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Precise nonvariational calculations on the helium atom

M. I. Haftel
Code 4651, Naval Research Laboratory, 8'ashington, D.C. 20375

V. B.Mandelzweig
Department ofPhysics and Astronomy, University ofMaryland, College Park, Maryland 20742

and Itacah Institute ofPhysics, Hebrew University, Jerusalem 91904, Israel
(Received 13 October 1987; revised manuscript received 6 June 1988)

The Schrodinger equation is solved directly for the ground state and excited 2 S state of the heli-
um atom by using a rapidly convergent hyperspherical method which involves no adjustable param-
eters. The double and triple coalescence points are taken into account analytically. The center-of-
mass motion is treated nonperturbatively, and the cases of infinite and finite nuclear masses are con-
sidered. The inclusion of 169 hyperspherical functions yields the precision of a few parts in 10 and
10 for the expectation value of the Hamiltonian operator and for all other expectation values, re-
spectively, for the ground state, with only slightly less accuracy for the excited state.

During the last 60 years the two-electron atoms have
been the subject of extensive variational calculations. '

Though a precision of the calculated energies is now
better ' than a few parts in 10', a few problems still
remain. First, different algorithms for selecting the basis
functions lead to variational wave functions that are
differently tailored to describe electron correlations. For
example, the Freund-Huxtable-Morgan (FHM) basis,
which includes many functions with high powers of u /s,
does a better job of describing short- and moderate-range
electron correlations than the Frankowski-Pekeris (FP)
basis. The latter basis contains high powers of s and is
better adjusted for the proper description of long-range
correlations. (Here s and u are the Hylleraas coordinates,
s =r, + r2 and u =r, 2 ). While the accuracy of the calcu-
lated energies is extremely good in both cases, the FHM
and FP descriptions of the exponentially decreasing tail
of the wave function, which makes very little contribu-
tion to the energy, tend to be rather different. Similarly,
the inclusion or omission of the logarithmic terms pre-
dicted by Bartlett' and Fock,"while making little effect
on the variational energy ' (changing it only by a few
parts in 10'~), leads to a completely diFerent analytic
structure of the variational wave function. Thus an ap-
proximate wave function that gives an accurate variation-
al energy value can have relatively different analytic
structure than the exact solution of the Schrodinger
equation. Since variational wave functions are condi-
tioned to give a minimum of the expectation value of the
Hamiltonian, they only have to resemble the exact wave
function "on the average", and not locally. ' They there-
fore can yield, in principle, rather poor expectation
values of different operators, especially those which have
a significant contribution from the specific region of the
wave function. For example, inverse-square and 5 func-
tion operators depend on the wave function at the small
interparticle separations, while the dipole and quadrupole
moment operators have major contributions from the tail
region. These are exactly the operators whose expecta-

tion values determine the relativistic and hyperfine
corrections, positron annihilation, and parity violation
in atoms. '

The general belief that such a problem can always be
overcome by saturating the basis with additional func-
tions has been proved to be false. For example, the ex-
pectation values of operators u", n &0, obtained from a
"good" variational wave function (i.e., one that gives a
very accurate binding energy) may converge to a wrong
limit or even diverge. '

Modern experiments, such as recent high-order pre-
cision measurements of transition energies in helium and
heliumlike ions, ' are sensitive not only to relativistic and
quantum electrodynamical effects, but also to the analytic
and clustering structure of the wave function. To obtain
accurate wave functions, several attempts of numerical
solution of the Schrodinger equation for two-electron
atoms have been considered. In Refs. 18 and 19 the
finite-difference and finite-element methods were used,
while in Ref. 20 the hyperspherical-coordinates method
was employed. The ground-state energy of the helium
atom was accurate to a few parts in 10 and 10, respec-
tively. The error in the other expectation values, which,
unlike the expectation value of the Hamiltonian, is gen-
erally proportional to the error in the wave function to
the first power, was a few parts in 10 or 10 . This falls
far behind the accuracy of modern variational calcula-
tions. '

Recently, however, a very ef6cient method of direct
solution of the three-body Schrodinger equation, which
uses no adjustable parameters, was introduced. ' The
method is based on a decomposition of a wave function g
into a product of a correlation factor y, describing the
singular and/or cluster structure, and a smooth factor (b,

which is expanded in a rapidly absolutely and uniformly
convergent series of hyperspherical harmonic functions.
This technique possesses, besides its extreme precision
and generality, some other very attractive features. Since
hyperspherical coordinates are used (which allow a sepa-
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ration of the center-of-mass motion), the method is equal-

ly applicable not only to three-body atomic systems, but
also to mesic molecules consisting of three particles of
comparable masses and to systems of two heavy and one
light particles, such as Hz+. Excited-state wave func-
tions, being solutions of the same equation with different
eigenvalues, are automatically orthogonal to the ground
state or to each other. In the present paper we present
precise calculations for the expectation values of the
Hamiltonian and other operators for the helium ground
state using this method.

In the center-of-mass frame P satisfies the three-body
six-dimensional Schrodinger equation with an effective
velocity dependent potential. ' To make P as smooth as
possible, we have chosen, ' for the helium ground state,
g=exp[ —2(r, 3+r23 —

r&q I4)] to incorporate the singu-
larities at r,"=0, i.e., the cusps in the wave function. In
that case the effective potential contains no singularities,
which facilitate a faster convergence ' of the hyperspheri-
cal expansion.

The numerical technique of the present calculations is
the same as in Ref. 21. The numerical precision is in-
creased to an estimated error of about one part in 10' in
the integration of 169 coupled radial differential equa-
tions needed for an evaluation of a wave function for
maximal global quantum number E =48. To integrate
the 169 coupled equations for K =48 to 12 or 13
significant figure precision required about 45 min of CPU
time on the Naval Research Laboratory's CRAY-XMP
computer. Since the precision obtained was much more
than needed and since no special effort was made to vec-
torize the code, we estimate that one should be able to
reduce this CPU time by about an order of magnitude.
The numerical integrals involved in the calculation of ex-
pectation values of the Hamiltonian and of other opera-
tors are carried out to an estimated error of a few parts in
10"and 10, respectively.

The results for ground state of the helium atom in the
case of infinite and finite nuclear masses are presented in
Tables I and II. While the detailed discussion of the con-
vergence patterns will be given elsewhere, a simple look
at the tables shows that the precision of the expectation
values of the Hamiltonian is one part in 10 and the accu-
racy of all other expectation values is seven or eight
significant figures. The agreement with the best varia-
tjonal calculations ' ' is excellent. There are only
slight disagreements in the llr, 2 and r, z expectation
values, with our values better converged than those of
Pekeris with 1078 basis functions. These expectation
values are especially sensitive to the wave function near
the cusps. The discrepancy thus reAects the fact that the
coe%cients before r, 2 in the expansion of the variational
wave function at the origin is reproduced with a gross de-
viation of S%%uo from its true value, even though the corre-
sponding variational energy has an inaccuracy of one
part in 10' .

With regard to the energies for a finite-mass nucleus,
our value is within 2X 10 a.u. of the value obtained by
Pekeris in first-order perturbation theory. A simple esti-
mate shows that second-order corrections should be of
the order of 6X10 a.u. which is consistent with the

TABLE I. The expectation values (H) of the Hamiltonian
(a.u.}. EC is the maximum global angular momentum involved
and N is the number of hyperspherical functions included and
equations solved. The number of digits indicate the numerical
precision of the calculated value. The two numbers for the
ground state (GS) are for infinite and finite (M, /M„„,i,„,
=1.370933 7X 10 ) nuclear masses, respectively. The refer-
ence rows display the results of the most sophisticated varia-
tional calculations (Refs. 6, 8, 9, and 22).

16

24

32

48

25

49

81

121

169

Refs. 8 and 9
Ref. 6
Ref. 22

—(H ) He (GS)

2.855 504 862
2.855 030 357
2.903 701 425
2.903 281 569
2.903 723 654
2.903 303 834
2.903 724 254
2.903 304 434
2.903 724 340
2.903 304 520
2.903 724 361
2.903 304 542
2.903 724 368
2.903 3045 549

2.903 724 377
2.903 304 374
2.903 724 377
2.903 304 558

He (2'S)

2.004 280 769

2.145 297 956

2.145 968 877

2.145 972 605

2.145 973 445

2.145 973 760

2.145 973 851

2.145 974 046

difference between Pekeris's value and ours. Since in our
method center-of-mass motion is taken into account non-
perturbatively, the finite-mass entries for all expectation
values in Tables I and II are exact with respect to finite-
mass effects. To our knowledge these are the first precise
nonperturbative determinations of most of these expecta-
tion values for a helium atom with finite nuclear mass.
Inclusion of finite-mass corrections for certain relativistic
operators have recently been reported by J. D. Morgan
III and J. Baker and by G. %. F. Drake. Tables I
and II show excellent agreement between our expectation
values and those of Morgan for Hamiltonian and 5-
function operators for a finite-mass nucleus. In view of
the fact that the accuracy of the experimental energies
reaches nine digits, this effect is very important for
correct estimates of the QED contributions and the pre-
cise determination of the Rydberg constant.

The proposed method also works well for excited
states, as exhibited in the energy and expectation values
(Tables I and III) for the excited 2'S state of helium (with
infinite nuclear mass). In this case we have chosen a
correlation function y=exp[ —2(r, 3+r23) j. This form
incorporates the nucleus-electron cusps, but not the
electron-electron cusp. This form does imply uncorrelat-
ed electron-electron motion, which is, in fact, what we
would expect for an atom whose dominant configuration
is 1s2s. A parameterization including the e-e cusp is not
as accurate for this state as it poorly describes the large-
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distance uncorrelated behavior. The price we pay for not
including the e-e cusp shows up mainly in a slower con-
vergence rate for the average of singular functions of r, 2

[especially (5(r,z))). As for a system with comparable
masses, preliminary calculations for Ps also indicate a
vast improvement over the unmodified hyperspheri-
cal method. Using a simple parameterization
=exp[ —0.362( r

& &
+ rzz ) ], which implies uncorrelated

e -e motion with a symmetric disposition of the elec-
trons asymptotically, values of —(H ) of 0.2589, 0.2603,
0.2609, and 0.2613 a.u. are obtained for K =8, 12, 16,
and 20, respectively. This compares with 0.2423, 0.2505,
0.2543, and 0.2567 a.u. for the usual hyperspherical-
harmonic method, and the "exact" result of 0.262 005
a.u. An uncorrelated-cusp parameterization, as used in

He', yields an excellent eigenvalue ' of 0.2621 a.u. for
E =20, but yields a wave function with an unsatisfacto-
ry asymptotic form. Whether a simple form of y can be
found to yield accuracies comparable to the helium atom
is now under investigation. With the accuracies exhibit-
ed so far, it appears likely that this technique could be
quite efficient in the three- or four-nucleon problem as
well as in calculations of the wave function of muonic
molecular ions (like p-d-t ) of interest in muon-
catalyzed-fusion research.

Summing up, we have presented a method of solution
of the three-body Schrodinger equation that allows pre-
cise direct calculation of the wave function. The depen-
dence of the wave function on the hyperspherical radius,
which equals zero at the triple coalescence point, is given

TABLE II. Expectation values of various functions of r» and r», the distances between two electrons, and an electron and the nu-

cleus, for the helium ground state. The number of digits indicate the numerical precision of the calculated value. The two numbers
in each entry of the table are for infinite and finite nuclear masses, respectively. The reference rows display the results of the most
precise variational calculations (Refs. 6, 22, and 23).

16

32

48

25

49

81

121

169

Ref. 6
Ref. 22

Ref. 23

—2
T12

1.307 338
1.306 833
1.466 392
1.466009
1.464 833 9
1.464 445 5
1.464 771 9
1.464 385 6
1.464 769 2
1.464 384 1

1.464 769 84
1.464 383 52
1.464 770 31
1.464 384 01

1.464 773

0.894 495 4
0.894 325 8
0.946 555 1

0.946 435 0
0.945 852 97
0.945 731 80
0.945 820 99
0.945 699 76
0.945 818 50
0.945 697 60
0.945 818 335
0.945 697 049
0.945 818 369
0.945 697 143

0.945 818 451

&(r12)

0.088 703 33
0.088 648 60
0.106 389 19
0.106 344 01
0.106 331 263
0.106285 866
0.106 338 556
0.106293 146
0.106 342 037
0.106 297 170
0.106 343 557 5
0.106298 1372
0.106 344 2S4 7
0.106298 870 5

0.106 355
0.106345 332 9
0.106299 919
0.106 345 380

r12

1.501 529 0
1.501 809 9
1.420 245 5

1.420 419 7
1.422 19771
1.422 154 13
1.422 206 25
1.422 239 78
1.422 069 80
1.422 246 42
1.422 070 472
1.422 247 739
1.422 070 455
1.422 247 714

1.422 070 26

2
r12

2.801 223 2
2.802 267 3
2.508 254 8
2.508 862 5
2.515 992 87
2.516614 38
2.516 399 52
2.517021 96
2.516436 11
2.517056 26
2.516439 988
2.517062 533
2.516440 118
2.157062 655

2.516439 34

(T12T23 )

1.816 513 7
1.1815868 3
1.922 847 0
1.922 311 8
1.921 033 63
1.920 495 97
1.920 950 66
1.920 412 87
1;920944 12
1.920 407 90
1.920 943 657
1.920 405 835
1.920 943 726
1.920 405 929

1.920 944

16

24

32

48

25

49

81

121

169

Ref. 6
Ref. 22

Ref. 23

—2
T13

5.718 65
5.71677
6.017 76
6.01608
6.017 352
6.015 610
6.017 391
6.015 700
6.017403
6.015 731
6.017407 1

6.015 715 1

6.017408 2
6.015 7163

6.017407 1

1.651 376
1.651 097
1.688 759
1.688 519
1.688 337 0
1.688 096 9
1.688 3184
1.688 078 3
1.688 3169
1.688 077 8
1.688 31681
1.688 076 58
1.688 31681
1.688 076 59

1.688 31680

1.682 077 9
1.681 270 8
1.809 798 9
1.809 043 6
1.810294 34
1.809 537 90
1.81039023
1.809 633 58
1.81041379
1.809 654 82
1.810421 74
1.809 664 91
1.810425 06
1.809 668 23

1.810419
1.810429 28
1.809 672 40
1.810429 32

13

0.937 691 1

0.937 854 8
0.928 5300
0.928 663 9
0.929 417 88
0.929 553 39
0.929 466 89
0.929 602 50
0.929 471 66
0.929 606 88
0.929 472 267
0.929 607 889
0.929 472 341
0.929 607 962

0.929 472 297

2
T]3

1.196674 3
1.197095 8
1.189 700 1

1.190044 5
1.193247 78
1.193 599 14
1.193458 25
1 ~ 193 81009
1 ~ 193479 73
1.193 830 50
1.193482 70
1 ~ 193 834 59
1.193483 12
1.193 835 02

1.193483 01

( T13T23 )

2.642 202
2.641 296
2.711 157
2.710372
2.708 782 0
2.707 993 4
2.708 666 6
2.707 877 8
2.708 656 4
2.707 870 2
2.708 655 40
2.707 866 57
2.708 655 34
2.707 866 55

2.708 656
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TABLE III. Expectation values of various functions of r» and r» for the 2 S excited state of helium. The notation is the same as
Table II.

0
8

16
24
32
40
48

Ref. 6
Ref. 22
Ref. 23

1

9
25
49
81

121
169

—2
T12

0.373 062 3
0.158 237 2
0.143 841 47
0.143 799 47
0.143 779 46
0.143 763 55
0.143 753 05

—1
112

0.395 662 6
0.261 840 7
0.249 61305
0.249 657 27
0.249 676 91
0.249 681 21
0.249 682 30

6(r12)

0.033 497 05
0.010473 47
0.009 066 363 6
0.008 943 849 1

0.008 876 879 9
0.008 834 374 4
0.008 805 145 2

0.008 652 1

0.008 648 489 3
0.008 648 445 5

r12

3.532 349
4.997002
5.270 696 3
5.270 3902
5.269 888 8
5.269 759 9
5.269 720 9

5.269 688

2
r12

14.68447
28.691 76
32.308 53 0
32.311782
32.305 096
32.303 307
32.302 747

32.302 18

(r12r23 )

0.545 363 8
0.361 691 3
0.340 486 58
0.340 583 81
0.340 621 62
0.340 630 35
0.340 632 78

0
8

16
24
32
40
48

Ref. 6
Ref. 22
Ref. 23

1

9
25
49
81

121
169

—2
13

3.153 936
4.151 819
4.145 744 9
4.146 364 8

4.146 589 9
4.146 855 8
4.146 893 8

—1

13

1.022 048
1.141 252
1.135 260 4
1.135 353 7
1.135 388 1

1.135 399 5
1 ~ 135403 9

5(r13)

0.934 676 4
1.309 388 6
1.308 999 2
1.309 266 0
1.309 368 6
1.309 412 2
1.309 432 1

1.309 447
1.309 460 8
1.309 460 8

13

2.185 225
2.833 894
2.973 411 8

2.973 372 8

2.973 144 5

2.973 087 4
2.973 070 7

2.973 057

2
13

7.342 236
14 264 AHA

16.089 861
16.093 275
16.090 348
16.089 591
16.089 365

16.089 13

(~13~23 )

0.799 100 1

0.592 954 3
0.561 638 91
0.561 782 30
0.561 840 90
0.561 855 03
0.561 859 16

analytically by the logarithmic-power-series expan-
sions ' resulting from the exact solution of the
Schrodinger equation. Therefore the logarithmic terms
predicted by Bartlett' and Fock" are included automati-
cally and exactly and so is the triple coalescence point.
The double coalescence points are incorporated into a
wave function analytically as well ' through the correla-
tion factor g. As demonstrated here on for the helium
ground state, the energies and other expectation values
calculated with this wave function have the accuracy
available earlier only in very elaborate variational calcula-
tions involving hundreds or even thousands of varia-
tional parameters. A truncated wave function in our
method converges to a true solution at every point in ab-
solute and uniform fashion, ' which enforces a similar
convergence for expectation values. These features gen-
erally are not present in variational approaches, where

the wave function is geared to facilitate the convergence
of the expectation value of the Hamiltonian. In that case
the correct behavior of the wave function at points that
contribute little to the binding energy (such as points in
the cusp or tail regions), as well as the convergence of ex-
pectation values of non-Hamiltonian operators, is not as-
sured. Finally, the results for He'(2'S) indicate that this
method is capable of handling excited states accurately as
well.
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