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The path integral for the propagator is reduced to an ordinary integral in terms of the generators
of a canonical transformation, and is evaluated exactly for square potential barriers in one dimen-

sion and for the radial square-well potential in two dimensions.

I. INTRODUCTION

The set of dynamical systems for which one can per-
form the path-integral quantization and obtain the exact
propagator is gradually growing. We wish to add to this
list the tunneling through square potential barriers. Be-
cause tunneling is, from a particle point of view, a non-
classical phenomenon, it is interesting to see how the pro-
cess looks from the path-integral point of view where one
sums over all possible trajectories. No exact solution of
this problem by path integration is known to us. Such
problems have previously been discussed in the semiclas-
sical approximation of path integrals only, and compared
with the WKB approximation of quantum mechanics. '

It is remarkable that although the solution of the
Schrodinger equation for square potentials is most ele-
mentary, their path-integral treatment is by no means
trivial. The source of the diSculty is the following. For
finite-range potential barriers or wells, the range of the
Gaussian coordinate integrations, in the time-graded for-
mulation of the path integrals, is finite. For infinite
potential-well problems, or for a particle confined to a
half space, this difficulty can be overcome by the method

I

of images. ' This method, however, does not help for
potentials of finite height.

In this paper we solve this problem by transforming it
into the Hamilton-Jacobi coordinates. In Sec. II we de-
scribe the general method and then present the solution
for the one-dimensional square-well solution in Sec. III.
In Sec. IV we apply the method to the radial hard-core
potential in two dimensions, which have also some
relevance to the much discussed path-integral problems
in polar coordinates.

II. GENERAL THEORY

The propagator for a one-dimensional potential V(x)
in the phase-space formulation is given by the functional
integral

K(xb, x;tb, t )

fb= f2)p 2)x exp +f dt[px p~/2—m —V(x)]
a

which is explicitly defined by

n n+1 dp.
K(x,x, ;t, t, )= lim f g dx g expIi[p (x —x, ) —E(p /2m) —eV(x )]I .

j=l j=1
(2)

P =p /2m+ V(x) or P =[p /2m+ V(x)]'

The generating function for this transformation is

(3)

We shall use the method of canonical transformations to
the Hamilton-Jacobi coordinates. This method was ear-
lier applied to linear and quadratic potentials. But for
most of the other potentials the new coordinates become
elliptic functions of the old coordinates and the method
appears to be not tractable. However, in the present
problems of tunneling through barriers, it turns out to be
very useful, as we shall show. The method of summation
over the eigenvalues to obtain the propagator is diScult
for the same problem.

The idea here is to convert the Hamiltonian into a null
Harniltonian by absorbing the potential in a new general-
ized momentum P (or in a new generalized coordinate Q)
whose square is the old Hamiltonian. For example, we

may set

F2(x,P, t)= f dx I2m[P —V( )]xI'~~ P2t . —

The new Harniltonian thus vanishes identically,

K:H+aF, /at =0—,

and we have the following relations:

P =aF, /ax =
I 2m [P'—V(x)] I

'",

(4)

(6)

t 2m [P V(x)] J
'~—

In terms of the new pair of conjugate variables P and Q
the action becomes

f dt(px H) = f dt( QP —K+ aF /at —)—
=f dt( QP+aF /at) . —

In the time-sliced path integrals, Eq. (2), we introduce the
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new variables except in the last integral, fdp„+„which
we keep and denote simply by f dp, so that Eq. (2) be-
comes, using Eq. (8) for each j and the invariance of
phase-space volume under canonical transformations,

action transforms as

f dt(px 0—)=f dt(PQ B—F, /Bt), (12)

and then, instead of Eq. (10), we obtain the new formula

K (x„,x, ;tb, t, ) dp iP(gb —g )+i [Fi(b) F—((a)]
Xb iXg ~ fb~ ta

277
(13)

) iFdP ", j rg -{,P- P. + I ) IF~ ~

2m . ~2'j=l
(9)

as can be seen by explicit calculation. As usual the Q in-
tegrations give 5(PJ P~+—) ). The P integrations thereaf-
ter give P, =P2= =P„. Hence we are left with a
simple and general formula

dp i [~,[b)—+2[&)]
K(xb, x„tb, t, )= e2' (10)

where dp has to be obtained from Eq. (6) in terms of dP, x
being constant at end points b and a. Thus the path in-
tegration is reduced to an ordinary integration and the
whole dynamics is in F2, more precisely, in the increase
of F2 between the points x, and xb.

The propagator (10) satisfies the Schrodinger equation
in each variable separately. This is proved easily by in-
serting K in (10) into the Schrodinger equation and using
BF2/dt =P and Eq. (6). Furthermore, K is continuous if
Fz is, and the reproducing kernel property of K can be
obtained:

p(xb, tb )=f dx.K (x, ,x.;tb, t, )t/r(x„t, ) .

Alternatively, if one chooses to define the new coordi-
nate Q as a function of the original Hamiltonian, one has
to use the generating function F, (x, Q, t). In that case the

III. TUNNELING THROUGH A SQUARE BARRIER

For a collection of potential barriers, Eq. (4) can easily
be integrated. For example, for a single barrier

V = Vo[8(x +a)—8(x}]—= VOB,(x),
we obtain

Fz(x, P, t) = P t +&—2m Px82(x)

+&2m (P V)' x—B,(x)+C,
where

(14}

(15)

82(x)=8( —x —a)+8(x) (16)

and C is an integration constant which may depend on p
but which will drop out in the propagator.

From (6}we have, further,

dp =&2m 8~(x)dP+, 8,(x) .2mPdP

[2m (P V())]'— (17)

Inserting (17) and (15) into (10) we get with ts = T, tb =0,

where P stands for P&=P2= =P +,=P. In Sec. IV
we shall also use a mixed transformation involving both
F] and F2.

K(xb, x, ;T)= [82(xb)8z(x, )+6,(xb)6)(x, )e ' ](&2m /2n. )fdP exp[i&2m (xb —x, )P iTP )—
+Bz(xb}8)(x,)(&2m /2n) f dP exp[i&2mxbP ix, [2m—(P Vo)]'~ —iTP—j

+Bi(xb)62(x, )(&2m /2n. )e ' fdPexp[i&2mxbP ix, [2m—(P +Vo}]'~ iTP j . — (18)

This result looks simple but could not have been written directly in an easy way. For the simpler case of a potential
step at x =0, i.e.,

V(x) = V,B(x),
we find

K(xb, x, ;T}=8( —xb)6( —x, )(&2m /2m) f dP exp[i&2m (xb —x, )P iTP ]—
+8( —xb)8( —x, )(&2m /2m) fdP exp[i&2mxbP —ix, [2m(P Vo)]' iTP j- —

+8(xb)8( —x, )(&2m /2n}e ' f dP. exp[i&2mxbP ix, [2m(P +—Vo)]' iTP j—
+8(xb )8(x, )(&2m /2n)e ' fdP e.xp[i&2m (xb —x, )P iTP ] . —

(19)

(20)

The verification of (11) is performed by contour integration.

IV. RADIAL POTENTIAL BARRIER IN TWO DIMENSIONS

In this section we will study the two-dimensional radial potential

V= VOB(R r) . — (21)
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In order to transform the Hamiltonian

H = [P, +(1lr )Pt, ]+VOB(R r)—1
(22)

into a null one we employ a "mixed" generating function which is F2 type in radial coordinates and F& type in the an-
gular coordinates:

F(r, p„;it),Qt, }=—(P„/2m)t +Qtg+ fdr[P„2m—VoB(R r) (—Q&/—r2)]'/2

= —(P„ /2m }t+Qt g+ 8(R —r) I [(P, —2m Vo)r —
Q&

]'/ —Q&arccos[Q& lr (P„—2m Vo)'/ ]I

+8(r —R )[(P2r 2 —Q 2& )
'/~ —Q&arccos( Q& IrP„)], (23)

whence the momenta and coordinates in terms of the old
ones are given by

Pt, = (t)+ a—rccos[pt, l(p, r 2+p 2t,
)'/ ],

P„=8(R —r)[(p, +2m Vo)+p~&/r ]'/2

+B(r —R)[p„—p~/r ])/2,

Q„= (P„lm )—r
(24)

+8(R r) —[(p„+2m Vo)r +p ]'/
p2r2+p2

2p
+8(r —R)

(p, r +pt)}

Qt)=py .

The kernel can then be obtained from (10) and (13) as

dpp py iP~(gb —Q )+i[F(b)—F(a)]
fb rz; =

2
e

(2m) rb

dpr

dpi'

i

(2n) rb
(25)

where we have again set t, =0, tb =T. This kernel can be
expressed as the sum of four pieces depending on the
valueS Of r„rb.

(i) r, & R, rb &R. We have to evaluate P&Qt, +F at the
pOint r, and rb.

Pt,Qt, +F

=P&Qt, + [rp„Q&arccos[Q—&lr(p2+p~&/r2))/i]

+Q~P (P„/2m)t I . —

From (24) we observe that the third term cancels with the
first and fourth terms. Then we have

p„=[(P, 2mV()) —
Qt, lr ]-'

[(P2 2m Vo ) ]1/2[( 1 cos2(P +$)]1/2

=[(P2—2m Vo) ]'/2sin(P&+ P ), (28)

which is valid for every point r. Then, using
P, =P, =—P, P~ =P~ =—P~ wecanwritep, as

1 n+1 ) n+1 1

p„=(P„—2m Vo)' sin(P&+((), )

=(P„—2m V() } sin[p~+pb (pb —
(I)

—}]
=(P, —2m Vo)'/ [sin(P&+pb )cos((t)b —p, }

cos(P&+ pb )sin—(pb —p, }]
p„cos((()b

—P, )

(P„2m V()—)' [1——sin (P~+pb)] sin((I)b —
4 )

=p, c so( (()b
—P, ) — sin(Pb —((), ) .py

(29)
rb

Inserting (29} into (27} and using (25} we have the first
term of the kernel:

K, =8(R —r, )8(R rb)—
X

2 exp —iT 2m p+2mVo+pp rb
dpr dpi' 2 2 2

(2n) rb

Xexp[irbp„ir, p„cos((t)b ——(t), )

(30)+ i (pq Irb )r.sin(yb y. )], —

which after integrations gives
—i VOTKi = B(R rb }8(R r, )(m/2niT—)e—

the radial momentum at the point r, in terms of the
momentum at the point rb. For this purpose we first ob-
serve that

Pt, Q&+F =rp„(P„/2m)t— (26}
X exp I (im /2T)[rb+r, 2r, rbcos((—t)b —p, )]J . (31)

or

A,b =rbp„r, p, —(1/2m }[(p„+—2m Vo)+(p& Irb]T,

where we dropped the subscript (n + 1) from the momen-
tum at point rb In (27) we have . to express p„, which is

(ii) rb &R, r, &R. This part can be worked out in a
way similar to the previous case and leads to

K2 = 8(rb —R )8(r, —R )(m /2mi T )

Xexpti(m/2T)[rb+r, 2r, rbcos(pb ——p, )]I .

(32)
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(iii) rb &R, r, )R. Using

p„=P,sin(P&+P, )

we obtain

A,b= rbp, P„—sin(P&+p, )

—
( T/2m)[p, +2m Vo+(pt, /rb )],

or expressing p„ in terms of the new momenta,

A b
= rb(P 2m Vp)' sin(P&+4b }

r, P,—sin(Pt, +P, )—(T/2m)P, .

(33)

(34)

Thus the last term of the kernel is

K =8(r —R)8(R —r, )

P,dP„dP~
X

z exp irbPsin P&+
(2n )

Xexp[ ir,—(P„2m—Vo)' sin(P&+pb)

l(—T/2m)P„] .

The final form of the kernel is

K =K(+K~+K3+K4,

(3g)

(39)

(iv) rb & R, r, &R. This time p„ is given by

p, =(P, —2m Vo ) '~~sin(P&+ P, ), (36)

and we have

Aab b .sm( t +Nb) «.(P,' 2mV, )'—'»n(Pt, +p. }

—(T/2m )P„. (37)

Finally, inserting (32) into (25) and transforming these in-

tegration variables to the new momenta by

dp„dp& = rb P„dP„dP&,

we get

E3 = 8(R rb }8(r,——R )

P,dP„dPt,
X

' ', exp ~rb P,' —2~VO ' 'sin P&+
(2n )

Xexp[ ir, P,si—n(P&+P, ) —i(T/2m )P~] . (35)

with four terms given by Eqs. (31), (32), (35), and (38).
One can easily check that this kernel satisfies the
Schrodinger equation at points r, and rb, and also
satisfies the condition K~5(r, rb) a—s T~O. Finally,
we would like to emphasize that the calculation we
presented in this section may also be suggestive as an ex-
plicit presentation of a polar coordinate path integral.
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