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Symmetry transforms in N& space dimensions of N& -dimensional spherically symmetric
Schrodinger Hamiltonians have been treated for Nz&N&. Accordingly, the quantum number of the
angular momentum and the number of space dimensions become subject to related mappings. One
proceeds using suitable transformations of the radial coordinate and of the radial state function so
as to exhibit the form invariance of the Laplace operator. The symmetries established in this way
concern potentials which can be represented by power-series expansions. Such symmetry trans-
forms are generated by rational values of underlying power exponents. Symmetry properties of 1/N
energy estimates are also discussed.

Mutual relationships between Hamiltonians with
power-law potentials have received much attention. ' In
particular, the equivalence between the three-dimensional
(N, =3) Coulomb problem and the four-dimensional
(Nz =4) harmonic oscillator has also been analyzed with
the help of the Kustaanheimo-Stiefel transformation.
This latter transformation can be extended towards
N, = 5 and N2 =8. Further, using maps between the
corresponding radial equations, the equivalence men-
tioned above has been generalized for an arbitrary num-
ber of space dimensions, such that Nz=2(N& —1}. Here
we shall prove that this latter equation is subject itself to
further generalizations concerning, this time, arbitrary
power potentials, or potentials containing at least one
power term. We would like to recall that quasiclassical
equivalence relationships referring to power potentials or
to superpositions between them have also been discussed
before. However, such equivalences only work by re-
moving corresponding Langer terms. We obtain such
terms by keeping invariant the quantum number of the
angular momentum, now for N, =N2. Thus the Langer
terms characterizing, e.g., Eqs. (4.9) and (4.10) of Ref. 6
are given by —3/4x and 3/16x, respectively. This
means that it is of interest to look for a refined theoretical
formulation enabling us to derive exact symmetry trans-
forms of various Hamiltonians. For this purpose, we
have to consider that the number of space dimensions, as
well as the quantum number of the angular momentum,
are not invariant under symmetry transformations. Then
the Langer terms characterizing previous quasiclassica1
relationships are able to be incorporated self-consistently
into the centrifugal barrier of the transformed Hamiltoni-
an. Proceeding in this way enables us to establish the ex-
act symmetry transforms of Hamiltonians with power
terms anticipated before. In general, the present symme-
try transforms can also be viewed as a manifestation of a
genuine "shape-invariant" behavior of power potentials.
Infinite series expansions, such as those for ex-
ponential, Yukawa, or other potentials, can also be con-
sidered, at least as limiting cases. It should be mentioned

that the equivalence between the present Hamiltonian-
partners works in terms of conversions of energies into
couplings and vice versa. This represents an equivalent
formulation of the same physics.

Let us start from the N, -dimensional radial
Schrodinger equation

I,—6„+ (l, +N, —2)+ V(x} f(x)=Cf(x), (1)

where the primes denote differentiations with respect to
the radial coordinate. Above
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Next we are faced with the question of how to implement
the N2-dimensional Laplace operator 6 and the related
centrifugal barrier within the y description. This

where x denotes the radial coordinate and 8 is the eigen-
value, whereas P(x) denotes the radial state function.
The radial constituent of the N, -dimensional Laplace
operator is

N, —1
+

x c}x

as usual. Generalizing our earlier treatment, let us
choose the new radial coordinate y and the new radial
state function y(y) as x =g{y} and hatt(x)=f(y)tP(y}. '

Then Eq. {1)reads
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38 5910 1988 The American Physical Society



38 BRIEF REPORTS 5911

proceeds via

N2 —1
FI(y) =

1

and

(6)

y—=const= —p, -g
g

(7)

where the constant has been quoted by —p. Clearly, Eqs.
(6) and (7) are not the most general solution to the sym-
metry problem, as they serve to establish just relation-
ships between radial Schrodinger equations. Other cases,
such as mappings between radial and one-dimensional
Schrodinger equations, deserve a special treatment. " We
then get the solutions

and

g(y) =cly

i l2[N2 —2+p( N I 2) l
3' =cay

(8)

q +(p —1) (12+Nz —2)+
2 f 2

+p [V(y ') —@]y

where p and q denote the momenta canonically conjugat-
ed to x and y. In addition, we have accounted for a new
parameter p such that

in which c
&
=c2 = 1. This is a boundary condition which

gives p= —1 for the identity transformation (N, =N2).
Using Eq. (5) leads to

F2(y}= = — [(N2 —2} —p (N, —2) ], (10)
A 1

y2 4y2

which reproduces precisely Eq. (3.7) of Ref. 6 if
Ni =N2 =3. So far the symmetry transform of the ordi-
nary Harniltonian H=p + V(x}=8+0 exhibits the in-
termediary form

where both p and 6' are independent of y. This means
that 6' can be interpreted as the transformed eigenvalue,
whereas V(y) stays for the transformed potential. Obvi-
ously, only the potentials for which such p values are
definable become subject to Eq. (11). We realize that the
above procedure yields the equivalence class IH~ Io. f
transformed Hamiltonians, in which 6'=vj if p=p, .
Specifically, one has j=1,2, . . . , M, if V(x} contains a
number of M different monomials like power potentials
V„(x)=y(n)/x". Note, however, that the n=2 potential
remains invariant under the present symmetry transfor-
mations, so that it should not be counted. It can also be
easily verified that the set Ij„pz, . . . , p~ I exhibits the
structure of a multiplicative cyclic group. At this point
we are in a position to eliminate the Langer term A/y
putting simply A=O. This is an exact procedure, which
is different from the quasiclassical description of Langer-
type A/y corrections. Combining Eq. (13) with A=O
then gives the matching condition

N2 —2

Ni —2
(15)

where PE Ip I. Admissible values of pj, N„and N2
should then be determined in accord with the quantiza-
tion of I, and !2. Summarizing, we can then say that the
symmetry transforms of H come from

[V(y ~)—C]p'y ' + ~'= —6'+ V(y), (16)

via Eqs. (14} and (15), where pE[PJI. In practice, we
have to look for selected p values for which the left-hand
side of Eq. (16} can be rewritten as a sum between a
nonzero constant and a remaining y-dependent contribu-
tion. Now it is clear that the conditions 8&0 and 8&0
are necessary in order to convert energies into couplings
and vice versa.

The simplest case is again the Hamiltonian H =p + V„
with a power-law potential. This yields the well-known
symmetry transform

p l&(l&+NI —2)=p 12(12+Nz —2), (12) H=q + =8=—y(n)p
y(+)

(17)

which allows to describe the transformations of the cen-
trifugal barriers in a quite direct manner. Next we have
to recognize that it is theoretically simplest to consider
that p =1, thereby eliminating the second superfluous
term from Eq. (11). One would then have p &p =1, ex-
cepting, of course, the identity transformation, for which

p =p =1. This differs from the previous quasiclassical
transforms, which have been established via p

—=p . So
Eq. (12}leads to the condition

12(12+N2 —2)
(13)

l, (l, +N, —2)po

H =q + V(y) =6&0,

where po= lpl and where we have assumed that N, )2
and N2) 2.

As in the quasiclassical case, we have now to determine
selected p values, say, pE Ip. I, enabling us to rewrite Eq.
(11)under the transformed form

N, —2

Ni —2

l2 2

l, 2—n
(18)

by virtue of Eq. (15), which agrees with Eq. (21) of Ref.
12. We remark that nonrational n values are not subject
to the symmetry description, as it follows from Eq. (18).
In general, the present equivalence proceeds in terms of
the 1, (12) subsequence for which the mapping l, ~lz
(lz~l, ) preserves integral values needed. Under such
circumstances Eq. (18) produces the admissible N2
values. In particular, Eqs. (17) and (18) show that the
N&-dimensional Coulomb problem (n= 1) has been con-
verted into the N2-dimensional eigenvalue problem of the
related harmonic oscillator (n = —2), such that

in which ny(n)(0, n &2, and R=2n/(n —2), whereas
p=PI=2/(n —2) and y(I)= —Cp &. This time N&&N2
and 1,&12, in contradistinction to the earlier descriptions
for which Xi =N2 and li =12~

' Next we get
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N2 =2(Nr —1), (19)

V(y)= + p P (y '),(8) 1 z
—

p)

y" y" ' (20)

where 8 = —p,y(n} and IPrl =2/In —2I ~

Quasiclassically motivated representations for 8 and C
in terms of minimizations such as

and

@=min
do + V(x)

do + V(xo},
Xo

(21}

in accord with Eq. (2.11) of Ref. 4, where lr =2l, . Then

l2 exhibits the subsequence 12 =0,2,4, . . . of even values
if I, =0, 1,2, . . . . Furthermore, we realize that a poten-
tial like V(x)= V„(x)+R (x) gives, via Eq. (18), at least
one symmetry transform. Accordingly,

n= 1 and n = —2, ' so that Eq. (26) does the same for
n = —2 and 0= 1. At this point we are also able to real-
ize that, within the quasiclassical approach (Nr =N2 and

Ir =Iz) discussed before, matching conditions between

do and do require an extra treatment circumventing in-16

herent diSculties with (nonzero) Langer terms. It should
also be noted that the supersymmetric partners of V(x)
and V(y) act within N, +2 and Nr+2 space dimensions,
respectively. This property can then be used to improve
the convergence of related 1/N expansions. '

We conclude by remarking that the earlier quasiclassi-
cal approach has been refined by defining the exact co-
variance criterion Zo=ppdo and a number of properties
characterizing exact symmetry transforms for N, @N2
and l, &l, . Equations (15), (16), and (13) represent the
main results of this paper. Equivalently, Eq. (3) can also
be interpreted as a Schrodinger equation for the reduced
radial state function by choosing F, (y)=0. Then Eqs.
(12) and (15), as well as the symmetry condition p~ = I,
will be preserved, whereas

20 do@=min + V(y) =
2

+ V(yo) (22) F2(y)= — [1 p(N, ——2) ],
4y 2

(27)

can also be analyzed in connection with the above results.
The locations of these minima satisfy the condition
xo=yoj. This leads to the exact matching condition
Zo=podo, where Eqs. (16), (21), and (22) have been used
so that x =xo and y =yo. In other words, Eq. (21) can be
rewritten equivalently in terms of Eq. (22) and vice versa.
Other details concern the 1/N description of the phase-
space quanta do and Zo. Restricting ourselves to the first
1/N order' gives'

N&
—2

do=i, +
2

Vgf()'r/2
+(n„+—,

' } 3+xo V' xo
(23)

and, simil'arly for Zo,

N2 2 V (yo}
do=12+ +(n„+—,

' } 3+yo
V'(yo)

(24)

The radial quantum number n, =0, 1,2, . . . remains in-
variant under the above symmetry transformations. Now
we can verify that the condition do=podo is preserved to
first 1/N order. Indeed, coming back to the power poten-
tials one gets

N, —2
do=Ir+ +(n„+—,')(2 —n)' (25)

and

N, —2
do=le+ +(n, + —,')(2 —n )' (26)

so that Z0=2do/(2 —n) by virtue of Eq. (18). However,
this exact covariance criterion ceases to be fulfilled to
higher 1/N orders. It is worthy of being mentioned that
Eq. (25) produces the exact higher-dimensional results for

instead of Eq. (10). We can also apply, at least in princi-
ple, the above symmetry transformations to Yukawa po-
tentials, or to other potentials, which are represented by
infinite power-series expansions. One would then obtain
an infinite sequence of Hamiltonian transforms, which
work in terms of interrelated values of couplings. Start-
ing, e.g., from the Yukawa potential's and selecting the
Coulomb term —a/x(p, = —2) of the series expansion,
yields the transformed potential

ao
( 1)n

V(y) =4y' —@+a g p"+'y'"
r (n+ I)! (28)

via Eq. (20), which can be resummed as

V(y)= —4@ry +4a[l —exp( —py )] . (29)
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Above 6 =8 r
—ap, 8 r is the eigenvalue of the Yukawa

Hamiltonian, whereas the transformed energy reads
8=4a. So, the Yukawa potential turns out to be
equivalent to the superposition between the harmonic os-
cillator and the shifted Gaussian potential, as shown in
Eq. (29). Other selections can be treated easily in a simi-
lar way.

Finally, we would like to say that the coupling-
constant "metamorphosis" exhibited by Eqs. (16), (17),
(20},and (29) is in accord with similar opinions expressed
before. ' Moreover, our Eq. (17) corresponds to Eq. (12)
of Ref. 20. However, in our case c& =c2=1, which re-
sults in separate transformations for I& and N&, as given
by Eq. (15).
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