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Electrical response of fractal and porous interfaces
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The electrical response of porous electrodes is calculated in several particular cases, which permit
one to approach the response of a realistic model for a porous interface. The case of nonblocking
surfaces and the case of the diffusion impedance of a fractal electrode are also considered. The use

of Bode diagrams is shown to provide a very simple means for calculating phase angles and algebra-
ic values for the impedance. It is demonstrated that for a blocking deterministic Sierpinski elec-
trode the impedance presents oscillations around a constant phase angle (CPA). Various electro-
chemical regimes (blocking, nonblocking, and diffusive) are considered, giving rise to a variety of ex-
ponents. For blocking electrodes it is shown that at a given frequency, the power is dissipated in

certain parts of the electrodes having a characteristic size which is a direct function of frequency.
The fact that the response of the system is linear permits one to relate in general the dc response to
the phase angle in the blocking regime and to study certain diffusive cases. It also permits one to
deal with cases very common practically where the response of a flat surface would itself exhibit a
CPA. In the case of a pure diffusion impedance the response is shown to be related directly to the
Minkowski-Bouligand exterior dimension of the interface through the exponent (D —1)/2. This
approach can be generalized to any type of irregular electrode independently of its fractal character.
If both diffusion and Faradaic (electrochemical) impedance play a role, a CPA response exists for a
porous electrode with an exponent equal to D —2. We discuss various regimes in which diffusion

plays a role together with Faradaic, resistive, and capacitive effects. It is shown that there is in gen-
eral no relation between fractal dimension and constant phase angle except in the case of diffusion.
The response of irregular electrodes is shown to be related to the fractal dimension when the elec-
trochemical regime is local.

I. INTRODUCTION

Electrochemical batteries always exhibit a limited
current output. This is due to the fact that microscopic
electrochemical processes have a finite rate at the
electrode-electrolyte interface and limit the current densi-
ty. For years porous electrodes have been used to in-
crease the output current because they have a large sur-
face area. It has been observed for a long time that such
electrodes do not have a simple frequency response. '

The equivalent circuit of a cell with planar electrodes
should be made of a surface capacitance C in parallel
across the Faradaic (electrochemical) resistance RF, both
being in series with the resistance of the electrolyte R,~.

The capacitance C corresponds to the charge accumula-
tion across the interface. The Faradaic resistance RF
represents the inverse rate Of electrochemical charge
transfer at the interface, for instance, in the electrochemi-
cal reaction Fe ++e + Fe +. In the absence of such a
process RF is infinite and the electrode is said to be
"blocking" or "ideally polarizable. " In the presence of
such a process it may happen that diffusion of the species
in the liquid play a role: such a case is termed as
"diffusive regime" and appears at very low frequencies

only. In fact, the impedance of rough or porous elec-
trodes is often found to be of the form

Zoc(jco) " with j=&—l,
in series with a pure resistance which figures the resis-
tance of the electrolyte. ' The exponent g is such that
0& g & 1. This behavior is known as the constant-phase-
angle (CPA) behavior. It is known that a smooth surface
exhibits g = 1, whereas q decreases when the roughness of
the surface increases and we consider as established ex-
perimental evidence that the frequency dependence of the
impedance of an electrode depends on its geometry. The
understanding of this phenomenon is not complete but
we think that the model of a fractal surface is a fruitful
approach that we want to examine in this paper. A non-
fractal interpretation of the CPA interface impedance
considering an electrode made of identical horn-shaped
pores has also been proposed.

Le Mehaute first proposed to consider a rough or
porous interface as a fractal interface and he first tried to
relate the exponent g with the fractal dimension D of the
interface. He proposed the word "fractance" for the
description of such an impedance but presented a theory
which cannot be considered as well justified. ' Yet, such
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a connection between fractal geometry and power-law be-
havior was appealing and several studies have been devot-
ed to this subject. ' These works have mainly con-
sidered the properties of a "blocking" or "ideally polariz-
able" fractal electrode for which the Faradaic resistance
R„is infinite. Liu has given a calculation for the
"Cantor-bar electrode. " In the limit of low-enough fre-
quencies it is equivalent to a hierarchical lumped network
for which the impedance presents a power-law behavior
with

g=3 —D . (2)

More recently another special case, the "modified
Sierspiriski electrode" has been proposed, for which the
calculation can be made exactly, i.e., without the approx-
imation of a lumped circuit. ' The "modified Sierspinski
electrode" (modified SE} is the metallic electrode shown
in Fig. 1. It has indeed an infinite surface area included
in a finite volume. A cross section of the electrode is a
"modified Sierpinski carpet" for which the interface has
the usual fractal dimension in the plane D = lnN/Ina.
The electrode is a cylinder whose surface has the fractal
dimension D = 1+D~. The study in Ref. 15 was exact ex-

cept for the neglect of "edge effects" which are important
only at very high frequency. In that work "exact"
analytical expressions were calculated numerically. For
D & —,

' the electrode has essentially no impedance if it
possesses infinitely small pores (inathematical fractal) but
a real electrode with finite smaller pores would behave as
a capacitor at low frequency and as a Warburg im-
pedance at high frequency though it is a blocking elec-
trode. For fractal dimensions smaller than —,', numerical
values of the phase angle obtained at low frequencies

0 D

d
0 5

FIG. 1. Picture of the "finite modified Sierpinski electrode"
in front of a planar counter electrode. The fractal object that
we consider is made through a decimation process. At the first

step a square pore of side ao is made in the electrode of side a.
Then, at each step, N smaller pores of side ao/a are added
around a pore of a given size and so on. Here % =5 and a=3.
The length of the electrode is L. %'e consider a case where (1)
the planar electrode is very near the fractal electrode so that
one can neglect the resistance of the thin layer of electrolyte be-
tween the two electrodes, (2) the metal is supposed to have zero
resistivity and the external surface is coated with an insulating
material so that we neglect conduction through this surface, and
(3) the bottom of each pore is insulating. All the pores are
linked in parallel and the admittance is simply the sum of the
admittances of all the pores.

from "exact" expressions agree remarkably well with re-
lation (2).' Very recently, it was shown that the use of
Bode diagrams permits one to calculate very simply the
phase angle and approximate expressions for the value of
the impedance. '

It is remarkable that the exponent seems to satisfy rela-
tion (2} exactly although the geometry of Fig. I could be
regarded as basically different from the Cantor-bar
geometry studied by Liu. One might even conclude that
relation (2) is a good candidate if one wants to relate CPA
to fractal dimensions. One must, however, keep in mind
that Sierpinski electrodes with D & —, are exact counterex-
amples to this same relation and other counterexamples
exist. ' ' Also the Sierpinski electrodes can be con-
sidered as being far from real systems because they pos-
sess very narrow pores. As a model of real electrodes the
Cantor-bar geometry can also be criticized because it also
possesses very narrow pores and it is in principle of
infinite size. On the other hand, a real rough surface has
properties which are different in the directions parallel
and perpendicular to the surface. In that sense self-aSne
fractals should provide a better description of the
geometry of real surfaces. By calculating the impedance
of a self-affine electrode derived from the Cantor-bar elec-
trode in a lumped-circuit approximation, Kaplan et al.
show that there exists no universal relation in which g is
simply a function of D. ' Up to now this result is
demonstrated only in the lumped-circuit approximation.

One should call attention to the fact that the fractal di-
inension of a surface is not sufficient in itself to solve the
problem. Consider, for example, a system for which we
have the same surface but we "invert" (i.e., exchange the
location of) the metal and the electrolyte. In the case of a
SE one has to deal essentially with one pore of infinite ca-
pacitance per unit length agd edge effects are dominant.
There exist, however, geometries for which one can ex-
change metallic volumes with electrolyte volumes and
keep the same frequency dependence. Such a case is the
case of the "inverse Cantor bar" for which relation (2) is
satisfied. '

Halsey has proposed a more general approach for the
impedance of rough surfaces. ' His approach permits
one, in principle, to deal with the "edge effects" which
are of primary importance at very high frequency. The
calculation shows also a frequency region in which CPA
behavior is observed. In his perturbative approach the
impedance is calculated to one-loop order as a function of
fluctuations in the height of the metallic surface. In a
particular case Halsey finds the relation g = 5 —2D in the
first-order approximation but no firm proposal can yet be
established to higher order in perturbation theory.
"Edge effects" would also dominate the example of a cy-
lindrical electrode made of a single pore of fractal cross
section like a Koch island because the capacitance for the
mathematical fractal would be infinite.

Until very recently, no experiment has been able to
confirm or to contradict these proposals. There are two
reasons for that. First, it is difBcult to measure the frac-
tal dimension of real objects imbedded in three-
dimensional (3D) space. Second, one has to control the
electrochemical regime itself. It is, however, of interest
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to confirm or to select between these convicting results
because from a good relation one should eventually be
able to determine a fractal dimension from impedance
measurements. Nyikos and Pajkossy claimed to have
proven experimentally that g=(D —I) ' for a Koch
electrode (that is, an electrode whose projected surface is
the triadic Koch curve). ' It will be shown here that the
argument that the impedance of a fractal electrode is an
extensive quantity, that they use in their theory, is not
true in general. Recently, Bates and Chu have performed
a careful study of metal-to-liquid-electrolyte impedance
together with a detailed study of the surface profile. '

They conclude that there is no connection between the
fractal geometry of the electrode and the impedance ex-
ponent, but this again is perhaps related to edge effects or
to the difficulty to analyze experimentally fractal profiles.
Very recently Keddam and Takenouti have studied the
frequency response of a two-dimensional Koch electrode
made of anodized aluminum. They have studied the
potential distribution in that blocking case and have
demonstrated that the equipotential lines in the electro-
lyte penetrate the fractal object in a nonuniform manner.
This idea was independently discussed by Wang. '

These works, except Ref. 16, have so far considered
only "blocking" electrodes: neither the Faradaic effects
nor diffusion impedance has been taken care of. The
diffusion impedance of a fractal interface has been calcu-
lated by Nyikos and Pajkossy in the particular case of a
Koch electrode. They have demonstrated in this case
that

g=(D —I)/2 .

Such a result was suggested by de Gennes in a somewhat
different context. We shall give a general demonstra-
tion of that result and we will show that the diffusion re-
gimes give in principle a new tool to measure surfaces,
whether fractal or not.

To summarize the present situation, we know that
there exist fractal electrodes for which there is a direct
relation between the frequency exponent and the fractal
dimension, but there also exist fractal electrodes for
which such a relation does not hold. The purpose of this
paper is to help in clarifying this matter. For that we
first recall in Sec. II how the use of Bode diagrams per-
mits one to calculate readily the impedance of Sierpinski
electrodes. We show that at a given frequency the power
is dissipated in pores of a given characteristic size. We
apply the same method to what me call "generalized"
self-affine Sierpinski electrodes and we discuss the parallel
branching of spheroidal pores for which we show that
CPA is obtained only when the surface is nonfractal.

As we will show in the following, in an electrochemical
system there exist essentially two scale lengths at a given
frequency. If we want to describe "fractal" objects by a
dimension, it is reasonable to use a concept of dimension
which is based on the idea of "neighboring" and we want
this concept to have a wide applicability. We propose in
Sec. III to use a definition of the dimension based upon
the evaluation of the amount of electrolyte located within
a given distance from the interface. This leads us to the
mathematical concept known as "exterior Minkowski-

Bouligand dimension" and we will show in the study of
diffusion that it has indeed a profound physical meaning.
In particular, it permits one to describe the impedance of
any irregular, rough or porous, fractal or nonfractal in-
terface in the diffusive regimes.

The Bode-diagram method is systematically applied in
this paper to the study of a number of geometries and
electrochemical regimes. For this reason we discuss in
Sec. IV its mathematical basis, the effect of disorder, and
the linear-response aspects of that question.

In Sec. V we discuss the series-parallel branching. We
show that also in that case, the electrical power is dissi-
pated at a given frequency in pores of a given characteris-
tic size. The Cantor-bar electrode is shown to yield the
same algebraic value for the impedance as a SE. We find
that a true self-similar tree structure does not exhibit
CPA if the electrolyte is inside the tree. The same result
applies to a series-parallel branching of spheroidal pores.

Section VI is devoted to the approximate study of a
generalization of spherical-pore electrodes to porous elec-
trodes for which we show that parallel branching may be
the cause of CPA. We then discuss in Sec. VII the fre-
quency dependence of the impedance for the same elec-
trodes in presence of Faradaic response of the interface
and show that the exponent is not modified but that the
frequency range of observation is reduced. In Sec. VIII
we consider approximately the frequency dependence of
the edge effects which are important at high frequency
and we finally show how the same Bode diagrams permit
one to discuss diffusion effects or mixed effects of
diffusion, resistivity of the electrolyte, Faradaic resis-
tance, and interface capacitance.

We first review briefly the usual model for the electri-
cal response of an electrical cell with planar electrodes to
a small voltage excitation of frequency co. There exist ba-
sically four elements in the equivalent electrical circuit of
such a cell. They represent first the resistance of the elec-
trolyte R,&

proportional to the electrolyte resistivity p
and depending upon the geometry of the cell. Secondly,
there is the surface capacitance C=yS proportional to
the surface area and to the specific capacitance per unit
area y. For a blocking electrode there is a "natural"
length in the problem

A(co) =(pyro) (4)

CO/
—() P )

Diffusion, if present, also introduces a scale length
A& (2)/ra)' ——which is the diffusion length at the fre-

and edge effects will appear when A(co) is smaller than
the distances present in the objects. This occurs at high
frequencies. For a nonblocking electrode there is also a
Faradaic resistance RF ——rS ' where r is inversely pro-
portional to the specific exchange current density and
finally a diffusion impedance which is of importance at
very low frequency. They are shown in Fig. 2(a). A
given electrochemical interface is characterized by the
frequency co&
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c =ys line represents the Faradaic resistance up to the frequen-
cy cof. It is followed by a line of slope 1 representing the
admittance of the surface capacitance, and finally a
second horizontal line representing the resistance of the
electrolyte.

In the geometry shown in Fig. 1 all the pores are linked
in parallel and the admittance is simply the sum of the
admittances of all the pores. We have to calculate the
impedance of an infinite square hole of side a„taking into
account the resistivity p of the electrolyte and the surface
impedance. This can readily be done by using de Levie's
method. Apart from very high frequencies for which
edge effects have to be considered, equipotential lines can
be approximated by planes. If, inside a pore, the electric
potential and current vary as V(x, t) = V(x) exp(j rot }and
I(x, t) =I(x) exp(j rot ), we have (here we neglect diffusion
effects)

dV(x—) =(p/a„)I(x)dx,
dI(x—) =4(j ye+ r ')a„V(x)dx .

We have then

m (logarithmic scale)

FIG. 2. (a) Equivalent circuit of a planar electrode in the
small voltage linear regime. {b) Schematized Bode diagram of
that circuit.

quency co with a diffusion coefficient 2). There exists a
diffusion impedance Z&~(jco) '/ in series with the
Faradaic resistance. This will be discussed in detail in
Sec. IX where we also show that taking into account the
diffusion and the Faradaic impedance we obtain a value
of the exponent g=D —2 and that this regime is
governed by a scale length A'(ro) = (rcro)

In this paper we successively examine various
geometries and various electrochemical situations.
Several conclusions of different purpose are obtained.
Some results are general, some are not. To avoid con-
fusion we suggest that the reader refer when necessary to
the conclusions where the essential results are listed.

II "MODIFIED SIERPINSKI ELECTRODE"
AND PARALLEL STRUCTURES

IN THE BODE DIAGRAM

In the following we will discuss the impedance of frac-
tal electrodes using the Bode diagrams. A Bode diagram
(BD) is a plot of ln

~

Y
~

as a function of 1nco. The BD of
a planar electrode is essentially made from straight lines
as shown in Fig. 2(b). There are four regions starting
from ultralow frequency. First there is a straight line of
slope —,

' representing diffusion admittance up to a frequen-

cy

rory- 1!2)(cr )

where the diffusion impedance is equal to the Faradaic
resistance r [c is an equivalent voluinic capacitance densi-
ty defined in Sec. IX, Eq. (63}]. Above rp& the horizontal

d V(x)/dx =(4p/a„)(jycp+r ')V(x)=(A,„)V(x) .
(9)

The length ~A,„~is the characteristic attenuation length
inside the pore. The solution of this last equation is a
linear combination of exp(x /A, „)and exp( —x /A, „)which

satisfy the boundary condition V(x =0)= Vp, where Vp

is the applied voltage and I(x=L)=0. The bottom of
the pore is supposed to be insulating which makes little
difference for narrow pores. The admittance of a single
pore is obtained by using relation (7}:

Y„=2(a / na)3 2(/p )
—r1/2( 1+j/pi )

X tanh[2(pL a"/apr)'/ (1+jtp/cpf )' ] . (10}

to) cof and 4yropL a"/ap & 1 . (12)

In this range the argument of the hyperbolic tangent is
small. At high frequency,

co&cof and 4ycopL a"/ap&1, (13)

the pore behaves as a diffusion impedance proportional to
(jco} '/ although it is blocking. At still higher frequen-
cies edge effects have to be considered and this will be
discussed in Sec. VIII. The corresponding BD is shown
in Fig. 3(a}.

The total admittance is the sum of the admittances of all
the pores:

Y= g N"Y„.
n~p

If the length of the electrode is infinite the admittance of
all the pores is proportional to (1+jco/cpf)'/ and the
frequency dependence is not related to the fractal dimen-
sion. For finite length that we discuss from now on, the
admittance is purely resistive at very low frequencies
( co ((cof }. It is purely capacitive in the low-frequency

range, where
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Y„=4jcoyaoL/a" . (14)

In the higher-frequency range (13) the admittance has the
value

Y =2' (a /a") (yelp)' (1+j) (15)

Then a pore has a characteristic frequency co„given by

ro„=aol4ypL a", (16)

where the argument of the hyperbolic tangent in (10) is of
modulus 1 and where the value of the modulus of the ad-
mittance has a characteristic value Y, „ofthe order of

Yc,n

We first discuss the case of a blocking or a nearly
blocking electrode for which ~f is very small so that we
consider only the two regimes (12) and (13). At low fre-
quency the admittance is simply due to the capacitance of
the pore

Y, „=aola"pL . (17)

Because all pores are linked in parallel the BD of the
electrode can be obtained very simply by adding the BD
of the pores. This is done as explained below. Consider
the largest pore n =0. It has a characteristic frequency
coo a—o—/4ypL with admittance Y, o=aclpL. It has a
BD shown as curve 0 on Fig. 3(b). The next smaller
pores (n =1) have a characteristic frequency ro& ——coo/a
and an admittance Y, , = Y, &&/a . Their BD is shown as
curve 1. Because they are in number N their total contri-
bution to the admittance is curve 1' obtained by a vertical
translation of lnN is the BD. The next smaller pores have
&02=roc/a and an admittance at co2 equal to Y, o/a,
their BD is curve 2 and they contribute as curve 2' to the
admittance of the electrode, and so on. The admittance
of the electrode is the sum of curves 0', 1',2', . . . . It is
shown approximately as curve YT. Because of the loga-
rithmic structure of the Bode diagram one observes that
at frequency coo the admittance is governed essentially by
Y, o, at frequency m, by NY, , at co2 by N Y, 2 so that
the curve YT goes essentially from the points (Po) to (P, )
to (P2) with a small oscillation. This has two conse-
quences. First the behavior of YT as a function of ro is,
apart from the small oscillation, a straight line of slope r)

r) = [(ln Yo —ln(NYoa )]/(Inroo —ln(cootr ')]
=2—(lnN/Ina) =3—D . (18)

N a2~
N/a4

Nyas-
E

O)
O

I

Mn

m (logarithmic scale)

n(c0)- 1n(ac/4ypL r0)/]na . (19)

The admittance of the electrode at that frequency is then
essentially

This argument gives a slightly approximate but direct
proof of the existence of CPA. Of course, this is only a
result on the modulus of the admittance. But behavior of
the phase angle and modulus are closely related through
linear-response theory. An exact result on the impedance
will be given in Sec. IV.

The same argument also gives an approximate value of
the impedance itself at a given frequency co: At this fre-
quency the impedance is dominated in first approxima-
tion by the pores of characteristic frequency co. There are
N"'"' such pores where n(co) is given by relation (16)

I

m m cDo m
~n ~a a

I YT I
-(u(') lpL )(N/rx')"'"' .

Using (19),one finds

I YTI -(ao/pL )(aolypL ro)

(20)

(21)
co (logarithmic scale)

FIG. 3. Bode diagram description of the impedance of the
Sierpinski electrode. (a) Schematic Bode diagram of a single
pore showing the three frequency regimes. Notice the "shoul-
der" at the characteristic frequency co„given by Eq. (16). (b)
Shows the construction of the Bode diagram of the entire elec-
trode from the Bode diagram of the individual pores. The thick
line has an average slope equal to q=2 —lnN/lna. The small
oscillation is real. It is due to the finite steps in the decimation
process as discussed in Sec. IV. At very low frequency the ad-
mittance is constant. Between cof and coo one observes CPA be-
havior. Above ago an co' behavior is predicted.

A.s a consequence, the modulus of the admittance has
indeed a power-law dependence. A constant phase angle
is then a consequence of linear response. The function
(21) is a nontrivial function of ao,p, y, L and co. In partic-
ular, the admittance of such an electrode is not a simple
square function of the size of the object: YT varies as
ao ' and L . This result, exact for this particular
case, contradicts the hypothesis of Nyikos and Pajkossy
that Y scales as the surface of the object.

The same argument leads us to an important remark:
Because at a given frequency co the admittance is dorn-
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PSP

INSULATING VARNISH

ELECTRODE

L

The characteristic frequency is co„=aoa,"/4ypL a",
where the argument of the hyperbolic tangent in (22) is of
modulus 1. At co„the value of the modulus of the admit-
tance has a characteristic value Y, „ofthe order of
Y, „=(cio/pL)(a, /a )". The consideration of the BD in
this case gives

COUNTER ELECTRODE ELECTROLYTE rl= (lnN+ lna, —2 lna)/(2 lna, —lna), (23)

FIG. 4. Parallel spherical pores (PSP). The electrolyte is
shown in gray. The openings of the spherical pores are sup-
posed to be smaller than the radius of the pores but of the same
order of magnitude. They are supposed to scale the same way.

inated by the pores of characteristic frequency co, the en-

ergy is dissipated in those pores. On such fractal inter-
faces the power dissipation is nonuniform. Also, it is ob-
vious from Fig. 3 that the nonblocking character of the
interface plays no role in the value of il as long as the fre-
quency is larger than cof. Below cof the impedance is
purely resistive. Then the effect of the existence of a
Faradaic reaction is to limit the frequency range in which
relation (2) is satisfied to frequencies co such that
cgf Q co (coo This constitutes an "exact" result which
contradicts the generality of the prediction that a "dissi-
pative" surface would behave differently from a nondissi-
pative surface.

It is easy to find a more exact expression taking care of
neighboring pores but that will not change g. This will
be done in Sec. III. The above result is valid only if the
summation converges. We must make a distinction be-
tween "mathematical" fractals for which there is an
infinite hierarchy of smaller and smaller pores and "phys-
ical" fractals in which the smaller pores are finite. In the
first case the number of pores of side ao/a" increases as
N", whereas the admittance of each pore behaves as
a " from relation (10). So the total admittance is
infinite if N) a that is D & —,'. For a physical fractal
with D & —,

' the behavior will be dominated by the smaller
pores and the result will depend on the size of the smaller
pores as compared with the frequency. For fractal di-
mensions smaller than —', it is clear from Fig. 3 that there
are two frequency domains separated by coo. Above that
frequency the value of g is —,'.

Before going to different geometries we consider the
case of what we call a "generalized" Sierpinski elec-
trode. " A generalized Sierpinski electrode is an electrode
similar to that in Fig. 1, where the length of the pores, in-
stead of being constant, also scales (either as the side or
differently). The first pore has a length L, the next pores
have a length L/a„and so on. This case can be con-
sidered as more physical than the previous models of a
surface because thinner pores can be shorter than thicker
pores. A pore has now an impedance given by a relation
similar to (10) but where L is replaced by L /a,",

Y„=2(aola") (pr )
' (1+jco/co )'f

X tanh[2(pL a")/a, "aor)' (1+jco/cof)'~ ] .

(22)

III. DIMENSION

Since we consider electrodes of which the front face is
varnished, we are not interested in the position of pores,
but only in their repartition. This leads to try to compare
the CPA exponent to an index which has been introduced
by Grebogi et al. under this name of "exterior dimen-
sion" in the spirit of the Minkowski-Bouligand unilateral
dimension. This notion has been studied by Tricot, who
called that index "exchange coeScient. " Here exterior
means exterior to the electrode.

Let us now define this coefficient. Let e be a (small)
positive length. Let V, denote the volume of electrolyte
which lies within distance c, from the electrode. Then

D= lim (3—lnV, /lnE) .
c~O

(24)

If this limit does not exist, take the least upper bound.
This definition is illustrated in Fig. 5. It is known that D
may differ from the fractal dimension of the common
boundary of the electrode and of the electrolyte. In that
case exchanging the electrode and the electrolyte can give
a different value for the index for specific geometries.

We now compute this dimension in the case of general-
ized Sierpinski electrodes. We have N" pores of length
L,a, " and of side aoa ". As previously, the fact that the
electrode occupies a finite volume implies N ~ a . Let c
be a small positive length and v the integer defined by the

but, as we shall see in Sec. III this is not simply a func-
tion of the dimension of the object.

Finally we consider the parallel branching of
spheroidal pores (PSP) as shown in Fig. 4. The entrance
of the spheroidal cavities is supposed to be large enough
so that edge effects can be neglected. The size b„ofthe
cavity scales with a factor a ". We approximate the
resistance of each cavity at stage n by R„-p/b„
—(p/bo)a" and the capacitance by C„-yb„-yboa
The number of cavities of rank n is N" and the cavities
are accessed in parallel from the electrode front surface
(this actually is close to a generalized Sierpinski electrode
with a=a, ). It is straightforward from a Bode plot that
the parallel circuit of Fig. 4 yields a CPA behavior, with
exponent il = ln(N /a ) / lna, in the frequency range
1/ROCO«co«1/R„C„or equivalently (pybo)« co « (py b„) '. This, however, occurs only when
a&N&a, the condition at which the surface is finite
even for infinite decimation. Using the Minkowski-
Bouligand dimension defined below one finds under these
conditions that D=2 in that case. When N and a are
such that the electrode is fractal with an infinite area then
the admittance is essentially that of the smallest pores
and no CPA behavior is found.
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FIG. 5. Definition of the "exterior Minkowsky-Bouligand di-
mension. " The contour of the electrode is the solid line. The
electrode is shown in gray. The contour is "fattened" in the
electrolyte by taking all the points of distance smaller than c to
the electrode (thin line). The volume V(c) is proportional to
c' for an ordinary fractal surface.

n=v n=0

with an error, due to edge effects, of the order of magni-
tude of c. Two alternatives may occur.

First, N )aa, . Then the second term is of the order of
magnitude of sN aoL(aa, ) "and the first term is equi-
valent to N'aoL(a a, ) ". Remembering that v= ln(ao/—ln(N/a )/lna
e)/lna, we get V, =e e ', and so

D =1+(lnN —lna, )/lna . (26)

If a, =1 we recover D = 1+ lnN/lna; note that if a, =a
we have a true self-similar structure and D is the self-
similarity dimension lnN/lna but this N must simultane-
ously satisfy N(a to permit construction in a finite
volume. ' This imposes N=a and D =2 in this case. If
a finite volume is not required D is equal to lnN/lna.
Comparison of relations (23) and (26) shows that there is
no relation between the dimension and the phase angle in
the case of generalized Sierpinski electrodes. This fact
was already pointed out for Cantor-bar structures. '

In the second case where N &aa„the second term in
(25) is of the order of e, whereas the first one is smaller.
We then have V, =c and therefore D =2. When
N=aa„we have also D =2. An analogous calculation
of D for PSP (Fig. 4} gives D= lnN/lna if N &a and
D=2 if N (a~.

inequalities a " 'ao&a/2&a "ao; we then have

v —1

V, —g N" oaL( aa, } "+4e g N"aoL(aa, } ", (25)

tance of a square pore of side ao and length I. is, in the
regime m & cd,

y(co)=p 'aoA(jco)'~ tanh[AL(jco)'~ ], (28)

=a 2nany(ana 2nei) (29}

Therefore the admittance of N" such pores in parallel is
""y(A,"co) where A. =a/a, and 21= ln(Na, /a )/

ln(a, /a). So, for a generalized Sierpinski electrode, the
admittance has the form (27) with 21 given by Eq. (23).

Usually, as in the previous example, the function y of
the frequency co can be extended as an holomorphic func-
tion to an angular sector of the complex plane. More-
over, y( —jco) is real. We are going to prove that, under
suitable conditions on y, Y(ei) behaves as co"u(luego} when
co is small if A, & 1 (when co is large if A, & 1). The function
u is a periodic function with period 1nA, . This oscillation
factor, which is visible on the Bode diagram of Fig. 3(b),
is due to the rigidity of the hierarchical construction.
Later, we shall explain how to get rid of it.

We will now make some precise statements. Let S be
a closed angular sector of the complex plane: S
= IzEC~8, &argz &82I. Let y be a continuous function
from S to C, holomorphic on S, and such that there exist
three positive constants C, P, and 5 (with P & 5) so that

~y(z)~ C minI (z~~, ~z~ I Vz ES (30)

(for SE, P= —,',5= l). This means that the BD of y(z) ex-

hibits a "shoulder" as shown, for example, in Fig. 3(a).
Let us now consider the case where A, is a number larger
than 1 and 21 a number in the open interval (p, 5). Let us
set

Y(z)= g A, ""y(zi!i,") .
n~O

(31)

This series converges uniformly on compacts of S, so its
sum Y is a continuous function on S, holomorphic on S.
Let B denote the strip B=

I w FC~8, & Imw & 82]. The
exponentiation mapping, e~e, is a one-to-one map-
ping from B onto S. We define a function u (w) on B:

where A =2(yp/ao)' and (jr')' is the principal deter-
mination of the square root. For a pore of side ao/a"
and length L /a,", the admittance is

yn(co)=p 'aoa "~ A(j m)'~ tanh[ALQ" ~ a, "(jco)'~ ]

IV. PARALLEL BRANCHING
u(w)=e " g A, ""y(A."e ) .

nEZ
(32)

When dealing with the previous examples of electrodes
or of hierarchical circuits, the admittance Y of the sys-
tem, which is the sum of the series of the admittances of
the subsystems, has the form

It is easy to check that this series converges uniformly on
compacts of 8. So the function u is continuous on 8,
holomorphic on the interior of 8. Moreover, this func-
tion u is easily seen to be periodic of period 1ni.. We
have, for any k & 0,

Y(co)= g A, ""y(coA,"),
n=0

(27)
Y(zA, ")= g I, ""y(zA," ")

n~0
where the number A, is determined by the geometry and y
is the admittance of one particular subsystem taken as
reference.

Let us consider the example of the generalized
Sierpinski electrodes in the blocking case. The admit-

g
—k!i y g(k —n)!i

( gn —k
)

n&0

""y(zA,") . (33)
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Hence,

z "u(lnz) —
A,""Y(zA, ")= g 1, ""y(zA,"),

n& —k

SO

Iz "u(lnz) —
A,""Y(z}(. ")I &C g A,""IzA,

n)k

Ibg(k + 1)(g—5) /( I gg
—5)

Now, if we set co =zA, ", we get

Y(co)=f A, ~y(Ace)dM(A, ) .
1

(39)

For instance, parallel juxtaposition of hyperbranched
spherical pores as defined in Sec. VI could be considered
this way.

For a SE we have also
ap /2c

V, =f 4aoLeA, 'dM(A, )+f a()LX 2dM(}(,),

So the mean value of Y(co) has a CPA behavior.
Indeed this statistical approach is not limited to such
pores. The above analysis applies to more general cases,
for instance, where

I
~&u (In~) —Y(~) I

& C'I ~I', (35) (40)

Y(co)=f }(, y(Aco)dM(}(, ) .
1

So we have

(37)

( Y(co)) =f A,
" y(}(,co)dA,

1

=co "f 8" y(8)d 8, (38)

provided v& —,'(which ensures that the integral con-
verges). If the )( ~ —'„the admittance is infinite.

If a (1, there is no CPA behavior. If 1 & sc( —,', the in-

tegral f0"8" y(8)d 8 converges, therefore ( Y(co })
=co "for small ~'s.

which is a bit better than Y(co)-co"u(inca) for small co's.

The case A. & 1 is treated similarly. In the case of the gen-
eralized Sierpinski electrodes, it is easy to determine the
Fourier coefficients of u: They decrease rapidly and the
mean value of u is much larger than the other
coefficients. This explains the small oscillations appear-
ing on the computed Bode diagrams.

The above theorem can be generalized to a random sit-
uation. Let us consider an electrode with square pores of
constant length L. But this time we suppose that the
number of pores of sides between ao/Az and ap/A, (,
(1 & A, ) & A.2}, is a Poisson variable of mean

f, 'X" 'dX-. (36)
1

Let us denote M the measure on [ I, + ao ) whose densi-
ty with respect to the I.ebesgue measure is V ' and M
the random Poisson measure whose intensity is M.

Then, if y(co) stands for the admittance of a pore of
length L and side ao, the admittance of the electrode is
the random function

Qp /2'E

( V, ) = f aoLeA, " dA+ f a()LA,
" d~

0

~~2 K (41)

This expression of ( V, ) does not strictly enable us to
determine the dimension of the electrode through Eq.
(24} which involves the value of V, and not its average.
If we disregard this mathematical difficulty we obtain
D =a+ 1. So for random SE we have also g= 3 —D.

V. SERIES-PARALLEL BRANCHING

Since the SE has the same CPA as the Cantor-bar elec-
trode introduced by Liu we now discuss the case of a tree
as shown in Fig. 6. This geometry has essentially the
same topology as the Cantor-bar electrode. In a lumped-
circuit approximation the equivalent circuit of the tree is
shown in Fig. 7(a). Here the series impedance Zs

„

is the
resistance of a square pore of length L„andside a„.The
parallel impedance ZP

„

is due to the capacitance of this
pore:

Z, „=pL„/a„', (42)

Zp „=(4jycoL„a„) (43)

In the Cantor bar L„is independent of the stage n,
L„=L.The impedance of the system of Fig. 6 is repre-
sented in Fig. 7(a). It can be written as a continued frac-
tion

Zso+
1

PO ZS1

ZP1
Zs2 + 1

1 S
ZP2 Zs3+ (44)

which is equal to
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Zso+
1

PO Sl +

ZP1 ZS2 +
N N

ZP2 ZS3 + (45)

Zs„/Z~„=4jypcoL a" /ao . (46)

At the first stage the series resistance is very small com-
pared with the parallel resistance. But as one goes to
smaller and smaller pores the ratio increases up to some
critical stage v where the ratio (46) is equal to 1. The in-

dex v of this characteristic stage is given by

co = ao /a"4y pL (47)

This is the continued fraction representing the impedance
of circuit 7(b). So the tree is exactly equivalent to a
"ladder" circuit. Those ladder circuits have been exten-
sively studied by Oustaloup and in many cases are
known to present CPA behavior at high enough frequen-
cies.

The ladder impedance can be calculated simply, in first
approximation, using the following argument. One first
remarks that if only the side a of the pore is divided by a
factor a at each new branch, conserving L constant as in

the Cantor-bar case, the ratio of the series impedance to
the parallel impedance as a function of the stage goes as

This is essentially the same result that we obtained for
the Sierpinski electrode. Although the geometry of the
Cantor-bar electrodes could be regarded as basically
different from the geometry of the modified finite
Sierpinski electrodes they have the same properties. Here
also the power is finally dissipated nonuniformly in the
pores of characteristic frequency c0 given by relation (47).
It is not obvious that, following Liu, one can use an
equivalent lumped circuit to describe the Cantor-bar im-
pedance. This is, however, a good approximation be-
cause the larger pores behave indeed as resistors and
capacitors. It is only the narrower pores which must be
treated as lines. But these narrower pores are those
whose series impedance is very large and play no role.
The transition between these two approximations occurs
when A-L, which just happens when the ratio (46) is
equal to 1.

We think that this is a very important result because it
tells us that whatever the branching —purely parallel in
Sierpinski electrodes or series-parallel in the Cantor-bar
electrode —the frequency dependence and the value of

If a is large the series impedance corresponding to the
stage v+1 is larger than Zp „/vand can be considered as
infinite in first approximation. In this situation the im-

pedance is essentially that of stage v because the series
impedance before stage v is small if a is large. Using (44)
the value of the admittance is then in order of magnitude
equal to

Zs2

~ ~ ~ ~

iN

Y-N"/2', -(ao/2pL )(ao/4ypL ro) (48) (a)
N

pRJ'RP+ +qpqp Zso N

Zp,

ZSO Zs, /N Zsa/N

(b) ZPO

FIG. 6. Tree structure with the electrolyte in black. Each
line represents a tube of side a„and length L„.In that structure
the length is scaling as the side of the pore. On the contrary,
the length is constant in the Cantor-bar case of Ref. 7.

FIG. 7. Equivalent lumped circuits for trees. (a) Tree struc-
ture; (b) equivalent ladder structure.
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the impedance are governed essentially by the number of
characteristic pores at a given frequency.

If in the case of the tree the length itself scales as the
side of the pores, then

(49)

and this ratio now decreases when n increases. The po-
tential either penetrates the entire structure or does not
penetrate at all and the response is not of the CPA type.
This is an example where a true self-similar interface has
not a CPA response.

Finally we consider a branched spherical-pore elec-
trode (BSP) as shown in Fig. 8. This case is essentially
equivalent to the above case of a tree. These electrodes
are built with generators I or II also shown on the Sgure.
Here each cavity of rank n gives access to N cavities of
rank n + l, hence again we get N" cavities of rank n. The
ratio of the series to parallel impedance in the equivalent
ladder is Zs „/Zz„(bc-/A)a " and the signal does not
penetrate the electrode if A (bc and goes to the smaller
cavities if A & bp. No CPA behavior is ever found. This
seemingly comes from the fact that, in this model, the
smaller the element, the shorter the characteristic R„C„
associated time (in contrast to Liu's case). A more de-
tailed study of the impedance shows that it can be written

Zc Rc+1/[j——Ccco+ [ j /N" C„c—o+8(NR, )] '], (50)

(a)

(b} BSP

where 8(NR, ) is a correction of order NR, . As a conse-
quence, no intermediate CPA regime can be present, even
after subtraction of the series resistance R p.

VI. HYPERSRANCHED SPHERICAL-PORE
ELECTRODES AND POROUS ELECTRODES

The hyperbranched spherical pore electrode (HSP} is
shown in Fig. 8(c). Here each cavity of rank n gives ac-
cess to N cavities of rank n+1, N cavities of rank n+2,
. . .N" cavities of rank n+k, . . . , hence here we have
2" ' N" cavities of rank n. As discussed further this may
be a good scheme for a part of a practical porous medi-
um. A similar constructian may be realized in two di-
mensions, and a cylinder may be built from this curve
[hyperbranched cylindrical-pore electrode (HCP)].
Though it is of less physical relevance, this shape is in-
teresting in that it bears similarity with shapes which
have been considered by others, such as the Koch-island
electrode or the related shapes of Ref. 14.

Of course, a constructibility problem can arise because
it is nat certain that one can build a mathematical fractal
up to infinite decimation and keep the volume af the elec-
trolyte finite. But we are concerned here by physical
fractals which have a finite smaller scale and this question
plays no role. So values of N and a outside the range of
existence of the mathematical fractals of finite size may
be considered. For practical objects the decimation will
stop to a certain order p, , and, with an appropriate value
for p„these surfaces can be built for virtually any (N, a )

daublets. The fractal dimensions, conditions of existence,
and impedance behavior of these electrodes are summa-
rized in Table I. In the following, we will only outline the
derivation of the impedance behavior.

An equivalent circuit for the HSP electrode can be ob-
tained by noticing that N identical series-parallel circuits
(Zs, Z~ ) mounted in parallel may be represented as a sin-

gle similar circuit (Zz/N, Zp/N). (The same method
has been used for the tree in Sec. U; see Fig. 7). The re-
sulting circuit is shown in Fig. 9 (here represented for
@=4). The impedance of this circuit is best obtained by
starting from the right-hand side of the figure: calling Z;
the impedance as shown in the top of Fig. 9 (i.e., Z,.
represents the impedance of X' ith order cavities seen in
parallel), examination of Fig. 9 makes a recursion relation
appear:

P
Z, =R;/N'+[J'N'C;co+ g Yi, )

' with Yk ——1/Zk .
k =i+1

(51)

(c) HSP

FIG. 8. Branched spherical-pore electrodes with the electro-
lyte in gray. (a) Generators I and II; (b) branched electrode
(BSP); (c) hyperbranched electrode (HSP).

This relation is schematized as the inset in Fig. 10. Fig-
ure 10 shows the results obtained after applying the re-
cursion procedure for a HSP electrode with N & a, a /2.
For such a case, the capacitance of the smallest cavities is
dominant over that of the larger ones [(2N }"C„&
(2N)" 'C„ i since N )u /2]. The recursion relation is

applied starting from Z„=R„/N"j/N"C„~ and f«—
decreasing values of I,, from p —1 to 0. Except for unim-
portant deviations for the very first recursion steps, the
results, shown graphically in Fig. 10, are that Z; may be
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TABLE I. Summary of the properties of various spherical-pore electrodes. PSP, parallel spherical pores; BSP, branched spherical
pores; HSP, hyperbranched spherical pores; HCP, hyperbranched cylindrical pores. p is the order of decimation of the smallest
pores.

Geometrical
situation

Dimension
D Z

Impedance behavior

PSP

BSP

HSP

HCP

N(a

a gN &a~
N&a

N&a
N)a

N (a2/2
a2/2&N &a
a,a /2&N

N (a/2
Nga/2

2
lnN/lna

2
lnN/lna

2
ln(2N )/1na
ln(2N) / lna

2
1+ ln(2N)/lna

(Ro —j/Cow)
(largest cavity dominant)

Roe( jmRoCo)
(R„—j/C„a))N

(smallest cavities dominant)

Rp —j /Cpa)
Ro+ [jCoro+ 6(1/R, )]

Rp —j /Cpa)
Ro+ [JCoro+6(1/R

& )]
Ro[1+[jroRo(2N)"C„] "I

Rp —j /Coco
Ro [1+[j roRo(2N)" C„]

not CPA

lnN/ lna —1

not CPA

not CPA
not CPA

not CPA
not CPA

ln(N /a) / ln(2N /a)

not CPA
lnN / ln(2N)

viewed as a large capacitance (2N) C„/2 (i.e., it dou-
bles each recursion step) in series with a resistance
R; /N', which increases each recursion step
(R„/N"&R„,/N" ' since N & a). Graphical solution
of the recursion relation shows that this simple RC char-
acter of Z; is maintained down to Zo. However, subtrac-
tion of the trivial series resistance Rc makes the parallel

branching of the Z s reappear, i.e., (Zc —R o )

=jCoco+Y, +Y2+ +Y„.The impedance is made
with the series resistance and capacitance of the larger
pore and a parallel branching. This parallel branching
straightforwardly leads to a CPA behavior
(Zo Rc) '=—[j(2N)"C&Rcco]" in the frequency range
ra»(pybe) ' with an exponent

r) = ln(N/a)/ln(2N/a) (52)

Cp Nc& N C2 N

Rs/N

N Cog

R4/N

4
4

R4/N

N C4

R4/N ~

N C4

R4/N ~

as can be seen from inspection of Fig. 10. Other cases for
N and a can also be considered. The results appear in
Table I. So, for the HSP electrode a CPA behavior is ob-
tained for a limited range of N and a. However, the
CPA exponent is clearly unrelated to the fractal dimen-
sion. Furthermore, the borderline in the (N, a) plane for
CPA behavior does not coincide with the fractal-
nonfractal boundary.

Note that the geometry of a 2D Koch electrode (where
the electrolyte enters the Koch "gulfs" such as con-
sidered in Ref. 14) belongs to the category of a HCP elec-

Rz/N

N C4

R4/N ~
'UUL

i
'UUlq

NCsJ

Rs/N

N C4

Rs/N R4/N ~
'UUL

i

'UUL
i

'LfUlq

N Csg N CsJ
4

R./N
z,

N Ci

Z 1+1

—Zi+2 ~
Z i+3

1+2

Y,.

N C4

FICx. 9. Equivalent electrical circuit for HSP electrode. The
impedance Z;, obtained by taking a subcircuit at the right of
each dot (see top of the Sgure) just corresponds to that of N'

pores of ith rank seen in parallel.

to {iogarithmic scale)

FIG. 10. Bode diagram study of HSP electrode. The inset il-

lustrates the recursion relation [Eq. (51)].
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trode. By this we mean that they are topologically
equivalent. In that case the predicted exponent is
lnN/ln(2N) for the Koch profile, irrespective of the frac-
tal dimension as in Ref. 14.

A most interesting point is that, here again, the im-

pedance at a given frequency co/2m. is seen to arise from
cavities of a given size b =b0a, namely, from Z, such
that

i.e.,

R„N '(2N)" "C„co-1,

v- ln[pyboco(2N/a )"]/ln(2N /a) .

A noticeable point, however, is that Z„does not
represent the impedance of all (2N)" /2 cavities of size b„
in the system, but only that of those N" such cavities
which are accessed directly from the surface of the larg-
est one. In other words, the cavities of size larger than b„
will behave effectively as open switches and will prevent
the ac potential excitation from reaching the smaller cav-
ities branched on their walls, so that only the cavities
smaller than b„and directly branched on the largest size
cavity will participate to the impedance of the system.

These findings may tentatively be used to describe the
behavior of a practical porous electrode. As suggested by
Fig. 11, the HSP appears to provide a picture not too far
from a realistic porous medium in that all sizes of cavities
may be connected to the wall of a cavity of given size. A
more general model would be one where a nth-rank cavi-
ty gives access to N& cavities of rank n+ 1, N2 of rank
n +2, . . . , Nk of rank n +k, . . . . The HSP model cor-
responds to Nk =N", whereas the BSP corresponds to
N, =N and Nk (k & 1)=0.

A porous medium may be modeled, for example, by a
piece of material where random spheres have been re-
moved, say, K" spheres of radius b„=ho/a", located
at random positions, for n =0 to p. In such a model
the average number of (n +k)th-rank cavities branched
on a given nth rank cavity is -K"+"a
=(K/a )"(Kia)". This is just of the form N" as for the
HSP if E=a, in which case N =a, and
D= ln(2a )/lna, where g= lna/1n(2a) [in this special
case we accidently get ri =1/(D —1). . .].

The impedance in the general case would, however, be
more difficult to determine. Also, a realistic model

should include randomness of the sizes of the cavities and
connecting channels, and allow that a cavity inside the
electrode be accessed from the surface through a non-
monotonic series of cavity sizes (i.e., large cavities might
be accessed through smaller ones). We believe that the
latter improvements would lead to exceedingly difficult
calculations, but would not change the result signifi-
cantly, especially in view of the above-demonstrated abili-

ty of a single large connecting cavity for generating a
dead end at the higher frequencies. A plausible model for
a practical porous electrode therefore appears as a Aat
surface with various HSP's branched in parallel (e.g., 1

HSP of largest size index 0, N HSP's of index 1, . . . , and
N" HSP's of index n, . . . ). As we have seen, a single
HSP just behaves like an RC circuit if the series resis-
tance is not subtracted. It then presents a Bode diagram
with a "shoulder" and a parallel branching of such
circuits will give rise to CPA. The impedance of
such an electrode is just Ro( jco/coo)", with Np

=[ROC (2N)l" /2] ' and ri= ln(N/a)/ln(2N/a), in the0 p
2range coo«co«1/R„C„,and for N &a, a /2, whereas

its fractal dimension is ln(2N )/lna.
In conclusion, these various examp1es confirm the

view, already emerging from the Sierpinski electrodes,
that the CPA regime and exponent for a blocking elec-
trode have little to do with its fractal dimension and even
with its fractal nature. Rather, a most important point
seems to be whether the scaling elements are mounted in

series or in parallel. Parallel elements will easily lead to
CPA behavior, whereas serial elements can only do so if
the characteristic time constant of the element increases
with decreasing element size (e.g., the Liu electrode).
The example of the HSP electrode is instructive in this
respect, as it involves parallel and serial character at the
same time, and it appears clearly in the course of the
evaluation of the impedance that the exponent essentially
arises from the parallel mounting of the Z„'s.

Figure 12 shows the accessible pores of a porous elec-
trode of the type shown in Fig. 11. At a given frequency
all these pores are not equally active. Only those which
are accessed through pores of size ~ b„play a role at that
frequency. This is to be related to the known fact that in
practical porous electrodes only a small part of the sur-
face is really active.

ELECTRODE

ELECTRODE
10 it 0h 0

~
1)i - |r (L

Ey ~ '

r' ii
h, ~~~-

ELECTROLYTE

FIG. 11. A quasiporous system build from superposition of
hyperbranched spherical pores. All the pores are active in the
diffusion regimes described in Sec. IX.

ELECTROLYTE

FIG. 12. Possibly active pores of a porous electrode in the
blocking or nonblocking regime with no diffusion. This is

equivalent to the electrode of Fig. 11 where buried pockets are
inactive at all frequencies. Active pores at a given frequency are
shown by hatching. Only the regions connected to the external
surface through spheroids of size ~ b are active at a given fre-

quency. The critical size b of the "entry" is proportional to
AP

—lna/( jn2+2 InN —Ina)
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VII. dc FARADAIC RESPONSE AND ROLE
OF THE INTRINSIC SURFACE PROPERTIES

We can deduce the dc response from the ac response if
we use the fact that the response is an holomorphic func-
tion of the variable r+(jyco) ' as we have discussed in
Sec. IV. In order to obtain the response we have only to
replace jyco by r ' in Eq. (21) and

Yd, -(Lao lr )(aor IL p)' (53)

One can verify easily that the admittance of a fractal
system is enhanced by the fractal geometry as compared
to the admittance of a single pore of side ao. The most
interesting comment on Eq. (53) arises from the power
dependence of the admittance as a function of r and p.
The admittance is proportional to r ". This result, al-
though it is obtained in a somewhat trivial geometry, is
not trivial. It means, for instance, that dividing the sur-
face resistance at the very surface of a porous electrode
by a factor of 2 will not double the current. The current
is not proportional to the electrolyte conductivity but
rather to p" '. As a consequence, the macroscopic
coefficient of response across a fractal interface is not
proportional to the microscopic transport coefficients. A
power law depending on the hierarchy relates these fac-
tors. This conclusion could have applications in several
systems found in nature or built to have large surface
porous structures. One should also note that none of
these responses are proportional to the square of the size
of the object. Although one has neglected the resistance
of the small electrolyte layer between the two electrodes,
there exists an effective finite real admittance YF„in
series with the CPA element.

The same type of discussion appIies to the different
geometries considered above: It shows that in general,
apart from diffusion effects, a number of electrodes, frac-
tal or nonfractal, may exhibit an impedance of the form

Z ac R,~+[Yd, +k(jco}"] (54)

This is the form that was empirically introduced to de-
scribe rough or porous electrodes [1,3] but the purely dc
part of it (R„+Yd, ') is also geometry dependent in a
nontrivial way. This conclusion could have applications
in several systems found in nature or built to have large
surface porous structures.

The same kind of argument permits us to predict the
response of a SE in the case where the surface itself has
an intrinsic response of the form (jco)r even for a planar
surface. This is often the case practically and can be
qualitatively attributed to random microscopic transport
near the interface. In that situation the response should
have the form Y-(jco)x". This permits one to under-
stand quantitatively the experimental results of Keddam
and Takenouti who measure y=O. 89 and g=0.5.

The same argument might be taken to conclude that an
exponent g/2 will be found in the presence of a diffusion
impedance. We could consider that the surface itself has
a specific admittance of the form j yco+(r +Z }'. The
admittance of the electrode being an holomorphic func-
tion of co we would find the diffusive response by replac-
ing yco by (Z) '~(jco)' in the diffusive regime and

obtain an exponent ri/2. We will however see in Sec. IX
that further complications arise at low frequencies so that
this result is not general. The reason is that when the
diffusion length is too large one cannot consider a surface
admittance for a fractal surface.

VIII. EDGE EFFECTS

z2I= V(8a„/np)f x '.dx .
1

(55)
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FIG. 13. Electric field lines in the very high-frequency re-
gime in which edge effects are dominant.

Most of the above examples (i.e., the various Sierpinski
electrodes or the Liu electrode} involved pores, which
were treated in the de Levie approximation, that is, as
one-dimensional lossy lines. This approximation is valid
in the regime where the penetration depth A,„=(a„/
4pyco)' =(a„A/4)' is much larger than the lateral di-
mension of the pore a„.At frequencies co&1/(4pya„)
this condition is violated and the map of the current lines
across the pore has to be considered in more detail.
Here, we will study these edge effects and examine the
modifications that they imply on the above results.

Let us reconsider the case of a single pore at a very
high frequency [co»1/(4pya„)]. As was assumed in
Sec. II, we take the counter electrode in the plane of the
opening of the pore, and the front surface of the electrode
is isolated (e.g. , by an insulating varnish). Since the fre-
quency is very high, the capacitance of the pore walls
acts almost as a short circuit, and the current lines are
concentrated near the edges of the opening. Then for
convenience this opening may as well be simulated by a
rectilinear corner of length 4a„(seeFig. 13). At very
high frequency the pore wall may be considered as a
short circuit, the potential in the vicinity of the wall
[lim 0+ V(x,y)] is constant, hence the current lines end
normally to the wall except very near the corner as
shown below. From the Poisson equation, it then follows
that the current lines are simply quadrants centered at
the edge. The current lines ending between x and x+dx
carry the current V/(pox /8a„dx ), hence the total
current is
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Y=I/V =(8a„/mp) In(a„/A) . (57)

The x values smaller than x
&

actually bring also a contri-
bution to Y, of the order of jyco4a„x,-4ja„/p. This,
however, does not change the order of magnitude of the
admittance. It is seen from Eq. (57} that the admittance
is of the order of a„/p and depends only weakly upon the
frequency. This may be understood intuitively: a series
resistance of order p/a„(i.e., a cube of dimension a„)is
the minimum price that the current has to pay for enter-
ing the pore. The logarithmic dependence of Y upon co

exhibited by Eq. (57) is somewhat embarrassing for the
following, though it does not bring anything to the re-
sults. Moreover, it is probably unphysical, as it arises
from the very peculiar geometry that we have taken for
the counter electrode. For these reasons, we will rather

The higher integration bound x2 should obviously be tak-
en as a cutoff length of order a. The lower integration
bound x, is given by the point where the short-circuit ap-
proximation for the wall capacitance ceases to be valid.
This occurs when the conductance of the channel ending
between x, and x

&
+dx is of the same order of magnitude

as the associated wall susceptance, that is,

(I lp)(8a„dx/nx
&
)-y4a„codx, (56)

hence x, —A and

take for the edge-limited admittance a constant value
Y,„=pa„/p,where g is a dimensionless constant of the
order of a few units. The resulting admittance of a single
pore as a function of co now exhibits three regions,
sketched in Fig. 14(a). The central co' regime will sur-
vive provided the pore is long (L„»a„}.We will now
examine the consequences of these edge effects upon the
admittance of the Sierpinski and Cantor bar electrodes.

Figure 14(b) shows the various parallel contributions to
the admittance that will occur for a Sierpinski electrode.
The largest pore (ao, L) will give the dominant contribu-
tion in the co'/ region (ao/4pyLO «co«g /4pyao).
For smaller pores, however, the co' region will extend to
lower frequencies (the crossover frequency from co to co'/
scales as a„/L2, hence decreases with decreasing pore
size), but also to higher frequencies (the crossover fre-
quency from co'/ to co scales as I/a„,hence increases
with decreasing pore size). As seen in Fig. 15, the contri-
bution of the smaller pores may become dominant as well
for co »g /4pyao as for co «ao/4pyLO. In the lower
frequency range, the total admittance will be ruled by the
exponent g calculated in Sec. II. A new exponent g' will
appear in the higher frequency range co»g /4pyao. It
is given by g'= ln(N/a)/lna=(lnN/lna) —1. For the
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FIG. 14. (a) Bode diagram of a single square pore when edge
effects are taken into account. (b) Bode diagram study of the
generalized Sierpinski electrode in the presence of edge effects.

(logarithmic scale)

FIG. 15 (a) Bode diagram of a square pore in a system with
only diffusion and Faradaic resistance. Curves (1) and (2) corre-
spond, respectively, to a large pore and a small pore (n &p ). (b)
Bode diagram of the generalized Sierpinski electrode in the
diffusion plus Faradaic resistance regime. The two exponents
are directly related to the fractal dimension.
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generalized SE one has 0 & g' & 1/2 in the allowed range
for (N, a, a, ). In the special case a, = 1 it gives
q' =D —2 = 1 —g but in general it cannot be a function of
D as it is independent of a, .

For the case of the Cantor-bar electrode, the pores are
in series and it turns out that the edge limitation has no
effect on the result. No CPA behavior due to edge effects
will exist in this case.

In summary, it appears that edge effects may introduce
new frequency domains where the admittance will follow
a CPA behavior with a specific exponent. It is not clear,
however, that the above exponent g' for the Sierpinski
electrode will be observable in practice: for example it is
doubtful that the front surface of a practical electrode
can be insulated, and the co" behavior can be partially
masked by the shunting capacitance of the front surface.
The possible existence of edge-ruled regimes should not,
however, be overlooked in general, especially in the case
of electrodes made of needles instead of pores.

V=(kT/ze) [in[(c,„+5co)/(c„d—5co)]
—ln(c,„/c„d)],

V =(kT/ze)5co(c, „'+c„,d ),
(58)

and the concentration profile 5c(x) will be ruled by the
diffusion equation

IX. DIFFUSION EFFECTS

In Sec. VII we have considered the effect of a Faradaic
resistance in parallel with the interface capacitance.
However, we have not taken yet diffusion effects into ac-
count. We recall that an electrochemical reaction
("Faradaic process") may become diffusion limited when-
ever "indifferent" charged species (i.e., nonparticipating
to the electrochemical reaction) are present in the electro-
lyte simultaneously as the "electroactive" participating
species. If a large concentration of indifferent species ex-
ists and a small potential step is applied, the interface ca-
pacitance will be charged after a short time because the
solution is suSciently conductive and the applied poten-
tial will then appear across the interface. A large initial
Faradaic current will then flow, but this will change the
concentrations of the electroactive species in the vicinity
of the interface. If the transfer kinetics is not rate limit-
ing, the surface concentrations will be imposed by the
value of the potential. Since the solution is highly con-
ductive, no electric field will be left and the only driving
force for bringing new electroactive species to the inter-
face will be the concentration gradient, through a
diffusion process. To calculate the diffusion impedance
Z+ one considers small concentrations c„dand c,„ofthe
species "red" and "ox" which participate in the electro-
chemical reaction: reducing agent red~oxidized
agent ox+ze . For convenience, we will assume that
both the reducing and oxidized agents have the same
diffusion constant 2). When a planar electrode is submit-
ted to a small applied potential Re(Ve~"') (V &&kT/e)
the surface concentrations will become c, d 5cp and
Co +5cp with

jco5c=$8 5c/Bx',

hence

5c(x)=5co exp( —x/A&) with A& (——2)lj co)'

The electrochemical current will be

J=—ze2)(85c/Bx)„o——ze(jco2))' 5co .

(59)

(60)

(61)

and defining

c = (z e /k T)c„dc,
„
/(c„d+c,„), (63)

Yg) =Z~' =Sc(ja)D)' (64)

The quantity c is a capacitance per unit volume; we call it
specific diffusive capacitance. Then in the case of a
sinusoidal perturbation, one will find the so-called War-
burg impedance behavior Z&cc(jco) ' for a flat sur-
face. It is interesting to write Eq. (64) in the following
form:

i Y~ i
=S(2)/co)' ceo (65)

because it tells us that the diffusive admittance is simply
that of the capacitance of the diffusive volume. We show
below that this can be extended to fractal surfaces.

The case of a diffusion-limited process at a fractal elec-
trode has been considered by Nyikos and Pajkossy for the
Koch-island electrode. We wi11 first show that their re-
sult also holds true for Sierpinski electrodes and is, in
fact, quite general. We will see that the diffusive response
of a fractal electrode is directly related to the exterior
Minkowski-Bouligand dimension. The notion of a
Minkowski-Bouligand neighboring is shown to apply
very generally to any surface, fractal or not. Then, we
will consider the changes that occur when the Faradaic
resistance and electrolyte resistance are not neglected.
Finally, we will incorporate the interface capacitance and
deduce a typical behavior for a practical Sierpinski elec-
trode.

A. Di8'usion alone

Equation (65) states that the charge passed through the
interface during a cycle corresponds to the diffusive ca-
pacitance contained in the diffusion layer of thickness
-(2)/co)'~ . If the electrode is now a pore of length L„
and edge a„,at high enough frequencies (co»2)/a„) the
diffusion depth (2)/co)'~ will be much smaller than a„
and the admittance wi11 be

YHz =c(j col))' X4a„L„. (66)

Physically, this means that the charge passed through the
interface during a cycle corresponds to a number of
species in a concentration Sco contained in the diffusion
layer of thickness A&-(2)/co)'~ . The associated admit-
tance for an electrode area S is

Y~=Z~' =JS/V

=S(z e /kT)[c, „c„d/(c„~+c,„)](jcol))'~

(62)
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In the opposite limit co «2)/a„, the equilibrium concen-
tration will be reached at any time in all the volume of
the pore, hence the current passed through the interface
will correspond to a concentration 5cp in the volume

a„L„;hence

ILF =zejco 5Cp Q L„2

YLF —cjcoQ~L„

(67)

(6g)

The diffusion admittance for a pore is therefore qualita-
tively similar with the admittance considered in Sec. II
(an (o regime followed by a (o'/ regime}, but here the
scaling behavior of the crossover point is given by
(o„~1/a„and

~ Y, „~~L„W.hen a generalized
Sierpinski electrode is considered, this gives an exponent

i)&= ln(N/a, )/21na=(D —1)/2

using Eq. (26). This result is the same as that found by
Nyikos and Pajkossy for a Koch-island electrode. We are
going to show here that this agreement is not fortuitous
and that ri&=(D —1)/2 is a general result for the
diffusion admittance at a fractal electrode.

The general form of the diffusion admittance at a frac-
tal electrode can be found by considering the number of
species v(co), in a concentration Sco, contained in the vi-

cinity of the electrode surface up to a distance of the or-
der of Az) - (2)/co )

'/ . The admittance is then

~ Y~ —v((o)(ze(o/V). Now, according to the exterior
Minkowski-Bouligand fractal dimension, the volume lo-
cated within a distance A& from the fractal varies as

hence v(co) ~ Q((2)/(o)' ) 0:m' ' and

~
Y(ai)~ a:co( "/. More precisely, if a fractal electrode

has a macroscopic surface S the content of the neighbor-
ing Q(A&) is equal to S /

A& and using Eq. (65) with
this diffusive volume, one obtains

2}&——ln(N/aa, )/lna=D —2, (71)

valid whatever the value of D between 2 and 3.
This exponent again seems to be quite universal. Its

validity can be verified, e.g., for the spherical-pore elec-
trodes considered above whatever their structure. This
may be understood intuitively as follows: because the
electrolyte is equipotential, a small electrolyte pocket of
size b acts as an elective capacitance of order cb in
series with a Faradaic resistance of order r/b . Hence
the BD of a pocket of size b„hasa characteristic frequen-
cy co„oforder crb„'. As the frequency is increased,
smaller pockets are being probed. At a frequency m the
behavior will be governed by the pores of size A'

tween the two regimes occurs at a frequency
co&——I/2)(cr ) obtained by equating Eq. (64) to Sr

In the case of a pore of a generalized SE, two kinds of
behavior may occur depending upon whether this cross-
over appears above or below the co to co' crossover fre-
quency quoted above. These two cases are represented in
Fig. 15(a). If a„)&42)cr,one will find the co regime at the
lowest frequencies, followed by the co' regime above
(o-16$/a„, itself followed by the aP regime above coz).

If a„«42)crthe ro regime will directly turn to the co re-
giine above co-4/a„cr. When a generalized SE is con-
sidered, Fig. 15(b) shows that two regimes may be ob-
tained. The (o to co'/ crossover point scales as ro ~ 1/a„,

~ Y~ 0:L„, hence the exponent g&= ln(N/a, )/2 lna
=(D —1)/2, already found in the diffusion-only case.
This regime, however, will stop at the higher frequencies
co & co and it will be followed by a regime determined by
the smallest pores, for which the admittance turns direct-
ly from co to co. The scaling of this crossover point
(co ~ 1/a„,~

Y~ cc a„L„)then yields a new exponent

~

Y ) SD/2~(3 D)/2c (D ——1)/2S I
(69)

A'=(rcco) (72)

Here again, there is an anomalous power-law behavior
related to the fractal geometry. In the limit D =2 one
obtains the usual diffusion admittance of Eq. (64). One
should emphasize that this reasoning is general: for any
surface a volume Q(A&) =Q((2)/(o)'/ ) exists and the ad-
mittance is

n(A')=S / (A') (73)

We have then a parallel connection (because the
volume is equipotential) of n(A') circuits of admittance
(A')2r ' and the admittance of the electrode is

which, in a fractal surface of macroscopic size S, are in
number n(A')

(70) Y=n(A')(A') r '=S r '(rcco) (74)
This relation provides the principle of a new kind of

measurement of surface roughness. It is usable for any
kind of surface at the condition that diffusion is the limit-
ing step to the electrochemical transfer. We will now
consider what happens when the Faradaic resistance
and series resistance of the electrolyte are non-negligible.
We will mostly restrict this discussion to the case of
Sierpinski electrodes.

B. Diffusion and Faradaic resistance

At high enough frequencies, the diffusion admittance
of a planar electrode becomes larger than the Faradaic
admittance itself, and the overall admittance then stays
constant upon further increase of co. The crossover be-

I

The change of behavior from co to co
'

will occur for
co&- I /2)(cr) For typica. l values (2)-10 3 cm /s,
c —10 F/cm, r —10Qcm ) this gives'&-10 ' s ' and
the critical pore size a„-4Xlcris -0.1 mm. This seems
to indicate that the diffusion-only regiine (ri& (D —1)——
/2} will hardly be observed except at very low frequen-
cies or for systems with a very small value of r.

Note that when D =2 the admittance is Sr ' as ex-
pected in the Faradaic regime for a planar electrode.
Here again the admittance presents power-law depen-
dences as a function of the physical parameters of the sys-
tem r, c,S, and co. The same kind of approach can be ap-
plied to any kind of surface, fractal or not, as long as it is
made of relatively closed pockets.
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The very general reason for which one can relate these
regimes to the fractal dimension is that, due to the pres-
ence of the support electrolyte, the volume of the electro-
lyte is electrically equipotential. The electrochemical po-
tential is nonuniform on a scale of the order of the
diffusion length. The cause for this nonuniformity is the
electrical potential drop at the exchange surface. Since
the electrical potential is uniform, this excitation is con-
stant over the surface. As a consequence, the perturba-
tion occurs only very near the surface and the flux at
son~.e point on the surface is a local response. The ionic
diffusion mechanism itself always takes place in the Eu-
clidian space occupied by the electrolyte and is not per-
turbed by the presence of the fractal surface which acts
only as a boundary. It is therefore not surprising that
this flux can be related to some dimension through a "fat-
tening" of the surface as done in the Minkowski-
Bouligand approach.

On the contrary, if the resistance of the electrolyte
plays a role, the electrolyte is no more equipotential and
the response is no more local. In that case the admit-
tance is not related to the local properties of the interface
as characterized through the fractal dimension.

species are in a concentration much smaller than that of
the indifferent species.

It is then found that the potential modulation
penetrates into the pore to a characteristic depth A„
-(4p/(/~a„) ', i.e.,

V(x) = —(pA„/a„)I(x) cosh(x /A„),
Y=(a„/pA„}tanh(L„/A„).

(75)

(76)

Since ~g~ is a monotonically increasing function of ro, the
penetration length A„decreases with increasing frequen-
cy. For frequencies below a critical co„one will then
have A„»L„,hence Y—a„L„/pA„=4a„L„/g (the
series resistance of the electrolyte is negligible}. For fre-
quencies larger than co„then A„&&L„and

Y-a„/pA„=[(a„/pL„)(4a„L„/g) ]'

In other words, the admittance is the geometric mean of
the interface admittance and the series conductance of
the channel.

We will first limit the discussion to the joint effects of
diffusion and electrolyte resistivity. The admittance of a
single pore is shown in Fig. 17(a). Two cases may be en-

C. Taking the series resistance of the electrolyte into account

The derivation, given in Sec. II, of the potential distri-
bution along a pore in the de Levie approximation, can
be revisited for an interface admittance more general
than the simple r, y model of Sec. II. In general, for a
planar interface, the admittance will be dominated by
diffusion at low frequencies, and by the interface capaci-
tance at high frequencies; a plateau may possibly appear
at intermediate frequencies due to the Faradaic resis-
tance, as shown in Fig. 2. In the case of a pore, the
diffusion regime will further exhibit the co regime at the
lowest frequencies, as explained above. Calling 1/g(ro)
the interface admittance per unit interface area of the
pore wall (sketched in Fig. 16) de Levie's calculation still
holds true, provided that (jyco+r '} is replaced by
I/g(co). This is not completely obvious in the lowest fre-
quency regime (co&&2)/a„) as diffusion along the pore
might affect the result. However, one can check that this
effect is negligible in the case where the electroactive
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FIG. 16. Bode diagram of the "equivalent" admittance of the
surface of a pore including the diffusive low-frequency regimes.
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FIG. 17. (a) Bode diagram of the admittance of one pore in

the diffusive plus electrolyte resistivity regime (low-frequency

part). Two cases are shown, depending upon the pore size

(n &p). (b) Bode diagram of the generalized Sierpinski elec-
trode in the diffusive plus electrolyte resistivity regime (low-

frequency part). The low-frequency exponent depends directly
on the fractal dimension whereas, at higher frequencies, a
different exponent appears. This last exponent is not related to
the fractal dimension.
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countered. If a„/L„»16pc2) three regions will be
found: cu at the lowest frequencies, then co' for co

& 16$/a„, then co'/ for co&a„/16p c2XIL„. If a„/L„
«16pcg) three similar regimes will be found, but the
crossover frequencies will be 1/pcL„(for the ca to co'

crossover) and 168/a„(now for the co'/ to co'/ cross-
over).

The resulting behavior for the Sierpinski electrode can
be seen in Fig. 17(b}. The situation is made somewhat
complex by the crossing of the two crossover frequencies
upon varying pore size. A critical pore size occurs for
a„,/L„,—16pc2), which means

n, —ln(ao/16pc2)LO )/In(a/a, ) .
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We will call ca, the associated frequency (ca =16$/

Y, the contribution of those pores. The pores larger than
the critical size (a„/L„»a„,/L„,) yield an admittance
behavior [Y~ —~Y, ~(co/co, ) for c0&&co, and ~Y[ —~Y, ~

(ca/co, ) for co »co, with riz, = In(N/a, )/2 lna
=(D —1)/2 and g&s= in(Na, /a )/21n(a, /a), which is
not a function of D (actually t)&s=ri/2, which lies be-
tween —,

' and —,'). The pores smaller than the critical size

(a„/L„«a„,/L„,) yield a behavior
~ Y~ —

~ Y, ~(co/ca, ) for
co &(m„which is negligibly small compared to the contri-
bution of the larger pores. For co &)co„the higher cross-
over point follows a line with slope In(N/a)/21na.
However, for the allowed range of N and a, this quantity
is smaller than —„hencethis contribution is negligible.

In conclusion, one finds the diffusion-only exponent
(D —1)/2 ——for co « co„anda regime

~

Y
~

a: c0
'D~ for

to»ca„with ri&s ——rl/2= ln(Na, /a )/2 in(a, /a). This
exponent ri/2 was indeed expected from our discussion of
Sec. VII. The contribution of the larger pores
[a„/L„»a„,/L„,=4(pcS) ' ] will be dominant at
every frequency. The practical values of p, c,S (typically
a„,/L„,—10 ', which is not very small} may make the
observation of these laws uncomfortable. The discussion
of the case of the joint effects of diffusion, electrolyte
resistivity and Faradaic resistance is done in the Appen-
dix. In this case there are three exponents as the frequen-
cy is increased (see Fig. 18). The low-frequency exponent
is always (D —1)/2 and the high-frequency exponent is
0, but for the intermediate frequencies the exponent may
be or not a function of the fractal dimension.

D. Towards a complete description of the Sierpinski electrode

Section IX C has brought together the various elements
associated with a Faradaic process. The interface capaci-
tance can be incorporated simply by putting "in parallel"
the resulting admittance with the results of Sec. II. Upon
increasing frequency, one then generally expects an
co' " regime characteristic of diffusion, then an inter-
mediate regime co or m, depending upon whether
series resistance or Faradaic resistance is the first limita-
tion coming in, then an co regime. The blocking regime
oc co" is expected to appear at higher frequencies. Howev-
er, depending upon the system (e.g., concentration of
electroactive species}, the co" regime may well wash out

C5

CO

~~
E

~~
t5
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O

Fill/&
ft) (logarithmic scale)

FIG. 18. Bode diagram of the generalized Sierpinski elec-
trode in the diffusive plus Faradaic plus electrolyte resistivity
regime. (a) Low-resistivity case [L p/r'c2) «(ao

2(lna /lna)
/4rc2)) ' ]. Here the two low-frequency exponents both
depend directly on the fractal dimension. (bj High-resistivity

2(lna /lna)
case [L p/r c2)»(ao/ 4rc2)) * ]. Here the low-
frequency exponent depends directly on the fractal dimension
but at intermediate frequencies a different exponent which is not
related to the fractal dimension appears.

one or several of the regimes associated with the Faradaic
process. Furthermore, it may occur that g is smaller
than (D —I)/2. In such a case, the capacitive admit-
tance ~co" would reappear at the lowest frequencies.
This surprising result may be understood as due to the
smallest pores, which give essentially a capacitive contri-
bution.

X. CONCLUSION

Unfortunately, this discussion does not even exhaust
the very limited problem of the Sierpinski electrode. All
these calculations have been performed assuming that no
dc current is flowing in the system, which is far from be-
ing the case in most practical situations. The presence of
a dc current flowing would make the (potential-
dependent} Faradaic admittance vary from one point of
the interface to another. This would complicate the
problem considerably and most probably the results
would be affected. We will not consider this complicated
case in this paper. Keeping in mind the linear-response
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regime we draw below the principal results of that work.
(1) The frequency response of a porous electrode de-

pends directly on the electrochemical regime.
(2) For parallel structures we have demonstrated that

the frequency response of a blocking electrode is of the
CPA type but the exponent is not a function of the fractal
dimension. The same exponent is, however, conserved in
a limited frequency range for a nonblocking electrode. In
this situation the value of the exponent depends on the
type of hierarchy. This is exemplified by the case of
parallel spherical pores (PSP) which possess CPA
response when nonfractal and behave like an RC circuit
when the surface is fractal.

(3) In the "diffusion" or "diffusion and Faradaic" re-
gimes the response depends directly on the fractal dimen-
sion for a fractal surface. This is related to the fact that
the physical effects which determine the response are lo-
cal in contradistinction with the high-frequency blocking
regime. Two exponents can be found for different fre-
quency ranges.

(4) We recall that diffusion effects can appear only in
liquid electrolytes where there exist at least two kinds of
mobile ions. They can appear in solid mixed electronic
plus ionic conductors. They cannot appear in ordinary
solid electrolytes with only one kind of mobile ions.

(5) In general, starting from low frequency a fractal
electrode may present a g=(D —I)/2 regime then fol-
lowed by a g=D —2 regime, then followed by a g=0 re-
gime, itself followed by a regime where the exponent
indeed depends on the hierarchy but not through the
fractal dimension. At very high frequencies where edge
effects are dominant, a last type of exponent may appear
which for a generalized Sierpinski electrode is equal to
(1nN l Ina) —1 irrespective of the fractal dimension.

(6) The case of a fractal PSP is a limiting case where
the diffusive response would be of the CPA type whereas
at higher frequency a simple RC response is obtained.

(7) In all the cases that we have examined the admit-
tance of a fractal electrode is not an extensive quantity:
It is not proportional to the macroscopic apparent area of
the electrode.

(8) The response is not proportional to the microscopic
transport coemcients either. The admittance presents
power-law dependences upon electrolyte resistivity, ex-
change resistance, specific capacitance, diffusion coef-
ficients, and frequency.

(9) A necessary condition to have a CPA response in
the parallel scheme is the existence of a "shoulder" in the
Bode diagram of one element.

(10) Whatever the electrochemical regime the behavior
of a fractal electrode is not related to the smaller details
of the geometry in the regime in which it exhibits CPA
behavior. In this case the response is governed by pores
which have a characteristic size directly related to fre-
quency. Scanning the frequency sweeps various pore
sizes of a porous electrode.

(11) We have provided a model for a random porous
interface which exhibits CPA behavior. The essential
condition is that the hierarchy implies a direct parallel
branching of the smallest elements on the largest holes.
For this system not all the pores of a given size are

equivalent. Only a part of the porous structure inter-
venes practically in the exchange in the frequency regime
where capacitive effects are dominant. In that situation it
is not the fractal dimension obtained through a uniform
"measure" of the surface which plays a role. The
response could perhaps be related to a nonuniform "mul-
tifractal" measure or to some definition of the dimension
which involves the accessibility. Of course, at very low
frequency where diffusion dominates the entire structure
participates to the current.

(12) Due to the fact that the response is linear, the ad-
mittance of a fractal electrode is an holomorphic function
of the frequency. In consequence the small signal dc
response is directly related to the small signal ac
response, at least in the absence of diffusion effects. All
the results that are obtained for the ac response in vari-
ous geometries in the blocking regime can be connected
to the dc response. This permits immediate transposition
to the study of constant Aux through fractal surfaces, like
membranes, lungs alveolas, and plant roots as indicated
in Ref. 30.

This is perhaps the most promising aspect of our re-
sults that we can condense in the following manner:
studying, theoretically or experimentally, the frequency
response of an electrode with, rough, porous, or fractal
interface is equivalent to the study of the dc Aux across
the same interface. But as shown in Ref. 30 the problem
of the steady state -Aux of neutral species governed by
diffusion in a volume across a membrane of the same
geometry is exactly equivalent.

It is then possible that in the future it will be possible
to study a number of natural processes occurring in phy-
siology or agriculture by only measuring the frequency
dependence of the response of a model electrode of the
same geometry.
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APPENDIX

The admittance of a single pore, in the presence of
diffusion and Faradaic resistance, has been discussed
above. Two cases were considered, depending upon the
existence of an co' region. Now, the inclusion of the
series resistance of the electrolyte leads us to considering
five cases (1)—(5), shown in Figs. 19(a) and 19(b). Large
pores (a„&&4rcS ) lead to three regimes in the absence of
series resistance, hence cases (1)—(3) depending upon the
relative magnitudes of a„/pL„with respect to 4a„L„/r
and 16c2)L„.Small pores (a„«4rc2))do not exhibit the
co' intermediate regime in the absence of series resis-
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FIG. 19. Bode diagram of single pores in the diffusive plus
Faradaic plus electrolyte resistivity regime (low-frequency part).
(a) Large pores (i &j & k); (b) small pores (I & m ). These two
cases correspond to the two cases of Fig. 15(a), but now with the
resistivity of the electrolyte taken into account.

tance, hence only two further cases (4) and (5) depending
upon the magnitude of a„/pL„with respect to 4a„L„/r
When the Sierpinski electrode is considered, it appears
that, upon decreasing pore size, one will successively
meet different cases, from (1) to (5), but two different
types of sequences may be encountered.

(i) (1~4~5) if L„&&rcJ)/p when a„=4rc2). This

21na /1na
will occur if L p/r col«(ao/4rc2)) ' . The fwo
regimes of Fig. 15 will then be found. However, a third
regime will appear at the higher frequencies, due to the
occurrence of case (5) for the smallest pores. The ex-
ponent might be determined by the scaling behavior of
the ro'r to co crossover point (co~ I/a„,lYl ~a„),
hence an exponent In(N/a ~ )/Ina. This, however, is
negative in the allowed parameter range. One will then
simply get a plateau for to&to,'=4/a„',cr at a value

I

Ym,„-N'[4(a„',) /pr]', where a„', is such that
a„',/(L„',) =4p/r [see Fig. 19(a)]. This gives

( 4 3 x x 1/2I, 4 2, (lnN —3 1na/2) /(1na —2 1na

We recover here the value of the pure Faradaic admit-
tance, as found in Sec. VII. It is to be noticed that the
pores smaller than a„',give a negligible contribution to
the admittance at all frequencies.

(ii) (1—+2~3~5) if L„&&rc2)/p when a„=4rcXl,
21na /1na

that is if L p/r c2) »(ao/4rc J)) ' . The situation
here is more complex, as can be seen in Fig. 19(b). How-
ever, only three regimes are found: upon increasing fre-
quency, one successively finds the (D —1)/2 regime of
diffusion, then a regime determined by the co' to co'

crossover point of case (2) [the corresponding exponent is
ln(Na, /a )/2ln(a, /a)=rl&s ——q/2], then finally the ro

regime. The change from co( " to co occurs for
those pores with a„,/L„,=4(pcS)'~ and to, =16S/ „a,.
The change from ro to ro occurs for ro- I /2)(cr ) .

It is to be noticed that the two extreme regimes
to' "~ and to are identical in cases (i) and (ii). The dis-
tinction occurs because of the intermediate regime, which
is governed by the Faradaic resistance in case (i) and by
the series resistance in case (ii).
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