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We demonstrate how the topological phase associated with Rabi flopping in two-level atoms in

optical 6elds can be measured by quantum-beat experiments. We use the Zeeman coherences in

j 0 to j 1 transition which is excited by both broad-band Seld and circularly polarized pulses.

Recently, many papers have been devoted to the geome-
trical or topological phases associated with either adiabat-
ic' or cyclic evolution. 2 The predictions of the theory
have been verified by several experiments. 3' It is well
knowns that the dynamical evolution of a two-level atom
in presence of external electromagnetic field is like the
evolution of a spin in a magnetic field. Thus the ideas of
Berry' or Aharonov and Anandan are also applicable to
the wave functions of two-level atoms in an electromag-
netic field. The following question arises: How does one
measure the topological phases associated with Rabi oscil-
lations of two-level atoms? In case of light beams such
phases are usually measured by an interference experi-
ment. 3 In this Rapid Communication we propose a
method based on the ideas of coherent transients in three-
level systems. We show how the geometrical phase associ-
ated with Rabi oscillations can be measured using quan-
tum beatss in a suitably prepared three-level system.

Our proposal consists of the following: consider j 0 to
j 1 transition in an atomic system, as shown schemati-
cally in Fig. 1. We will consider fields polarized such that
only ( j O, trt 0) (j I,m ~1) transitions are al-
lowed. Consider the excitation of the system by a broad-
band field which is linearly polarized. We will see that

(j=l,m=1& =-11)

(j =1.tr]=-1& =-I 2&

this broad-band field creates coherence between two Zee-
man levels (j I, irt ~ I) but no coherence between ex-
cited levels and ground state. This coherence p]2 is re-
sponsible for the production of quantum beats. We next
consider the two-level system consisting of states ( 1) and

(3). Transitions in this two-level system can be induced

by a left-circularly polarized light which does not couple
to the level (2). Thus, the left-circularly polarized light
will lead to Rabi oscillations between the levels (1) and

(3). We can now apply a series of left-circularly polar-
ized fields to produce a cyclic evolution and to have a cir-
cuit in the appropriate space. This will result in the
geometrical phases for the state (1) and (3) but no
geometrical phase for the state (2). Thus, the quantum-
beat amplitude, which is given by p]2, can monitor the
geometrical phase of the state ( 1). Thus, our proposal in-

volves the following steps: (a) prepare the system

j 0~j 1 by exciting it with a broad-band linearly po-
larized field, (b) monitor the beat amplitude, (c) use left-
circularly polarized pulses to selectively have the cyclic
evolution between two states, and (d) observe the phase
changes in the beat amplitude. These phase changes
would be a measure of the geometrical phases induced by
the cyclic evolution in step (c). We will see that one ad-
vantage of using the incoherent excitation in step (a) is

that step (c) does not introduce any dynamical phase.
We next discuss the mathematical basis for the above

proposal. Consider the interaction of the two-level sys-
tem with the electromagnetic field. Let the state of this
two-level system be designated as (1) and (3). The in-

teraction Hamiltonian can be expressed as

]]tg(e((A]3e' +e ' A3]) Ail (l)(J (

where ( e ( is the amplitude of the field, e its phase, and g
denotes the coupling constant. Using (1), the wave func-
tion evolves as

FIG. 1. Schematic diagram of the three-level system con-
sidered in the text. Single arrows represent the excitation of the
system by broad-band incoherent light. The double arrow rep-
resents the cyclic evolution of the two-level system (states (1)
and (3)) in presence of left-circularly-polarized pulses. The
wavy lines give the spontaneous emission from a coherently
prepared system. The interference between the two
spontaneous-emission amplitudes gives rise to quantum beats.

]tr](t) -cos(g ( e( t) Vr](0) —te"Vr3(0) sin(g ( e( t),
(2)

+3(t ) cos(g ( e ( t ) ]ir3(0) ie '
]lr]

—(0) sin(g ( e ( t ) .

The evolution is obviously cyclic, i.e.,

v (r) -e'*V (0) ]r g (e( r-n. (3)

The dynamical phase will depend on the initial state. If
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we choose y(0) as

~(0)-(I+ I pl') '"(I»+ Iple" I3&),

then the dynamical phase b is found to be

", ~s(8+g).2K p
(1+ lu I')

Hence, the geometrical phase P will be

(4)

i(r+ eg -e, ) (0)
g I el, e

P3
n i(~+e, —e,) (0)

g I el
~g

(7)

If we assume that the initial state corresponds to either
y3(0) 0 or y~(0) 0, then the dynamical phases are
zero and the geometrical phase associated with the two in-

I

/l-n+ ", cos(8+Z). (6)1+ p
The dynamical phase will be zero if the two-level atom
starts either in the state I 1& or I 3&. Dynamical phase will
also be zero if g were a random quantity. Equation (6)
shows how geometrical phases arise in the usual Rabi os-
cillation of atoms.

Consider another example of cyclic evolution. Let us
apply a pulse with phase 8~ such that g I el z n/2 and
then a second pulse with phase 82 and glel z n/2. In
this case it is clear from (2) that

itial conditions will be

p~ n+82 —8~ if y3(0) 0,

p2 @+8)—82 if y((0) 0.
The Bloch vector with components 2 Re&A ~3&,

2 Im&A ~3&, &A ~ ~
—A 33& moves on a sphere with a radius

determined by the initial population in the states I 1& and

I 3&. Specifically, for the case y3(0) 0, the Bloch vector,
at any time, makes an angle 2g I e I r with the z axis and its
projection in xy plane makes an angle (3n/2) —8~ with
the x axis. At the end of the first pulse [g I el t (n/2)]
the Bloch vector is pointing downwards. During the
second pulse, the Bloch vector moves on the sphere mak-
ing an angle n-2g I e I t with the z axis and its projection
in xy plane makes an angle [(n/2) —82] with the x axis.
It is clear that the Bloch vector follows a closed circuit on
the sphere during the above evolution. The solid angle
subtended by this circuit is 2n+28z-28~ and, hence, the
geometrical phase is half of this solid angle. s

We next discuss how the geometrical phases can be seen
in a quantum-beat experiment. Let the three-level system
(Fig. 1) be prepared by an initial broad-band x-polarized
excitation ea. The field ea is taken as a Gaussian b-
correlated process [&ea(r)eg (t')& 21ab(t —t')] with zero
mean. The evolution of the density matrix of the system
during the preparation stage can be studied in terms of the
master equation obtained by eliminating the degree of
freedom associated with broad-band field. It can be
shown that the evolution is described by

p ~ —Is[A ~3+A23, [A3~+A32,p]] -Io[A3&+A32, [A &3+A23,p] l

—i[(re» —
reL, )Aii+(ee23 —res)A2z, p] —2y(A imp

—A»PA»-A32PA23+ pAii),

where Io is proportional to the square of the radial matrix
element and Ie and 2y is the rate of spontaneous emission
from I 1& and I2&. The steady-state solution of (9) can be
shown to be

P13 P31 P23 P32

12
Imp~2 —

( ) Rep~2, (10)

4yIO(y+Io) 4y(y+4IO) (y+I )
(y+ 3IO)

' (y+ 3IO)

Thus, initially only coherence between the two Zeeman
levels exists. ' This coherence depends on parameters
such as magnetic field. There is, of course, the population
in all three levels. We do not give explicit expression for
these. Thus, as far as the levels I1& and I3& are con-
cerned, we have an incoherent superposition of these.
This incoherent superposition makes the dynamical
phase zero and thus the total phase change in-cyclic evo-
lution is of geometric origin For the case w. hen one ap-
plies a single pulse g I e I z x with phase 8, the beat am-

plitude will be

p)2-&y(yr2 & cos(g I el t)&y)(0)y2 (0)& ie"—
xsin(g I el i)&y3(0)@2'(0)&

cos(g I el t)&y)(0)yz (0)& —p~z(0), (11)

since p32(0) &@3'& is zero. Thus, the phase of the beat
amplitude changes by n, which is precisely the geometric
phase" associated with cyclic evolution. Thus quantum
beats can be directly used to measure the geometric
phases associated with the Rabi flopping in two-level
atoms. Note that the above phase change is in addition to
the phase change re~2m/g I el due to free evolution of the
system.

For the second example of cyclic evolution [Eq. (7)],
the beat amplitude can be shown to change by

P l2 e P12(0)
g I el

(12)

Thus, the phase of the beat amplitude will change by an
amount equal to the geometrical phase P~ —=++82 —8~.
One can thus monitor the change in the phase of the beat
amplitude for different phase settings of the laser fields.
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As mentioned previously this change is half the solid angle
subtended by the closed circuit traced by the Bloch vector
during its evolution.

Thus, in conclusion we have shown how the geometrical
phases associated with the Rabi Hopping of atoms in opti-
cal 6elds can be monitored by quantum-beat spectroscopy.

We have also shown how the dynamical phases can be
made zero so that the measurement directly gives geome-
trical phases.

The author is grateful to V. Srinivasan, S. Chaturvedi,
and S. P. Tewari for discussions on topological phases.
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' It is not necessary to consider the steady-state preparation
(10). One can consider excitation with a broad-band pulse of
finite duration. Even then p&2 p23 0.

"The geometrical phase associated with the coherence p~2 can
also be monitored by other methods such as Hanle measure-
ments.


