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Streamlined eigenchannel treatment of open-shell spectra
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An energy-independent transformation of the generalized eigensystem used in eigenchannel cal-
culations is shown to give the energy dependence of the R matrix in semianalytic form. The
transformation gives insight into the energy dependence of the short-range parameters used in

multichannel quantum-defect theory. We present a simple method for setting up the many-

electron basis set which integrates naturally with the noniterative eigenchannel method. The ap-
proach is used to calculate energy-dependent quantum defects for the 'S' and P' symmetries of
silicon near the first ionization threshold, with spin-orbit effects described by a frame transforma-
tion.

The utility of R-matrix methods for calculating open-
shell spectra has been clearly demonstrated. ' 3 Especial-
ly when combined with multichannel quantum-defect
techniques (MQDT), 6 an efficient and compact de-
scription of bound, continuum, and autoionizing spectra is
obtained. Its efficiency derives from the concentration of
computational effort at small distances (r (ro= 15 a.u.
for most atoms near the lower ionization thresholds),
which is precisely where the difficult electron-electron
correlation effects dominate. The often-complicated spec-
tral manifestations of electron escape to larger radii (in a
Rydberg or continuum state) are described in semianalyt-
ic fashion by MQDT.

The Wigner-Eisenbud formulation of R-matrix
methods has been widely used in atomic and molecular
applications. Developed into a large-scale computational
package by Berrington and co-workers, it has been suc-
cessfully applied to a wide range of atomic spectra. The
eigenchannel R-matrix method is an alternative approach
proposed initially by Fano and Lee. 9 A noniterative refor-
mulation'0" based on a direct variational expression for
the logarithmic derivative of the many-electron wave
function on the reaction surface (r,„ro) greatly im-
proves the efficiency of the Fano-Lee treatment. This has
been demonstrated through numerous applications in the
last few years to alkaline-earth atoms' '3 and to alumi-
num. '4

In this Rapid Communication, we point out a further
transformation of the generalized eigenvalue problem that
is solved in the noniterative eigenchannel method as a
function of the total energy E. In this new transformed
representation, the dimension of the final generalized ei-
genvalue problem is of the order of the number (N) of
open or weakly closed channels used in the calculation.
This speeds up the energy-dependent calculation im-
measurably, considering that previously the dimension of
the eigensystem solved at each E was the total number
(ncFo) of antisymmetric many-electron configurations—frequently two orders of magnitude larger than N in an
open-shell atom.

The determination of the matrix needed to accomplish
this transformation still involves diagonalization of a large
Hamiltonian matrix (roughly of order ncFGxngFG), but

this large diagonalization now needs to be performed only
once. In other words, this transformation essentially gives
the energy dependence of the R-matrix eigenvalues and
eigenvectors in semianalytic form. The desired short-
range MQDT parameters can now be easily and rapidly
calculated on as fine an energy mesh as desired, and the
faster convergence' ' of the eigenchannel R-matrix
method is still retained without use of a "Buttle correc-
tion. "

The eigenchannel treatment starts from a variational
expression for the logarithmic derivitive of the many-
electron wave function at the surface S enclosing a reac-
tion volume V in conftguration space '" Out. of a set of
degenerate multichannel states at the energy E, the eigen-
channel method selects a set of states y~, orthogonal over
S, each of whose normal logarithmic derivatives—

bit —=[pit '(8ytt/8n)]g is constant across the reaction
surface. These (—bp) are the reciprocal eigenvalues of
the R matrix. For the purposes of this paper, the reaction
volume V is the set of all points in configuration space for
which each electron lies within a sphere of radius ro. For
a many-electron atom, V has the shape of a hypercube
whose axes are the radial distances r; of each electron
from the nucleus.

A convenient form normally used for the trial solution
is a linear combination of known functions yk with un-
known coefficients of superposition, i.e., tittt PkykZktt
This trial solution leads to a generalized linear eigensys-
tem determining each coefficient vector Z and its corre-
sponding eigenvalue b

rz-bAZ,
with

t)yk i

2 yk (E H)yk dV —
& yk

—dS, (2a)
Bn

and

Akk -„,ykyk dS. (2b)

In Eq. (2a) H is the Hamiltonian. This system of equa-
tions must be solved numerically for each energy E at
which the R matrix is desired.

5953 1988 The American Physical Society



5954 CHRIS H. GREENE AND LONGHUAN KIM

In previous eigenchannel studies' ' the yk have been
chosen as antisymmetrized Slater&eterminantal basis
functions (with definite L, S, and parity) composed of
one-electron orbitals R~(r)Yj (8,&). The R„I(r) are
eigenfunctions of a radial Schrodinger equation with a nu-
merical potential of the Hartree-Slater type. This choice
of basis functions would be quite similar to that used in
any standard configuration-interaction (CI) calculation,
except that Refs. 12-15 use two distinct types of one-
electron radial orbitals. Closed typ-e orbitals R„,t are
chosen to be eigenfunctions that vanish at r ro, while
open-type orbitals R~t(r) are nonzero at r ro. The
R„ t (r) are automatically orthogonal but they are not or-
thogonal to the open-type orbitals. For convenience in
calculating interaction matrix elements (of I/r;~), we as-
sume further that the open-type R„ t(r) are next Gram-
Schmidt-orthogonalized to the R„,I and to each other, giv-
ing a new orthonormal set {R„,t,R,.t}

As currently formulated, these R-matrix and MQDT
technologies are only capable of dealing with escape of
one electron from the reaction volume V. Because of this,
we similarly group the manywlectron basis functions yk
into open-type and closed-type acts. Each many-electron
basis function yg of the closed-type set is constructed us-
ing only closed-type onewlectron. orbitals, whereby yg
vanishes on S. Each antisymmetric basis function yg of
the open-type set is nonzero on S, and is built from an
open-type orbital for one of the electrons, with all the
remaining electrons placed in closed-type orbitals. It is
these open-type basis functions yg which allow the outer-
most electron to reach the reaction surface, and to escape
beyond it in an excited bound or continuum state. The
specification of the open-type basis set is discussed further
below.

In a partitioned matrix notation referring to these
closed and open basis sets, we use the fact that A 0,
A~ 0, A~ 0, and L 0 to rewrite Eq. (1)

(El-H )Z'- (H +L )Z' 0,
—2(H +L )Z' —2(H +L —El)Z' bA Z~.

(3a)

oZ'-bA Z',
where

0 —2(H +L )(El —H ) '(H +L )
—2(H +L —El) .

(4)

These equations can now be transformed into a form

(3b)

Here L denotes the matrix of the Bloch operator in Eq.
(2a), namely Lkk 2 Jsyk (8yk, /in)dS. The matrix L
also vanishes but has been retained in (3a), nevertheless,
as a reminder that H+I, is a Hermitian operator. [Also,
in contrast to earlier eigenchannel studies using
nonorthogonal basis sets, Eqs. (3) assume the entire basis
to be orthogonal. Extension of the present analysis to
nonorthogonal bases is quite straightforward. ) The unit
matrix is denoted I. Using (3a) to eliminate Z' from
(3b), the equation determining the eigenvalues b is now of
much smaller dimension

more eScient for numerical solution. The idea is simply
to transform this basis set into a representation in which
the closed-portion of the Hamiltonian matrix H is diag-
onal with energy eigenvalues E~, using an orthogonal
eigenvector matrix Xk~. This permits the matrix H —EI
to be efficiently inverted as a function of E. The matrix 0
in Eq. (4) is then explicitly

(H +L )Ig(H +L ) k
+kk' E —E~

+2Ebkk —2(H +L )kk, . (5)

The notation H implies that the matrix H has been
transformed into the representation in which H is diago-
nal, e.g., H H X.

The point of this paper is that the much smaller eigen-
system (5) can be solved in a negligible amount of time on
an arbitrary energy mesh using the transformed represen-
tation for 0 in Eq. (5). To ensure that the proper number
of nontrivial eigenvalues b~ is obtained (for an N-channel
calculation we require N such eigenvalues), the design of
the open-type basis set is important. When dealing with
multiconfiguration ionic core states in particular, this will
be achieved if each open-type basis function yg includes a
full (antisymmetric) multiconfiguration eigenstate @; of
the "target" Hamiltonian having one fewer electron. In
this notation e; is understood to include also the angular
and spin-wave functions of the outermost electron coupled
to form a definite L and S. It thus represents a standard
"channel function" (or "surface harmonic") '0 of the type
used in MQDT or close-coupling descriptions. Hence, the
form we adopt for the antisymmetric open-type basis
functions is yg Af@;R„I,},where A is an antisymmetri-
zation operator.

In practice the inclusion of two such open-type basis
functions fn, } for each channel Ii} seems to give good re-
sults, although there is considerable fiexibility. When a
large number of them are included in any channel it can
be counterproductive as it eventually causes linear depen-
dence difficulties, but this should never be necessary. The
reason such a small number of open-type basis functions is
needed seems to derive from the fact that the set of
closed-type basis functions alone forms a complete ortho-
normal set of eigenfunctions which spans the reaction
volume. However, this closed-type basis set would only be
efficient for describing a solution of the Schrodinger equa-
tion which also vanishes on the reaction surface S
(r ro). By including a small additional open-type
basis the entire set is made "overcomplete" (prior to its
truncation), thereby giving precisely the fiexibility needed
to represent any continuum state having an arbitrary log-
arithmic derivative on the reaction surface. Accordingly
the final dimension of the generalized eigensystem (4) is
roughly 2N, with N the number of open or weakly closed
channels to be included in the subsequent MQDT calcula-
tion.

This choice of the open-type basis now guarantees that
the solution of Eq. (4) will produce exactly N nontrivial
eigensolutions because the structure of the matrix A is
block diagonal in the channel index 5, with each block se-
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parable

Akk. r)Rn. l, (ro)Rn i (ro)8;;..

(Recall that for open channels the subscript k actually
refers to both the channel subscript i and to the "open-
orbital" subscript n, ).Also, by choosing the open-type
basis in this fashion, the R-matrix eigenvector corre-
sponding to the eigenvalue bii is now given in terms of the
eigenvector of Eq. (4) by

~ip Z r oRn, l, (i'0)Zin„p ~

No

Upon normalizing the column vectors comprising the ma-
trix 8'is to unit norm, this collection of real eigenvectors
forms an orthogonal matrix. This information suffices to
construct the smooth, short-range-reaction matrix K used
in quantum-defect studies. '2

To assess this design of the many-electron variational
basis set we have calculated energy&ependent single-
channel quantum defects for 'S' and 3P' symmetries of
silicon from the Si ground-state energy up to the lowest
ionization threshold. As in our earlier calculations'3 we
use a Hartree-Slater potential with a small empirical po-
larization correction optimized to describe accurately the
e-Sis+ interaction. The polarization correction term in-
cludes an l&ependent "cutoff radius" chosen to give good
agreement with the one-electron energy levels of Si3+.
Using this model Hamiltonian, we first calculate a CI
ground state for Si+ inside our R-matrix box of radius
ro 9 a.u. by diagonalizing the three-electron Hamiltoni-
an in a basis of 18 closed-type basis functions. Next we
set up a similar basis of closed-type (symmetry-adapted)
single-configuration states such as 3s23pz, 3sz3p4p, 3ps,
etc. To test convergence we used anywhere from 80 to
200 such single-configuration states, giving nearly identi-
cal results. The final results presented here are from our
largest calculation with =200 closed-type four-electron
basis functions. Lastly the "open portion" of our basis set
involves two multiconfiguration open-type states of the
type yg defined above, each of which uses our finite-

0.6-

0.4—

0.2—

0 I I I I I

1 2 3 4 5 6 7

Py
2

FIG. 2. Extended Lu-Fano plot of J 0 even-parity bound
levels of silicon. The horizontal axis shows the effective quan-
tum number vy2 in the upper fine-structure channel
3$ 3py2spy2, while the vertical axis gives the quantum defect
relative to the lower channel 3$3p~(28p~/2. Solid dots show ex-
perimental levels from Ref. 18 and the curve represents the
present calculation. Note that the plot is not periodic in vy2 ow-
ing to the energy-dependence of the eigenquantum defects in
Fig. 1.

volume CI wave function for the Si+ ground state. Ma-
trix elements of the four-electron Hamiltonian were then
calculated according to the CI formulation of Fano. ts

The resulting LS-coupled quantum defects are seen in

Fig. 1 to vary strongly with energy, even though there are
no bound perturbing configurations for these two sym-
metries.

These LS-coupled quantum defects could be compared
directly with experimental quantum defects far below the
Si+ (3s 3p) threshold, but closer to threshold the
3p ti2-3py2 spin-orbit splitting mixes the two LS-coupled
series of Si Rydberg levels. Hence, we apply a standard
LS-jj recoupling transformation which combines the 3P'

TABLE I. Effective quantum numbers of J 0 even-parity
levels of Si in the lowest ionization channel (j; & ).
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FIG. 1. Single-channel eigenquantum defects for J 0 even-

parity levels of silicon are shown as functions of energy relative
to the lowest ionization threshold, as calculated in LS coupling.

Designation of Ref. 18

3$ 3p P
3$ 23p2 1

3$ 3p4p P
3$23p4p IS
3$3p5p P
3$ 3p5p'S
3$ 3pi/26pI/2
3$ 3p3(26p3/2
3$ 3pi(27p~(2
3$ 3p3/27p3/2
3$ 3pI/28p//2
3$ 3py28p3/2
3$ 3pI(29pI/2
3$3p3/29py2

'Reference 18.

v~i2(cate. )

1.287
1.489
2.594
2.775
3.625
3.831
4.645
4.902
5.659
6.013
6.671
7.178
7.683
8.405

v)i2(expt. ')

1.292
1.476
2.562
2.786
3.603
3.842
4.627
4.911
5.657
6.019

7.179
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and 'S' uantum defects into a 2&2 reaction matrix in jj
coupling. ' Then using the experimental fine-structure
splitting of the Si+ thresholds, the standard formulas of
MQDT can be used to construct the Lu-Fano-type dia-
grams' of J 0 even-parity levels of Si shown in Fig. 2.

The favorable comparison between experimental's and
calculated quantum defects in Fig. 2 shows that a relative-
ly small-scale eigenchannel R-matrix calculation can be
used to predict nontrivial spectroscopic details of an
open-shell atom as complicated as Si. Table I permits a
more detailed comparison. (Effective quantum numbers
predicted by a Hartree-Fock calculation are 1.33 and 1.64
fot the lowest 3P' and 'S' levels in Table I, respectively. )

These results suggest that similar analyses may be use-
ful for comparison with the detailed semiempirical
MQDT studies carried out by Ginter and Ginter for Si
and other atoms of the carbon group. ' They may also
serve as a starting point for the analysis of spectra in far
more complex systems. The transformation described in
the present paper improves considerably the efficiency of
this framework.
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Science Foundation.
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