hamiltonian in the
CP model is given by

H=Ho+HM HM= &~t I
l &&l

I
Ho=HF+HMF HF XAto„ai j—ai„,

I k,j

+teak oi„ [(ei, , ) (ei, , }„ai,, ai, j —(ei, ) (ei, , )„ai„a„, + .c.] .2mB

k), k2, J) ~J2

(5.1)

Ho in (5.1) can be obtained from (3.8) by putting P „=0,
and HM is the bare source Hamiltonian, with all eigen-
states idle, except for the ground state of energy Eo. The
ground state of the system, up to terms linear in a, is

(O'
I
JY„(r)

I

0') = lim (0
I A„(r, t)

I
0) =

f ~ oo

1 23abc
(4m. ) r

(5.4)(O'
I &,s(r) I

0') = lim (0
I %, (r, t)

I
0)t~ oo

Io'&= IO&+«o Ht: HM) '
,'c—. —-

X g Q~ktok (et )(e~,j).
k, k', j,j'

Xagjagl I
0) (5.2)

This implies

1 7akc-
(4n. ) r

Using (5.2) we can immediately obtain, up to terms linear
in a,

&o'
I H,

I

o') =o . (5.3)

This is a surprising result because it seems contrary to
our Heisenberg representation results (4.3) and (4.8) in
the limit t = ~, when the virtual cloud is totally regen-
erated. These results, translated into the Schrodinger
representation, yield

(5.5)

which would seem at variance with (5.3) when integrated
over all space. It is however possible to show that this
apparent paradox in the integral of (5.5) over all space
originates entirely from an illegitimate exchange of the g
and r integrations, where q is the convergence factor in-
troduced in (3.21). In fact it is possible to obtain the total
field energy, without performing the mentioned ex-
change, in the form
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4m f (0'
~
&F(r}

~

0') r dr
0

16 ~ 3(g+r ) —16' r 22aAc dn dr
2 2 6

r
0 0 (g+r }

(5.6)

When integrations are performed in the order shown in
(5.6) the integral vanishes. On the other hand, if the or-
der of integrations is inverted, one obtains

( & )„„=,—,e(cr —) ( &0),
77 l'

16 8
F )r=ct 2

&~c
6 5(r —cr) ——$'(r —cr)(4n ) r6 r'

8 „2+ 4
5"(r ct—} —,5"'(r cr—}

3r 3T

—afic r r,
7T 0

+ 5'"(r ct)—
15r

(5.9)

4m 0 Frt 0 rdr=0,
0

(5.7)

up to terms linear in a.
(ii) We shall now discuss some aspects of energy con-

servation during the regeneration process of the virtual
photon cloud. The total energy density at time t is ob-
tained as the sum of (4.3) and (4.8). It is qualitatively
represented by the continuous line in Fig. 4 everywhere
except at r =0, and analytically we divide it as

&0~&,(r, r) ~0)=&~,)„„,+&~,)„„, (5.8)

where

ct

FIG. 4. Energy density (in arbitrary units) at time t around a
source which is suddenly coupled to the electromagnetic field at
time 0. The vertical line at r =ct represents a singularity. The
continuous line for r & ct follows the r law.

which diverges. The noninterchangeability of the g and r
integrations is obviously related to the singularity of the
integrand at the origin in the (g, r) plane. Consequently
we may say that (5.5) is the correct field energy density
for the CP Hamiltonian, but that the total energy density
cannot be obtained by integrating it over all space, in the
absence of a prescription for dealing with the singularity
at the origin. The same argument can be shown to apply
at any time t for the energy of the field of a source which
is initially bare, that is,

From (5.7) we have

(gf )„„rdr=—f (& ), „rdr. (5.10)

4~f (AF )„„r'dr=—abc
(cr)

(5.12)

This behavior of the energy pulse is in sharp contrast
with the behavior of a pulse of real radiation, of the kind
emitted by a source in an energy-conserving process. In
the latter case, in fact, the energy in the pulse does not
change with time. The t dependence in (5.12) follows
from the fact that the energy in the singularity is gradual-

ly lost, because it is transformed into the energy of the
static virtual cloud.

The case complementary to that considered above has
also been studied, when a source is suddenly decoupled
from the field at t =0. It can be shown that in this case a
sphere of radius ct expands outward from the source.
The energy density vanishes within this sphere, whereas
outside it has the normal ground-state value, since infor-
mation about disappearance of the source has not had
time to reach those points. The singularity of the energy
density at r =ct has exactly the same form as in the
second part of (5.9), but with the opposite sign. Thus the
singularity sweeps out, during its motion, all the static
virtual field, leaving the bare vacuum behind, and in this
way its negative energy content decreases to zero. It is

perhaps worth recalling that in all our calculations we
have discarded the uniform and infinite background of
the zero-point energy density of the electromagnetic field.

(iii) We now write the total energy density in (5.8) as

Equality (5.10) is valid for any t, and in particular for
t' & t. Consequently, also

f (&&F)„„(AF—)„„,)r'dr
0

F
0

is valid, where the lhs represents the energy of the virtual
cloud deposited in the region ct'&r &ct, and the rhs
represents the energy lost by the singularity in the time
interval between t' and t.

Thus (5.11) shows clearly that all the energy contained
in the singularity moving at speed c is gradually deposit-
ed in space and directly transformed into the final
ground-state virtual cloud surrounding the source.
Direct integration of (5.9) also yields the energy con-
tained in the singularity at time t, in the form
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16(~F )t 2
«c — B(r et)+— 5{r ct)—

(4m ) ri 6

——,5'(r ct—)+ 5"(r et)—8, 8
r' 3r4

2
IV, &'"(r ct—)+ 2

5'"(r ct)—
3r 15r

(5.14)

The Fourier transform of (&F), with respect to r is ob-
tained after some algebra as

&[(W F), ]= „,f (&F),e '"'d'r
(2n) i

1/2

—f (&F),r sin(kr) dr
k o

k Ci(ckt),
32~ (2~)'~'

(5.15)

where the cosine-integral function is
I

Ci(z) = —f, dz' .
Z Z'

The violent oscillations in the wings of (5.15) (i.e., for
large k at a given t) are very much at variance with
Feinberg s prediction that regeneration time for a com-
ponent of wave vector k should decrease with increasing
k. The origin of the discrepancy is in the singularity at
r =ct, which is not taken into account in Feinberg s
scheme. In fact, if one discards the 5 parts in (5.14) and
takes only the Fourier transform (FT) of rB(r—ct), —
one finds

7[ rB(r e—t)]—
1 k2 k4

+ sin(ckt)
5(ct)' 60(ct)'

k

20(ct)
k

cos(ckt)+ Ci(ckt),
120(ct) 120

(5.16)

and, in the appropriate limits,

V[ rB(r ct)]——
~

—[k—&&(ct} '],1

5(ct}

(5.17)

V[ r B(r ct)]-—-—1 cos( ckt )
[k »(ct) ],—1

(ct)' ckt

(~ )=( ),+( ), , (% ),=
{5.13)

(~F ), = (F ) —(P )0 .

The explicit form of the time-dependent part can be ob-
tained from (5.9) for the case of the initially bare source
as

which displays quite clearly the decrease for large t of the
FT of the time-dependent part of the energy density, as
well as earlier regeneration of large-k components, in
agreement with Feinberg's suggestion.

VI. SUMMARY AND CONCI. USIQNS

We have considered two models of half-dressed states.
The first is within the domain of QMD, and consists of a
relativistic scalar field linearly coupled to a source S with
no internal degrees of freedom. The ground state of this
system consists of the source surrounded by a cloud of
virtual mesons. The second model is concerned with
QED, and consists of a ground-state pointlike molecule S
quadratically coupled in a CP fashion to the electromag-
netic field. Also the ground state of this system consists
of the ground-state source surrounded by a cloud of vir-
tual photons. These ground-state configurations pertain
to fully dressed sources. We obtain half-dressed sources
by assuming that for times t & 0, S is decoupled from the
field, which is assumed to be empty of mesons or of pho-
tons, respectively, and that the source-field coupling is
suddenly switched on at t =0. Consequently, at t =0 the
source is completely bare and deprived of its ground-state
virtual cloud. This initial configuration is certainly an
abstraction of the same sort as pointlike charges or
masses, since perfectly bare sources are not observable; it
is, however, representative of a nonequilibrium situation
for the virtual field, and we have exploited it to investi-
gate the processes which regenerate the full dress of the
source. In a previous paper such a regeneration was
studied by following the time development of the energy
density of the virtual field in space, which led to the con-
clusion that the regeneration proceeded within a sphere
of radius ct, the field remaining in its bare vacuum state
outside the sphere. Also the opposite situation, in which
S is fully dressed at times t & 0 and is suddenly decoupled
from the field at t =0, was considered. The result was
that the energy density of the virtual field decreased to
zero within an expanding sphere of radius ct, retaining its
normal behavior in the region outside this sphere, whose
points could not be reached by the information of the
"disappearance" of the source.

In this paper our interest has been focused on the pos-
sibility of detecting the time evolution of the virtual field
of a half-dressed source in a gedanken experiment. We
have modeled a detector of the virtual field by a second
source T, coupled to the field in the same way as the first,
as well as to a center of oscillation by elastic forces of a
different nature. The time-dependent virtual field of the
half-dressed source S induces a force on T, and as a
consequence the detector is set in motion. We have taken
the amplitude of oscillations of T as a measure of the sen-
sitivity of the model detector. We have treated the oscil-
latory degrees of freedom of the detector classically and
we have neglected, in the limit of small oscillations, the
reaction of the oscillatory motion of T back onto the
field. We have thus been able to show that some energy
is transferred (permanently within our approximations)
from the virtual field of the half-dressed source to the
detector. In the meson case the force has been shown to
be proportional to the gradient of the field, whereas in the
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QED case the force turns out to be proportional to the
gradient of the energy density of the field (for electrically
isotropic sources). The force has been evaluated in the
Schrodinger representation in the first case and in the
Heisenberg representation in the second. The effects of
the force on the detector has been evaluated in both cases
by well-known Fourier transform techniques.

In the QMD case the sensitivity of. the detector, as
measured by its oscillation amplitude, depends essentially
on its natural frequency happ. If Cop&me /fi, where m is
the rest mass of the mesons, its natural frequency falls in-
side the forbidden gap of the meson spectrum and, be-
cause of this, it depends exponentially on the distance R o
from the source. If instead top& mc /A', oscillations can
be excited by energy-conserving processes and the ex-
ponential Ro dependence turns into a power dependence.
For S-T distances large enough, the oscillation amplitude
of T changes from a Ro to a Ro ' dependence, yielding
a relatively high sensitivity. We note that the distance at
which this change takes place is given by c/cop, which
plays the role of a length scale in this model, since the
source is pointlike.

In QED, photons have no mass, and correspondingly
there is no gap in the photon spectrum. Consequently
the sensitivity of the detector varies according to a
power-law Ro" with the S-T distance. We find that n

changes from 8 (for Rp &c/cop) to 2 (for Rp&c/cop).
Thus the oscillation amplitude of the detector is a direct
measure of the van der Waals static force at a short S-T
distance, while at large distances it is similar to the typi-
cal behavior of a detector under the action of a field ori-
ginated by real emission processes.

In order to have a better insight in the detection pro-
cess, we have investigated the time-dependent energy
density of the virtual field in the QED case only, since in
the QMD case the field energy density is not directly
relevant for the detection process, which is related to the
field amplitude. This part is concerned with the details of
the structure of the singularity in the electromagnetic en-

ergy density at r =ct, which were not considered in previ-
ous work on the same subject, but which are important
for the detection process. For the case of an initially bare
source, the energy density immediately attains the final
value at points inside the sphere r =ct, whereas it van-
ishes in the outside region. The singularity at r =ct is a
complicated one, which can be expressed in terms of 6-
function derivatives weighed by r " factors, with n an in-
teger from 2 to 6. This behavior of the energy density
mirrors the highly singular behavior of the effective force
acting on the model detector as a function of time. In
particular, at large distances from the source (r & c/cup)
the electric and magnetic parts of the energy density be-
corne equal, which again is similar to the behavior of a
free electromagnetic wave (in Gauss units).

The field energy contained in the singularity at the sur-
face of the sphere of radius r =ct has rather interesting
features. It amounts to

1 1+—abc
(ct)

where the + refers to the initially bare source and the—

to a source suddenly decoupled from the field at t =0.
Thus in the first case the energy content of the singularity
is positive and it decreases with time (in contrast with a
pulse of radiation emitted by a source in an energy-
conserving process), while in the second case it is nega-
tive (against the positive infinite zero-point background
that we have neglected throughout this paper) and it
tends to zero at t ~~. Its rate of change

+ —abc
4 2 1

(ct)

corresponds exactly to the rate 4trr c &0
~

&F(r, t) 0) at
which the virtual field energy increases (at r =ct —e for
an initially bare source, e being an infinitesimal) or de-
creases (at r =ct +e for a source suddenly decoupled at
t =0). Thus in the first case the virtual field can be visu-
alized as arising entirely from the positive-energy singu-
larity, which deposits it in the amount appropriate to
each point in space during its outward motion. In the
second case the virtual field is gradually annihilated by
the negative-energy singularity, which at the asymptotic
end of the process (t = 00) disappears. Also this behavior
is very different from that expected in a normal case of a
pulse of radiation which is emitted by an atom or a mole-
cule in a real process, e.g. , of spontaneous emission. In
the latter case in fact, the energy is emitted on top of the
positive infinite zero-point background, and one should
not expect regions where the other contributions to the
energy density are negative. In spite of this, the time-
dependent virtual field or a half-dressed source is capable
of exciting a classical model detector, as we have shown.
We are thus led to suggest that in an unstable system
such as the positroniurn one should in principle be able to
observe, apart from the y radiation coming from the rela-
tivistic part of the process, also effects connected with the
undressing of the positronium atom. Observability of
this effect in practice would require a careful analysis in
view of the complicated nature of positronium; such an
analysis is clearly out of the scope of this paper, which is
concerned with a general investigation of obviously
oversimplified models of half-dressed sources. The above
discussion on the difference between radiation emitted by
normal energy-conserving processes and that emitted by
radical perturbation of ground-state sources also shows
that some caution is in order when discussing conversion
of virtual particles into real particles during sudden
events, since integrated quantities such as total energy,
particle number, and similar quantities may well have to
be supplemented by a space-time analysis of the kind
presented in this paper before definite conclusions con-
cerning their physical nature can be drawn. This point of
view is also supported by a space Fourier analysis of the
time-dependent part of the energy density, which illus-
trates quite clearly the importance of the r =ct singulari-
ty in determining the properties of the energy density in k
space.

Thus the quantitative study of our QED and QMD
models leads us to conclude that the virtual quanta
released by ground-state sources following a traumatic
event can be detected, although their physical properties
are in many ways dissimilar from those of real quanta
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normally emitted in an energy-conserving process. It is
fair, however, to remark that these conclusions have been
obtained on the basis of very idealized models of source-
field interactions, and that it is not immediately clear to
what extent the simplifications introduced may limit the
validity of the results we have obtained. In particular, it
would seem desirable to investigate the consequences of
the assumption of pointlike sources on the structure of
the energy density of the field in the neighborhood of
r =ct, since it is likely that the singularity does not sur-
vive as such for sources of finite dimensions, but it gets
smeared out in a region of dimensions comparable to the
dimensions of the source. Preliminary calculations seem
to indicate that this is indeed the case; this would be very
convenient for our purposes, since it would make the be-
havior of the energy density in the neighborhood of r =ct
compatible with the dipole approximations (2.5) and (3.6)
by introducing a cutoff at wavelengths of the order of the
dimensions of the source. Also the neglect of the internal
degrees of freedom of the sources is likely to have an ad-
verse influence on the validity of our conclusions in the
near zone of more realistic sources, where the contribu-
tions of modes of the field of short wavelength, capable of
exciting internal resonances, is dominant with respect to
the contribution of long-wavelength radiation. More-
over, our neglect of the radiation of the detector oscilla-
tor reacting back on the field spoils to some extent overall
energy conservation, which is certainly embarrassing and
undesirable. Finally, the assumption about the abrupt-
ness of "creation" and "annihilation" of the sources is
certainly a very rough idealization, which might make
one suspicious about extension of the conclusions of the
present work to some particular processes such as posi-
tronium annihilation; in fact, one may legitimately specu-

late about the influence of the details of the process lead-
ing to the annihilation or to the creation of a source on
the nature of the virtual radiation which is released in the
same process. An advantage of our model, however, is
that the t =0 state may be taken to be half dressed rather
than completely bare. This permits us to circumvent the
conceptual difficulties connected with the nonobservable
nature of the bare source configuration. The initially
half-dressed configuration in fact is certainly more realis-
tic than the bare one, since it is representative of a case
where the initial state has been prepared in a finite time
interval, short with respect to the propagation time of the
virtual pulse to the detector. We hope that it is easily un-
derstandable, however, that without the simplifications
introduced here, it would have been extremely difficult to
adopt a quantitative approach as we have done, and that
because of this the present work yields a definite advan-
tage over previous semiquantitative or global treatments
on the nature of half-dressed sources. We wish to em-
phasize that the model discussed here does not pretend to
represent adequately the properties of the radiation field
in all possible cases of half-dressed sources.
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