
PHYSICAL REVIE%' A VOLUME 38, NUMBER 11 DECEMBER 1, 1988

Brief Reports

!

Brief Reports are short papers which report on completed research which, while meeting the usual Physical Review standards of
scientific quality, does not warrant a regular article. (Addenda to papers previously published in the Physical Review by the same

authors are included in Brief Reports )A. Brief Report may be no longer thon 3) printed pages and must be accompanied by an

abstract The same publication schedule as for regular articles is followed, and page proofs are sent to authors.

Resonance overlay structure in the microwave ionization of the hydrogen atom

David Farrelly
Department of Chemistry and Biochemistry, Uniuersity of California, Los Angeles, Los Angeles, California 90024

Turgay Uzer
School ofPhysics, Georgia Institute of Technology, A tlonto, Georgia 30332

(Received 29 February 1988)

The microwave ionization of the hydrogen atom involves most of the open issues concerning clas-
sical and quantum chaos. Much recent research has considered quasi-one-dimensional extended
states for which ionization thresholds have been estimated using a classical picture in which ioniza-
tion proceeds through the overlap of an infinity of nonlinear resonances. Using a canonical trans-
formation to Deprit's "Lissajous elements" which makes the two-dimensional nature of the problem
explicit, an accurate and improved ionization threshold, compared to previous resonance overlap
criteria, is obtained through the overlap of only two nonlinear resonances in the one-dimensional
limit.

The microwave ionization of the hydrogen atom (MIH)
is currently of considerable experimental. and theoretical
interest from a number of standpoints. ' Apart from
the insight the problem might provide into the general
behavior of Rydberg atoms in external fields, the system
allows a unique opportunity to compare the predictions
of classical and quantum mechanics with experiment.
Evidence is mounting rapidly that quantum mechanics at
least suppresses the chaos which is dominant in classical
mechanics, and may, in fact, eliminate chaos altogether.
Support for this is provided by recent calculations by
Casati et al. ' on the MIH which suggest the existence of
a frequency window in which the "classical" electron ion-
izes while the quantum electron does not. This is surpris-
ing since for the rather high quantum numbers involved
the electron is expected to behave classically. Conse-
quently there is a pressing need to perform the corre-
sponding experiment, and considerable elort is being
directed to this end.

Most of the theoretical studies of the MIH problem
have considered one-dimensional models in order to sim-

plify the calculations. This is a reasonable assumption
because many of the experiments themselves consider ex-
tended, quasi-one-dimensional, hydrogen atoms. Classi-
cally, however, the overlap of resonances in the three-
dimensional MIH system is expected to be more impor-
tant and to intensify the effect of chaos on the ionization
thresholds. It is therefore important to develop theoreti-
cal models, both classical and quantal, to deal with the

fully three-dimensional MIH system. Indeed, recent ex-
periments have begun to study regimes where a three-
dimensional theory is necessary. ' Yet, even in the one-
dimensional case the correspondence between the classi-
cal and quantum dynamics is far from understood. The
purpose of this communication is to present a new ap-
proach to the prediction of the one-dimensional classical
ionization threshold which is in better agreement with
the exact dynamics than previous estimates, provides a
much simpler intuitive picture of the onset of chaos, and,
importantly, is expected to be readily extendible to treat-
ing the three-dimensional problem.

The paper is organized as follows: after introducing
the classical Hamiltonian, a change of coordinates is
made to reduce the system to two dimensions, after
which a canonical transformation to extended phase
space, followed by a further transformation to action-
angle variables results in a Hamiltonian whose resonance
structure is particularly apparent. Specializing to a one-
dimensional model corresponding physically to highly ex-
tended states, an explicit prediction of the classical ion-
ization threshold is made. The prediction is compared
with and found to be in excellent agreement with the ex-
act dynamics. Finally, ramifications of the study for the
three-dimensional problem are briefly discussed.

The classical Hamiltonian in atomic units is

H= ,'(P„+P„+P,)——+zz cos(to—t),1
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where s is the field strength and co the field frequency.
Due to a well-known scaling property of the Kepler prob-
lem, the classical dynamics depends only on the quanti-
ties

4 3Eo= Cn O, coo=con 0, (2)

where no is the principal quantum number of the initial
state. This considerably simplifies the classical studies
since the dynamics is now independent of no and only co
and coo need be varied.

Because the problem has axial symmetry, the magnetic
quantum number m is preserved and the Hamiltonian
may be reduced to two dimensions by a transformation to
squared parabolic coordinates which are commonly em-
ployed in studying the dc Stark effect, s

x =uv cosy, y =uv sing, z =
—,'(u —v ),

giving
2 2 2

1 pz+pq+ m (u +v )

u+v) ~ U uv

(3)

+s(u —v ) cos(cot) (4)

where the parabolic quantum numbers n„, n„, and m are
related to the principal quantum number n by the rela-
tion

n =n„+n„+~m~+1 . (5)

Just like the original Hamiltonian (1), the Hamiltonian
(4} has a singularity at the origin which leads to numeri-
cal instabilities in the integration of Hamilton's equations
of motion. The unphysical singularity may be removed
by using the technique of regularization developed in
celestial mechanics. This is implemented by first elim-
inating the time dependence in Eq. (4) by a transforma-
tion to extended phase space, followed by an implicit
change of the time variable (details are given by $zebehe-
ly }. The excursion to extended phase space is effected by
the following canonical transformation:

Ki ~2b4,
Kz —+2b%' .

(10a)

(10b)

The generator of the transformation 8'is of the F2 type
(i.e., a function of old coordinates and new momenta) and
satisfies

aw
Bu

and similarly for the ( v, P, )~ ( 1(,4 ) transformation.
(The Hamiltonian is symmetric in u and v so it is neces-
sary to describe the transformation for only one set of
variables. ) The required generating function W( u, 4 ) is
obtained from the Hamilton-Jacobi equation

+ +2b zuz2b @z (12)
2 Bu 2u2

which, solving for W(u, @),gives
' 1/2

W(u, @)=f du 4b4 4b u ——
u, Q

(13)

where the lower limit is the positive root of the integrand.
Defining the quantity

2 1/2

f(4,m)= 1— m
(14)

and using Eq. (9) it can be shown straightforwardly that

resembles that of two nonlinearly coupled oscillators.
Since much of classical perturbation theory and the
theory of resonance overlap has been developed in the
context of coupled oscillators it would be particularly
convenient to develop a transformation to action-angle
variables which exploits the intimate connection between
the hydrogen atom and the isotropic oscillator. Deprit'
has recently obtained such a transformation which deals
quite elegantly with the centrifugal term. The canonical
transformation to Deprit's "Lissajous" elements, i.e.,
(u, P„}~($,4), and (v, P„)~($,%}is such that

Ps= E, B=t, — (6)

where F. is the energy. Multiplication by (u +v~)
(equivalent to a time transformation} completes the regu-
larization, giving

H=2=K, +K&+—(u —v ) cos(rue),

where

u = [1 f cos(2$)], u—P„=@fsin(2$),

which changes K, into 2b4. Similarly, defining a quanti-
ty g (4, m ) in analogy with f(4,m ) in Eq. (14), followed
by the transformation, changes K2 into 2b+. After these
transformations, the Hamiltonian in Eq. (7}becomes

H =2 =2b(4+ 4)

K =—P+ +2bu1 m
1 2 2

Q
(8a) +—cos(co8)

2 2b
[1 f cos(2$}]—

K =—P+ +2bu1 m
2 2 v

U

(8b} [1—g cos(2$)]

and

2b =Pg= —E . (9)

Apart from the centrifugal terms the Hamiltonian

(16)

In the absence of a field this Hamiltonian resembles that
for two degenerate uncoupled harmonic oscillators in
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action-angle variables with frequency 4b, i.e.,

2=2b(4+ 4), (17}

unperturbed electron in terms of the corresponding prin-
cipa1 quantum number nk is given by

and thus

(18)

—3
Qk -nk

and so the resonance condition becomes

co=kQk =knk

(24)

(25}

4+%=2n, n =1,2, 3, . (19)

At this point an approximation is introduced; Eq. (18) is
substituted into the Hamiltonian in Eq. (16) for all terms
in b occurring in the perturbation, after which the result-
ing equation is rearranged, giving

—2p= 2
+e — [1 f cos(2$—)] cos(F08)(4+4)

which in the light of Eq. (9) leads directly to the quantiza-
tion condition

The critical field for chaos corresponds to the situation
where the resonances start to overlap. Expanding the
first term in the Hamiltonian around the resonance
center in the standard way"' leads to a pendulumlike
Hamiltonian, from which the widths of the two reso-
nances can easily be calculated,

' 1/2

hv, = 3e—",hv2= (3ef /8)'2 =2
nl 2 n2

(26)

and the overlap criterion may be formulated in terms of
the ratio of the island width to the separation, ' i.e.,

+e — [1—g cos(2%}] cos(co8),
2

(20) hv, +hv2

Q) —Q2
(27}

where P is the total energy.
The leading order term in b is given by Eq. (18) and

this approximation is expected to be reasonable even in
the presence of the perturbation. The structure of the
new Hamiltonian P is particularly appealing since it
shows clearly how the two oscillators are coupled to the
perturbation, as well as indirectly to each other by the
perturbation. To consider extended, quasi-one-
dimensional states, terms in 4 and f are omitted, giving

If s & 1 the resonances start to overlap and, according to
empirical but generally applicable criteria obtained by

2 e 2

P= +—42 1+ —2f cos(2$)+ cos(4$)
4 2 2

~'s

Xcos(co8) .

After a further canonical transformation,

(2$,4)~(A, 2n ),
the Hamiltonian becomes

(21)

(22)

I I

-3 -Z -1

~Jl
~ ~

~ ~

1 2 3

—1
2 2

P= +en cos(co8) 1+ f cosA, + cos(2A,—)
2n 2 2

(bj

(23)

This Hamiltonian is quite analogous to that studied by
Delone et al." except that the resonance overlap struc-
ture of the problem may be analyzed directly using the
Hamiltonian as it stands without the need to perform a
Fourier expansion of the perturbation and consider, in
principle, the overlap of an infinity of classical reso-
nances. The perturbation in Eq. (23) in fact resembles the
first two terms in a Fourier expansion, which expansion
would have been necessary had the approximation used
to obtain Eq. (20) not been made. Note that the Hamil-
tonian contains only two resonance terms as opposed to
the infinite number obtained by Fourier expansion.
Whenever the frequency of the external field co is of the
order of the natural Kepler frequency Q, the electron will
be driven resonantly. The kth Kepler frequency of the

~ ~ ~ 5 ~
~4 ~

~ ~ ~ ~ ~y ~ ~

~
~ ~ 4 ~ ~

g ~ ~ ~
~ yg ~ 0

~ p ~ ~ ge

~yL

I I I I

j. 3

FIG. 1. Poincare surfaces of section corresponding to coo=1
and the field strengths {a) @0=0.021 and {b) co=0.053. In each
case six representative trajectories with di8'erent initial condi-
tions have been integrated. In {a) phase space is largely filled
with tori; however, close to the separatrix there is some chaos
developing, indicating that the resonances are starting to over-
lap. In {b) most of phase space is chaotic and many of the clas-
sical trajectories eventually ionize.
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Chirikov, ' when s=2.5 the resonances are strongly
overlapping and widespread chaos is apparent. Applying
Chirikov's overlap criteria leads to the critical fields

s=1 1 s=2.5
&Crl~ = 4y &C~~ =

4 y

47n 19n
(28)

or, alternatively, c~ '=0.021 and eo =0.053.
Figure 1 displays Poincare surfaces of section for the

two critical-field strengths (corresponding to s =1 and
2.5}. Excellent and improved agreement (compared to
previous resonance-overlap estimates) between the reso-
nance overlap prediction and the exact dynamics is ob-
tained. "" However, a more significant aspect of the
method is the simple picture painted in terms of overlap
of only two classical resonances. For the full three-
dimensional problem, there are two resonances in each of
the degrees of freedom, and the form of the Hamiltonian

in Eq. (20} lends itself to application of a renormalization
approach like that developed by Escande and Doveil.
Work is in progress to apply this technique in order to
predict the ionization threshold for the fully three-
dimensional system.
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