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Ladder operators for the rotating Morse oscillators: Matrix element calculations
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We describe a simple method based on the hypervirial theorem along with a second-quantization
formalism, which allows us to obtain recursion relations without using explicit wave functions for
the calculation of matrix elements such as {exp[—a {r r, )]]"—, {r r, )", —{r r, )"ex—p[ —a {r r, —)],
and {exp[—a(r —r, )]]"(dldr) for the rotating Morse oscillator.

I. INTRODUCTION

There are, principally, two standard theoretical ap-
proaches to solving the vibrational-rotational
Schrodinger equation of a diatomic molecule using the
Morse potential. ' These are the Pekeris and Elsum and
Gordon approximations. Both are based on keeping the
Morse form for the effective vibrational-rotational poten-
tial,

V,tt(r)=D, y +Po+P&y+Pzy

with y =1—exp[ —a (r r, )],—and where the first term of
Eq. (1) represents the unperturbed Morse potential, and
the following three terms are the approximation for the
centrifugal term R J (J + 1)/(2IMr ).

We define the Po, P„andP2 coefficients to be

—a(r r, )]I" o—perator. The procedure used, if J=J',
does not need the explicit use of the wave functions, al-
though it is necessary to first evaluate the overlap in-
tegrals between ~v'J') and ~vJ ) for the J&J' case. The
same method give us recursion relations for the matrix
elements of the xq", q", and q" d /dr operators in terms
of the matrix elements of x. The procedure utilized con-
sists of using certain ladder operators, which modify the
wave-function quantum numbers in such a way as to cov-
er all the spectrum. Once these ladder operators are
known, we can calculate matrix elements between any
two states of the system of any operator which can be ex-
pressed in terms of the corresponding raising and lower-
ing operators. This method has been successfully applied
to several systems, " ' but it is the first time for the ro-
tating Morse oscillator case.

PO=Qo+Q, (1—f)+Qz(1 f)—
P =[Q +2Q (1—f}]f
Pz=Qzf'

with

Qo=D, J(J+1)/(o p ),
Qi = —2QO/p

Qz =Qo(3/p' —1/p),

(2) II. LADDER OPERATORS FOR THE ROTATING
MORSE POTENTIAL

In general, the description of the nuclear motion of a
diatomic molecule is represented by the Schrodinger
equation

d
z
+ V,tt(r) +„q=E„s+„q.

2p dr

where p=ar, and tr=(2pD, )' /(ah). The f parameter
will be equal to 1 or exp[ —a(r r, )], depending on-
whether we use the Pekeris or the Elsum and Gordon
approximations, respectively.

Many efforts have been made in order to obtain matrix
elements analytically as well as through recursion rela-
tions ' ' ' from quantum theorerns such as the hyper-
virial and Hellmann-Feynman theorems. However, ow-
ing to the computational difficulties [see Eq. (2.2) in Ref.
5 and Eq. (11) in Ref. 4] of using analytical equations, it is
preferable, when J&J', to use recursion relations. So,
starting from some analitically calculated matrix ele-
rnents, we can obtain the others by a recurrence method.

In this paper we obtain recursion relations for the
vibration-rotational matrix elements of the x "=

{exp[

Substituting V, (rtr), defined in Eq. (1), and after some
algebraic manipulations, we obtain the differential equa-
tion

n+ozze' —,'e ' R„J(z}—=—0,
dz2

where

z= a(r r, )+ln—(2o J)—,
o J=(2pFz)' /(al),
trJJF, ojl(2Fz)

n =2@(Fo—E,z}/( Aa),
and
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Fo =Po+P] +P2 +D

F, =P, +2(P2+D, ),
F2 —P2+D, .

(7)

2N JJ
&x)„JJ+A &x&

20 JJ &x&::+B. ]&X-&.J. ]. -
20' J

(14)

(15)

Equation (5) can be solved using the factorization
method proposed by Infeld and Hull. ' So, following the
procedure described by Huffaker and Dwivedi' for the
unperturbed Morse oscillator, we obtain a set of raising
and lowering operators, which act on the vibrational
quantum numbers v

Finally, combining appropriately the expressions ob-
tained from the equation

(u'J'iH'x xH—iuJ) =(E„J E„J—)(u'J'ix iuJ) (16)

with Eqs. (9), (10), and (13), we obtain

6+(u)%, =]Ii„+],
G (u)%„+]=]P„,

where

2+JJ6+(u) = A, be '— +2e
b —1

(8)

(9)

4~J+JJ 4aF2a JJ
o,(b -1)0J+]0J2F2a+ EC~(x )U J U+] J EC~+

X(x )„'J ] J+bF, &x &„JJ 0,

HAJJ ~d6 (u) =B„(b—2)e *— —2e
b —1 dz

(10)
with a=0, +1, k2, . . . , and where

(17)

with b =20 JJ
—2v —1 and,

' 1/2
1 (b —2)(b —1)
2 b(b+v)(v+1)

1 b(b —1)
2 (b+2)(b+u)(u+1)

' 1/2

(12)

III. MATRIX ELEMENTS

A. Recursion relations for the ( u'J'~x
~
vJ ) matrix

elements

Making x =exp[ a(r r, ))—and using E—qs. (9) and
(10) to derive expressions for the differential operator in
terms of 6+(v) and G (u), we can obtain the recursion
relation

40 JJb
&x &„.J. „J— &x &„.J. „J+A„&x&„.J,J

CT J b —1

K = EFo —hE—F
a(a+b )

'J H, vJ = E„.J —E„J v'J x vJ

and AFo =Fo Fo hF, =F) —F&, EF2 =F2 —F2, and
bE =E„.J. E„J. —

If we know the overlap integral between the ~vJ ) and
( v'J'~ states, we can obtain the successive powers of x
(positive or negative) using Eqs. (13) and (17), repeatedly.
The improvement over our previous results ' is that we
need only know one power of x to evaluate the rest.

For the diagonal case, J =J', the results are better.
Firstly, we use Eqs. (14) and (15) to obtain all the matrix
elements (x )„J„J.Then, we can derive the matrix ele-
ments of the negative powers from Eq. (13), makingJ=J' and a=O, —1, —2, . . . . We cannot use Eq. (17)
for the positive powers because this equation is a recur-
sion relation between matrix elements of the same power
of x. To solve this problem, we use the off-diagonal hy-
pervirial theorem with the following commutator:

+B„](x )„.J, (13)

with a=0, +1, k2, . . . .
If J=J', using the results (dldz)„J=O, we derive

from Eqs. (9) and (10) the following equations, respective-
ly:

(18)

together with the ladder operators defined previously.
So, we obtain two possible recursion relations depending
on which operator [6+(u) or G (v)] we use,

b +BE +2a(Fo E„)(x )„.J „J——(2a+1)F]—
O'J , +aE &x +')„,,„,b —1 0J2

and

F—crJA„' +DE (x +'),.J,+]J+2(a+1)F~(x + )„J„J=O,
0J

(19)
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b F2 20 J~JJ Fz
+b,E +2a(F0 E—„)(x )„J„J— (2a+l)F, + +hE (x +')„J„J2 o'J OJ

F
cr—jB„& +BE (x )„.J „&j+2( a+1)F2( x + ),J,J=O, (20)

CTJ

with hE =E„J—E„J.
Then we would straightforwardly calculate the succes-

sive powers of x, a=2, 3, . . . , using Eqs. (14), (19), and
(20), starting with a=O and taking into account the
orthonormality condition.

For the diagonal case (J =J'), we can obtain all the
matrix elements (v'J~x ~vJ) for any value of a (positive
or negative), without using the explicit form of the wave
functions, working with Eqs. (13)—(15), (19), and (20).
The results of this section will be used later to derive the
matrix elements of other interesting operators.

2a~v'&x &'J, +ij

+ o,B„—, &x +')„., „

(24)

Finally, we can obtain the matrix elements of the
x (d /dr) operator, using the definitions of the ladder
operators 6+(v) and 6 (v) [see Eqs. (9) and (10)]. Thus
combining adequately both equations, we deduce

2aCT JCFJj
v'J', vJ

B. Recursion relations for matrix elements related
to the q and x operators

Using the off-diagonal hypervirial theorem with the
commutator

IfJ=J', we can use the hypervirial theorem alternatively
to get these matrix elements. So, by the following equa-
tion:

& v'J
I [I q l I

vJ &
= (E.J E„j) & v'J—

I q I
vJ&, (21)

v'J H, x vJ =5 v'J vJ (25)

together with the expressions for the ladder operators
[Eqs. (9}and (10)],we obtain, after some algebraic rnanip-
ulations, the following recursion relations:

AE(q )„j,j=aab(q '),,j„j
+a(a —1}(q )„J„J
—2A, 'ao &q' 'x)„

we derive

2 F2
u Juj ~'+a

2
2 a( UJ Fo }&x &u Juj',dr CTJ

—a(2a+1)F, (x +')„J„J
+2a(a+1)F2(x'+ )„J,j .

(26)

and

4aao Jo Jj
q 'x „,„„

(22) If we make h=E, J —E„J=Oand a=0, we find that
(dldr)„i=0. This result was used previously to derive
Eqs. (14) and (15).

EE&q &J J aab(q' '—)J J

+a(a —1)(q )„J„J
4auu JETJJ+ (q 'x&„,„j

+2B„,ao J(q 'x )„J—]J (23)

with +=1,2, 3, . . . .
If we know the expectation values of ( q

' )„J„J,
which can be derived from the analytical expressions
given in the literature, ' ' we can evaluate the matrix ele-
ments (q )„J,j and (q 'x )„,j +&j, using Eqs. (22) and
(23), alternatively. The matrix elements (q )„.J „jare ob-
tained by setting a= 1 in Eqs. (22) and (23), in terms of
the (x ),.J „+,J matrix elements. This procedure permits
us to evaluate exact matrix elements (v+v', J=J') of the

q and xq operators without the explicit use of the wave
functions and avoids working with complicated analytical
expressions.

IV. CONCLUDING REMARKS

By means of the operators algebra, we can generate
simple closed-form expressions for the matrix elements of
the x, x (d Idr ), q, and q x operators for the rotating
Morse oscillator by a recursive method that obviates the
need for using explicit eigenfunctions (if J =J'). We feel
our equations improve the previous results ' because we
only need the overlap integrals to evaluate all the matrix
elements when J&J', but we do not need to know any ex-
pression for the wave functions when J =J'.

These matrix elements can be used in perturbations ex-
pansions in which the Morse vibrational-rotational states
are used as a starting point. These are utilized in spectro-
scopic problems for polyatomics molecules. ' ' In the
case of dynamics problems such as the vibrational energy
transfer for simple molecules or collinear reactive col-
lisions a better approximations is usually required.
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