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The normal procedure for numerical simulation of exponentially correlated colored noise is su-
perseded by the novel algorithm presented here. A differential algorithm is replaced by an integral
algorithm which is faster, more accurate, and permits the use of longer step sizes.

I. INTRODUCTION

Traditionally, stochastic differential equations used in
the physical sciences have involved Gaussian white
noise.! In recent times, however, white noise has been re-
placed by colored noise in a variety of contexts. Laser
noise problems? and first passage time problems® have
been shown to necessitate the use of colored noise instead
of white noise. Even the mathematical foundations for
the theory of stochastic differential equations call for
colored noise if the Stratonovich perspective is adopted,
as it is when physical arguments are invoked."*

In each of these contexts, many specific problems re-
quire numerical simulation as a component of a complete
analysis. This is usually a consequence of nonlinearity
and the resulting intractability in purely analytic terms.
Consequently, numerical-simulation algorithms have
been developed, originally for white noise, and recently
for colored noise as well.> The simplest type of colored
noise to generate is exponentially correlated colored
noise. Such noise introduces only one more parameter,
the correlation time for the exponential correlation, and
it is easily generated by a linear damping equation driven
by white noise. Our new algorithm is for this kind of
colored noise.

In Sec. II we review the white-noise algorithm and the
differential version of the exponentially correlated,
colored-noise algorithm. In Sec. III we present the in-
tegral version of the colored-noise algorithm and demon-
strate its superior properties.

II. DIFFERENTIAL ALGORITHM
FOR COLORED NOISE

In order to be concrete, we consider the one variable
problem

x=f(x)tg, (1)

in which x is the variable of interest, f (x) is a nonlinear
function, and g,, is Gaussian white noise. The noise has
the properties

(g,())=0, )
(g,(1)g,(s))=2D8(t —s) , (3)

which completely determines all of its statistical features
because of the Gaussian quality. The white-noise quality
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of g, is contained in the Dirac 8-function correlation (3).
The Box-Mueller algorithm® is used to generate Gauss-
ian noise from two random numbers which are uniformly
distributed on the unit interval. The Euler version of the
integration of (1) is given by (At is the step size)

a =random number , (4)
b =random number , (5)
8, =[—4DAtIn(a)]'/?cos(2mb) , (6)
Xl yar=x +f(x)At +g, . (7

After Eq. (7) the algorithm loops back to Eq. (4) and con-
tinues as many times as is desired. For sufficiently small
step size, At, this algorithm is known to work extremely
well.

The straightforward way to obtain exponentially corre-
lated colored noise to drive Eq. (1) instead of using g, is
to replace (1) with the pair of equations

x=f(x)te, (8)
é=—Aet+Ag, , 9)

in which g,, is still Gaussian, white noise in accord with
(2) and (3). The driven noise € is now exponentially
correlated colored noise (Ornstein-Uhlenbeck process)
with the properties

(e(t))=0, (10)
{(e(t)e(s))}=DArexp(—Alt —s|), (11
in which { - - - ] denotes averaging over the distribution
of initial €, values which is given by
Pley)=—L—exp |— =2 (12)
O 2apn) 72 P | T 2D1 |

This secondary averaging is essential for the stationary
correlation given in (11). Clearly, A™! is the correlation
time for the colored noise. Once again, the Box-Mueller
algorithm can be used to realize both (12) and the g, in
(9). This yields the Euler version of the integration of (8)
and (9) given by

m =random number , (13)
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n =random number , (14)
e=[—2DAIn(m)]'"?cos(2mn) , (15)
a =random number , (16)
b =random number , (17)
p=f(x)te, (18)
x|, 1a;=x +p At , (19)
g, =[—4D At In(a)]'"?cos(2mb) , (20)
€l, 1o =€—Athe+Ag, . (21)

After Eq. (21) the algorithm loops back to Eq. (16) and
continues for as long as one likes. Repeating this process
starting from Eq. (13), and subsequently averaging over
many such realizations of the algorithm realizes the aver-
age over the distribution in (12). We have emphasized
the importance of this secondary average and have uti-
lized this algorithm to hl%h accuracy in a very recent
study of first passage times.

It should be noted that the integration of (8) without
the noise term may be accurately accomplished using a
bigger step size than is permitted by the integration of (9).
In such a case, the limiting step in the integration of the
coupled equations is created by the noise. It is desirable
to overcome this limitation.

III. INTEGRAL ALGORITHM FOR COLORED NOISE

In addition to the motivation expressed in the last sen-
tence of Sec. I1, three other motivations lead us to the in-
tegral algorithm presented below. A laser-noise study?®
was done using an algorithm for colored noise which pu-
tatively produced the colored noise directly and
efficiently without integrating an equation such as (9).
Study of this algorithm showed that the stated algorithm
did not generate a Gaussian process, but it did suggest
how to do so, and resulted in the algorithm gjven below.
In addition, discussion of noise algorithms resulted in the
suggestion that an integrated version of the algonthm
would be more efficient. Finally, Horsthemke® also sug-
gested that an integrated form of the algorithm should
exist and would work both faster and more accurately.
The algorithms were implemented on the computer to
test their accuracy and speed, and resulted in the numeri-
cal results presented here.

The new algorithm is obtained as follows. Integrate (9)
and obtain

e(n=eMe(0)+A [ ds e M g, (s) (22)
and
el +An=e TMFB0) 4 [ Hds ¢ MM =0lg, (s) .
(23)
Consequently,
e(t +A=¢ -“‘e(:)ﬂf'“’ e MIHA=3g (5)
“hlig()+h(,AL) 24)
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FIG. 1. Correlation function for the differential algorithm.
Step size At =107% s and correlation time A~!=2.5X1073 s.
The open circles are on the exact curve and the lower curve is
the average over 100 realizations of the algorithm.

in which the last equation defines h (¢,At). Now, h(¢,At)
is Gaussian (because g, is) and has zero mean (because g,
does). Therefore all of its properties are determined by
its second moment

(h¥(t,At)) =DA(1—e ~22A1) (25)

Thus, to start the simulation, an initial value for € is
needed and is obtained in accord with lines (13)—(15), and
set E =exp(—A At). After that, the exponentially corre-
lated, colored noise is obtained by the lines

a =random number , (26)
b =random number , 27)
h =[—2DA1—E?)In(a)]'?cos(2mb) , (28)
€l,1a,=€E+h . (29
o o
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FIG. 2. Correlation function for the integral algonthm Step
size At=1072 s and correlation time A"'=2.5X10"% s. The
second curve is nearly indistinguishable from the exact results,
and is the average over 100 realizations of the algorithm.
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After Eq. (29), the algorithm loops back to Eq. (26) and
continues as long as one would like. Equations (26)—(29)
replace Egs. (16), (17), (20), and (21). For very small At,
Egs. (28) and (29) clearly reduce to Egs. (20) and (21).
However, Egs. (28) and (29) continue to give excellent re-
sults for larger At, which are too large for Egs. (20) and
(21) to accurately reproduce the intended correlation
time. These results are exhibited in Figs. 1 and 2. In
both figures, the curve on which the open circles appear
is the exact, exponential correlation curve computed for
the input correlation time A~!. In Fig. 1 the lower curve
shows the result of averaging 100 realizations of the loop
given by Egs. (16), (17), (20), and (21) using step size
At =0.001 and correlation time A~ 1=0.0025. The 100
realizations utilize 100 distinct sequences of random
numbers. In Fig. 2 the second curve (nearly indistin-
guishable from the exact result) is obtained from Egs.
(26)-(29) for the same step size and correlation time as
were used in Fig. 1. Moreover, it is the result of averag-
ing over precisely the same set of 100 distinct sequences
of random numbers. Thus the much improved quality of
the results is not an artifact of the random numbers but is
a result of the superior nature of the algorithm. By re-
ducing the step size to 10~ *, both approaches give com-
parable results because now the Euler integration, i.e.,
Egs. (20) and (21), is very accurate. By increasing the

BRIEF REPORTS 38

step size to 107!, we find that Egs. (20) and (21) lead to
numerical overflow, while Eqgs. (28) and (29) continue to
yield qualitatively useful results.

The efficacy of the integral method depends on two
features: (a) f(x) is relatively simple to compute as com-
pared to the Box-Mueller computation, and (b) the x in-
tegration does not require such small values of At as does
the € integration. However, feature (b) may easily be re-
laxed by changing the x integration to a higher-order
routine such as Runge-Kutta fourth-order, Runge-
Kutta-Fehlberg, or Runge-Kutta-Verner routine. In ex-
treme cases a routine which keeps At constant but has an
adaptive order (e.g., Bulirsch-Stoer or Gear methods)
may be invoked. Unfortunately, library routines cannot
be used directly since the x integration and € variation
must be intertwined. In summary, our new algorithm is
faster, more accurate, and more useful for larger step
sizes than the old algorithm.
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