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We propose a method for calculating electron-scattering cross sections which consists of a com-
bination of the minimum-variance approach to optimizing a trial wave function and pseudospectral
techniques for evaluating exchange contributions. Tests in simple applications indicate that this hy-
brid approach is remarkably efficient. Only one-electron matrix elements and quantities depending
on the trial function and its derivatives evaluated at grid points are required. The extension to more

complex systems is discussed.

Despite the fact that sophisticated ab initio methods
have been developed to study electron-molecule scatter-
ing,! * the dynamics of those collisions for polyatomic
molecules® continue to be treated at a primitive level.
Ab initio calculations including even a few open elec-
tronic channels for a molecule with more than three
atoms have yet to appear. Our recent investigations of
variational methods® for computing scattering amplitudes
as well as the studies of the S-matrix Kohn method by
Miller and co-workers”® have shown encouraging accura-
cy and computational efficiency in this context. Particu-
larly important is the fact that exchange matrix elements
involving continuum functions can be avoided in these
approaches.” However, the application to polyatomic
molecules remains a formidable task.

Fundamentally, there are only two obvious approaches
to implementing these ideas for polyatomic systems: sin-
gle center expansions or discretization on three-
dimensional grids. Single center expansions have been
successful for linear molecules. However, in the general
case, there are no good angular momentum quantum
numbers and the number of coupled radial equations (per
electronic channel) in this approach increases as / 2. where
! is the maximum angular momentum of the spherical
harmonics included in the expansion. In fact, it is not
difficult to show that direct, three-dimensional numerical
quadrature of the integrals involved requires roughly the
same number of operations as the single center expansion
of the problem. By making use of the pseudospectral
techniques being investigated by Friesner,'°"!2 or the
discrete variable methods being studied by Light et al.,'
the three-dimensional quadrature idea can be made sub-
stantially more attractive. Nonetheless, the prospects are
discouraging on both fronts.

In the context of Monte Carlo calculations of bound-
state energies, Umrigar, Wilson, and Wilkens!* have re-
cently pointed out that minimization of the variance sum
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az=2w(i)[H¢(i)/¢(i)—Eg]2/2w(i) (1)

provides a method for optimizing a trial wave function
with a much smaller number of points than it would take
to successfully quadrature the matrix elements of the
Hamiltonian. The sum in this equation is over
configurations (points in the N-particle coordinate space),
¥ denotes a trial wave function whose parameters are to
be optimized, E, is the current guess for the energy, and
w(i) is a weight function. Because this is a fitting pro-
cedure and not an integration, it should require a much
smaller number of points than would be required to quad-
rature a many-electron integral of similar form. The ar-
gument that this is the case goes as follows. If, for exam-
ple, the trial function has n parameters and is capable of
representing the exact wave function, then n
configurations (points) would be sufficient to determine
the n parameters exactly.

This argument is not new of course, > nor is its applica-
tion to scattering problems. There have been studies in
collision problems where the integral of the variance was
minimized,'®~'® but two in particular have used the vari-
ance sum in the form

o*= 3 w(i)[(H—E),(i)] )
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to find the parameters in a trial function 4, which
satisfies scattering boundary conditions. Bardsley, Ger-
juoy, and Sukumar'® and Merts and Collins® have inves-
tigated this approach in one-channel and coupled-
channel radial problems, respectively, and have found
that the number of points required to produce accurate
scattering amplitudes is remarkably small. The draw-
back, however, is that if one wants to escape with having
used very small numbers of points (fewer than 15 in the
single-channel problem and fewer than 50 in the five-
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channel problem), the points and weights have to be
chosen carefully.

The application of these ideas to electronic collision
problems is hindered by the fact that exchange forces
produce nonlocal operators in H, even in the single-
channel case. At first glance it appears, therefore, that
one must evaluate the action of integral operators on ¥,
in order to evaluate the terms in Eq. (2), thereby thwart-
ing the attempt to get away without evaluating any in-
tegrals. Merts and Collins®® circumvented this issue by
applying the minimum-variance technique only in the in-
termediate radial scattering region, where the potentials
are local and have simple multipolar forms. The wave
function in the inner region was generated by a different
technique.

Our purpose in this Brief Report is to point out that,
by making use of the pseudospectral techniques being in-
vestigated by Friesner'~!? in the context of molecular
Hartree-Fock calculations, we can effectively evaluate ex-
change terms in a manner which requires only the evalua-
tion of ¥, at a small number of grid points in coordinate
space. Thus the entire procedure can be constructed
such that no two-electron integrals need be explicitly
evaluated. The most attractive aspect of this approach is
that it is immediately applicable to polyatomic problems,
because, as Friesner has shown, the grid techniques being
used are easily adaptable to three-dimensional molecular
systems.

We begin by choosing all appropriate form for 4,
which incorporates scattering boundary conditions. Our
examples in this paper are single-channel s-wave prob-
lems, so we specialize to that case for convenience. The
equations for three-dimensional and multichannel cases
are similar. We can pick the form which appears in
Kohn variational calculations,

N
U= 3 c,@,(r)ts(r), (3)
n=0
where ¢, for n =1 to N are square-integrable basis func-
tions, s(r)=sin(kr), and the first function in the sum is

@olr)=(1—e " ")cos(kr) .

Thus ¢, is the scattering amplitude (K-matrix element)
we seek to compute. Inserting ¥, in Eq. (2) and minimiz-
ing with respect to the linear coefficients gives the least-
squares equations,

Ac=b, 4)
where the matrix 4 and the vector b are given by
Ay, =3 (H—E)p,(i)H—E)p,(i), (5

b,=3 (H—E)p,(i)(H—E)s(i) . (6)

The fact that 4 does not display the spurious singulari-
ties associated with the Kohn variational method has
been discussed elsewhere.!®?! Short of singularities
caused by extremely injudicious choices of the grid
points, there appear to be no formal problems with the
method as described here.
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The difficulties inherent in the electron-scattering prob-
lem are displayed by the simplest example,
electron-hydrogen atom collisions in the static-exchange
approximation. In this approximation the hydrogen
atom is frozen in its 1s state and the effective Hamiltoni-
an for s-wave triplet scattering is

—K, (7)

where the Coulomb and exchange operators are defined
by

J1s@n(r)=@n(r) [ drx, (rx () /75 ®)

K1, @a(r)=x1,(r) [ dr'x, (r' ), () /7 ©)

and 7, denotes the greater of » and r'.

The first observation to make here is that the deriva-
tive and local potential terms (—1/r and J ) present no
problem in constructing the variance sum in Eq. (2).
Also, for calculations on molecular (atomic) systems, we
can choose the square-integrable functions ¢, to be
Gaussian (Slater) basis functions. Then K¢, is simply a
basis function multiplied by a one-electron integral that is
precisely the same as a nuclear attraction integral in con-
ventional bound-state calculations. Those terms can be
calculated using well-known and efficient algorithms for
which computer codes are available.

The difficult terms are K @y(r) and K ;s(r), but those
can be evaluated with remarkable efficiency using pseu-
dospectral techniques. We begin by expanding @y(r) and
s(r) in the square-integrable basis,

s(r)=3 a,@,(r),
Po(r)= 3 b,@,(r) .

This expansion works extremely well to evaluate the ex-
change terms because the exchange operator is a short-
range operator. To compute the coefficients for the ex-
pansion of s(r), for example, we use least-squares im-
provement of the collocation method outlined by Fries-
ner.!! Define the matrix R by

Riw=@a(r;) . an

(10)

Then the coefficient vector a is given by
a=(R "R)7'Rs, (12)

where the vector s is given by 5; =s(r;). The points r; are
the collocation points and can be chosen to be entirely in-
dependent of the grid points on which the variance sum is
evaluated. There may be more collocation points in this
procedure than there are square-integrable functions, but
there may be no fewer. In the case that there are the
same number of points as functions, the method is
equivalent to simple collocation. After a is computed,
the value of K ;s(r) is then simply given by

N
Kis(r)= 3 Ky@,(ra, , (13)

n=1

with a similar expression for K,;@,(r). The entire con-
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struction of o2 can thus be performed using the values of
the basis functions and their derivatives together with
one-electron integrals. No two-electron integrals or con-
tinuum matrix elements are needed.

We have performed two simple tests to demonstrate
the effectiveness of the combination of pseudospectral
techniques and minimization of the variance sum. The
first of those is the computation of phase shifts for triplet
electron-hydrogen atom collisions in the static-exchange
approximation.

We have used 14 nonorthogonal functions ¢, chosen
to be simple Slater functions, ¢, =exp(—a,r), with ex-
ponents given by a,=14/1.4" with n=1,...,14. In
Table I we show the convergence of the results with
respect to the number of collocation points used. For
that study we used 64 Gauss-Laguerre points and weights
as the points and weights for evaluating the variance
sum. We also chose the collocation points as Gauss-
Laguerre points, but no weights were used in the pseu-
dospectral calculation. The results show that 25 colloca-
tion points are sufficient to evaluate the exchange terms.

To investigate the rate of convergence of the method
with respect to the number of points used in the variance
sum we have chosen a somewhat harsher test case. To
the triplet static-exchange potential we add an attractive
long-range potential of the form —1/(1+r3%). Table II
shows the convergence properties of that calculation with
respect to increasing the number of Gauss-Laguerre
points and weights in the variance sum. The number of
points used to approximate K ,@q(r) and K s(r) was 30
in all cases. It is important to show that there is nothing
magic about the fact that the calculations in Table II
were performed using quadrature points and weights. To
demonstrate that fact we chose similar numbers of points
according to r;=(iAr)® for i=1,...,M and used unit
weights. Table II also lists those results, which show that
the rate of convergence is similar for the latter procedure.
The same conclusion was drawn from using the Gauss-
Laguerre points with unit weights. However, we did find
that choosing the points for the variance sum to be even-
ly spaced was much less efficient. The reader should
note, however, that unless the trial wave function is cap-
able of producing the exact solution, the solution of Eq.
(2) depends on the choice of the weight function w(i).

TABLE 1. Values of tand, at k=1.0 a.u. for triplet e -H
scattering in the static-exchange approximation as a function of
the number of points used to construct K ;s and K¢, [Eq.
(12)]. See text for other details of the calculation.

n tan(§,)
20 5.572
25 5.500
30 5.498
35 5.500
40 5.503
45 5.502
50 5.502
55 5.502
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TABLE II. s-wave scattering from long-range potential dis-
cussed in text. The first two rows of results used N-point
Gauss-Laguerre points and weights in the variance sum. For
the second set of calculations, the points were spaced as
r;=(iAr)} i=1,...,N, with Ar chosen such that ry=75 a.u.,
and the weights were all unity.

tan§,
k \N 15 24 48 64

0.2 0.0401 —0.0636 0.0053 0.0052
1.0 —2.0678 —2.1121 —2.1186 —2.1193
0.2 0.0542 0.0051 0.0052 0.0052
1.0 —2.2374 —2.1171 —2.1113 —2.1112

This fact explains why the results in Table II seem to be
converging to slightly different limits.

If it had been necessary to use specialized quadratures
to evaluate the variance sum in one dimension, then to
solve a three-dimensional problem the grid would have to
be a product of three one-dimensional grids. As it stands,
the insensitivity of the procedure to the grid used to com-
pute the variance sum shown here and in the calculations
of other workers indicates that extension of the method
to three dimensions will be relatively straightforward.

From these calculations, and a large number of other
computational experiments, we can draw two preliminary
conclusions about the choice of grid points. First, the
density of points should be higher in the interaction re-
gion than at large distances. This conclusion is more or
less obvious since (H—E) operating on either the
square-integrable functions or on the continuum func-
tions produces a result which vanishes as r goes to
infinity. Second, it is important to sample the region
where the derivative of the cutoff function for the contin-
uum functions [in this case only @g(r)] is large. The
cutoff function, e.g., (1—e ~ "), regularizes the continu-
um function at the origin. If it switches on in the asymp-
totic region, the coupling between it and the square-
integrable functions comes from the kinetic energy and
will be nonzero only in the region where the derivatives
of the cutoff function are nonzero.

Although the tests reported in this Brief Report are
only on simple cases, they provide encouraging evidence
that the combination of minimum-variance and pseudo-
spectral techniques is an effective approach to the
electron-scattering problem. It is evident that the com-
ponents of a polyatomic calculation using this approach
are easy to construct—at least much easier to construct
than two-electron integrals or any molecular integrals in-
volving continuum functions. Our preliminary analysis
also indicates that the computer code necessary to imple-
ment the present approach is vastly simpler than would
be necessary if we were to use single center expansions
for any part of the problem.

What remains to be seen is whether or not the rate of
convergence with respect to the number of terms in the
variance sum and in the collocation set is as rapid for
molecular problems as it is in these simple test cases.
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However, the results of Friesner in the bound-state prob-
lem indicate that molecular problems can be solved with
remarkably small collocation grids. Furthermore, we
have not used any of the more sophisticated refinements
(such as aliasing functions) developed in that context.
Tests are underway on molecular problems and will be re-
ported in future publications.
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