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Compound nucleus in Livsic open-system theory: Factorization of the S matrix
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The compound-nucleus system fits into a mathematical theory of open systems in physics
developed by the mathematician M. Livsic [Translations of Mathematical Monographs (American
Mathematical Society, Providence, Rhode Island, 1973), Vol. 34]. In this article we review some
basic concepts of the above theory and apply it to study the structure of the compound-nucleus S
matrix. One of the results is a factorization of the S matrix in the form S(co)=g„[I
+i A„/(rk —tu)], where Ak are known matrices and rk are the complex resonance energies.

I. INTRODUCTION

0 1 co

where co=(k lm )'r, we get the above equation of motion
for the state vector f.

The scalar product in the space of states f is simply
defined as (f,g)=f ~ g, +f2g2 so that (f, f) is twice the
energy of the oscillator. The self-adjointness of the
operator 3 ensures the constancy of (f, f) with time.
Another example is Maxwell's equations with f= (E,H)
and

0
A=

i p 'curl

—i e 'curl

where e is the dielectric constant and p is the magnetic
susceptibility. The scalar product is defined by
J(EELE, +@HEH, )dv so that (f, f) is twice the field en-

ergy.
Yet, in many cases it is required to deal with an open

system which transfers energy or probability to its envi-
ronment. (Although the open system together with its
environment is a closed system). Loosely speaking, any
physical system in which we can speak of input, output,
and interior states can be regarded as an open system.
Thus a quantum-mechanical scattering problem can be
regarded as an open system in the sense that the interior
states are linked with the asymptotic channels. If the
asymptotic channels contain only output channels, we
have a decaying system, the norm of which decreases
with time, in contrast with the constant norm encoun-

Physicists are much accustomed to closed systems
whose states f satisfy the equation of motion

—i =Af,.df
dt

where A is a self-adjoint operator. The first example that
comes to mind is of course the Schrodinger equation
where A is the Hamiltonian. Another example is a free
oscillator mx+kx=0. Defining f, =&mx, f2=&kx,
f=(f„fz), and

tered in closed systems. The theory of electric circuits in
which input and output currents are linked with circuit
elements is another example of an open system.

The study of open systems is intimately related to the
mathematical theory of non-self-adjoint operators. This
theory has been thoroughly investigated by the mathema-
tician M. Livsic. Its relation to open systems is summa-
rized in Ref. 1.

Investigation of the structure of the compound-nucleus
S matrix reveals a strong similarity with the characteris-
tic S function defined by Livsic which is ubiquitous in

every open system. Thus it is reasonable to follow the
properties of the S function of Livsic and see what it im-

plies on the compound-nucleus S matrix. Among other
properties, Livsic has shown that the S operator of an
open system can be written as a product of S operators
belonging to simpler systems.

It is indeed sometimes preferable to have at hand a
product form for the compound-nucleus S matrix. For
example, if one resonance is to be singled out it is useful
to start from a product expression and approximate the
contribution from all other resonances as a multiplicative
background matrix multiplying the explicit contribution
of the singled-out resonance.

Although we introduce the basic concepts through the
S matrix of the compound nucleus, it is easy to perceive
their generalities. The concept of an S matrix is common
to many physical systems, classical and quantum
mechanical. The idea behind the factorization expression
is nothing but writing the S matrix of a large system as a
product of the S matrices of its elementary components.

In Sec. II we combine the compound-nucleus system
with the theory of open systems and determine a product
expression for the S matrix of the compound nucleus. In
Sec. II we also introduce the basic concepts and
definitions of open systems detailed in Ref. 1. In Sec. III
we go further and discuss the resolution of open systems.
This process leads finally to the factorization of the com-
pound nucleus S matrix.

II. COMPOUND NUCLEUS AND OPEN SYSTEMS

In problems involving compound nucleus formation,
the S matrix can be written as
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We shall now explain the right-hand side of Eq. (1}in a
form suitable for our further discussion. The operator S
is defined in the Hilbert space E of channels which is as-
sumed to be finite-dimensional (dimE=m, m & ~). On
the other hand, the operator T is defined in other space,
namely, the Hilbert space H of compound-nucleus bound
states whose dimension X is large but also finite
(dimH =N, N yy 1). The operator T can be written as

(2)

where h (it operates in H) is the Hamiltonian of the com-
pound nucleus (h =h, and in its matrix representation h

can be chosen to be a real symmetric matrix if time rever-
sal invariance is respected). The operator I (I ) appear-
ing in both Eqs. (1) and (2) transforms E into H (H into E)
and represents, physically, the coupling between the
channel space and the interior (that is, compound-
nucleus) space. Apart from trivial phase factors, Eq. (1)
is an operator form of Eq. (4.2.30) in Ref. 2 with the
identifications I ~&2m V, (T tvI)~ ——d, and tv~E (the
total energy).

Of crucial importance for the whole theory is the reso-
nance structure of the S operator. Most naturally, one is
l.d to a Breit-Wigner-type decomposition

E E
E~Hor (6)

henceforth it will be assumed that the transformations
R(E~H) and S(E~E) are linear.

These concepts are not limited to quantum-mechanical
systems. In fact, as a first example Livsic considers a uni-
form, infinite string attached at the point x =0 to a trans-
verse spring. Assuming that the density and the tension
in the string are both equal to unity, we have the follow-
ing equations for small oscillations:

$2u $2u =0 ( —oo &x&0, 0&x& ~),

while at x =0 the condition

Bu

Bx
=ku(O, t)

should uniquely determine both the internal and output
states. The pair of Hilbert spaces E and H for which re-
lations of the type

RQ-, /+=sf- ($-,f+EE, /EH)

are defined which transform E into H and E into itself is
termed as an open system, symbolized as

1/2 1/2
Xka 7kb

~b+i
CO —7 k

(3)
is satisfied. For oscillations of frequency co, the solution
u(x, t) reads

where a, b are channel indices and k runs over
compound-nucleus levels, yk, are partial-width ampli-
tudes, and ri, ——gk 2irtk are—the complex eigenvalues of
the operator T.

In the present work we suggest a product expression for
the S matrix

e'~(g e '~ +g e'~~) x &0
u(x, t)= '

e I&DE( g +e —icux+ g + i'd~)

Now let v =Bu /r}t and w = —Bu/Bx be the transverse ve-

locity of a point and the transverse force at that point, re-
spectively. Then we have

s=g
k=1

Ak

ik —N

v(0 —,t ) =v(0+, t ) =icou(O, t ),
w(0 —,t ) —w(0+, t) = i(k/tv—)v(0 , t ) . — (10)

where Ak are matrices (operators} in the channel space E
whose relation to the operators I and T in Eqs. (1) and
(2) will be determined below. If I and T are independent
of ~ so are the operators Ak.

At first glance, a derivation of an expression like (4)
from Eqs. (1) and (2) might look like a simple exercise in
operator algebra. However, this is probably not the case
here. The compound-nucleus system is described by the
non-self-adjoint operator T. Due to the coupling with the
channel space (through the operator I ) the compound
nucleus system is an open system. The norm of its wave
function decays with time. Notice of course that the sys-
tem of compound nucleus and asymptotic channels is a
closed system and is described by a self-adjoint operator
(its total Hamiltonian).

Intuitively, any physical S-matrix theory deals with in-
put states P, interior states f, and output states f+. In-
put and output states are vectors in a Hilbert space E
(dimE =m, m & ~ ), whereas interior states belong to
another Hilbert space H (the so-called interior space,
with dimH=N}. The dynamics are such that the input

Thus the complex amplitudes v+ =v(0+. , t )e
w+=w(0+, t)e '"', and uo=u(O, t)e '"' are expressed
in terms of v = v(0 —,t)e ' ', w =w(0 —,t )e ""' in the
form

1 0
w+ lk /Q) 1 w

uo ——( i /tv, O)—
w

Thus the space E in this example is two dimensional
while the interior space H is one dimensional. The first of
the above equations defines the S operator and the second
one defines the R operator.

In order to obtain information regarding R and S one
must impose restrictions on the open system F and its
mode of connection with its channels. This restriction is
termed by Livsic as an "extension hypothesis, " namely,
that an open system together with its coupling channels
forms a closed system. A state of a closed system may be
represented by vectors of the form
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Ba =b a (b &0). (19)

where P represents the state of the coupling channels and

f the interior state of the open system F. The state f of a
closed system obeys the equation of motion i(d—fldt)
=Q f, where Q is a self-adjoint operator. For oscillations
with frequency co we set f, = fe'"' so that

Qii Qiz 1

Q'=
Q Q

(12}

To shorten our notation we further define

e = —b g
—1

P*=(P—,a ) .

Then Eqs. (14}—(18) may be rewritten as

Q»4'=~4 —Qi24

Q~2$= —u(P+ —P )5(x)=u g (tP, e )a 5(x),

(20)

The open system F is said to be stationary if Q», Q2i,
and Q22 are independent of tu.

We will now relate the operators Q,J appearing in the
equations of motion to the operators T, I appearing in

Eq. (1) and to the operators R and S appearing in the
definition of the open system F in Eqs. (5) and (6). In-
stead of simple channel states appearing in Eq. (9} we

may consider more general states whose x dependence is
given by

P(x)=e (13)

where Pu on the rhs (right-hand side) of Eq. (13}is a con-
stant vector in E and v is a given operator in E possessing
an inverse (which physically plays the role of a constant
velocity). The dependence of P on x will be dropped
since in analogy with Eqs. (10) and (11), transition occurs
atx= %0.

We will now give a more explicit representation of the
operators QJ (i,j =1,2) in Eq. (12). The operator Q»
can be shown to act on P as (see Ref. 1, pp. 16-19)

Q„g=tug+iv(P+ f)5(x)=t—uP+c(g)5(x), (14)

a=1

Q2, $= —g P e + —,'i g (f,e )e

(21)

a=1 a=1

I P= g (P,a }e (PFE, e 6H),
a=1

m
I' f= g (f,e )a (/EH, a, &E) .

a=1

(22)

The operator T transforms H into itself. The operator I
transforms E into 8 whereas I ~ transforms 0 into E.
Moreover, they are adjoint in the sense that

(I P, f)=($,1 f) . (23)

Q224 ~e+y'( e gt X (Pe
a=1

It now remains to find expressions for the operators R
and S defined in Eq. (5). In order to do so we collect
some operators appearing on the rhs of Eqs. (21), that is,

m

Tg=cuf+ g P e
a=1

m

Q,2$= g c (P)a 5(x),
a=1

(15)

where P*=P(x =Ok). From Eqs. (12) and (14) it is evi-
dent that the second term on the right-hand side of Eq.
(14) is equal to —Q,2$. We choose in E an arbitrary nor-
malized basis a (a = 1, . . . , m ) and write

From Eqs. (21) it follows that

(T tuI)/=I P—

T—T'= —r rr' .

(24)

Qi2$= iu(P+ ——P )5(x)= g (f,g )5 (x),
a=1

(16)

where 5 (x)—=a 5(x). From the self-adjointness of Q it
can be shown that

where c (P) are the components of c(P) in the basis a .
Since each c (g) is a linear functional on H, we write it
as c (P)=(f,g ), where g FH, a=1, . . . , m. Thus

A set of two spaces H and E, together with operators
T,I, I satisfying Eqs. (24}, is called by Livsic an opera
tor cluster. In fact, the operator-cluster concept is more
convenient in formulating a general theory than by the
use of equations of motion with the operator Q.

Finally, if the resolvent ( T tuI )
' exi—sts then

f=(T toI) I p . Usi—ng this relation together with its
substitution into the second equation (24) yield expres-
sions for R and S in the operator-cluster formulation,

Q2ik= g (4».)g.
a=1

R =(T toI) 'I—
S=I+iI R =I+t I(T coI) 'I'—(25)

and that Q22 is self-adjoint in H, namely,

Qz2=Qz2 . (18)

Equations (14)—(18) may be somewhat simplified if we
take as a basis a (a= 1, . . . , m ) in E the orthonormal-
ized system of eigenvectors of the operator B =(uv )'
so that

The identity of the second equation with Eq. (1) is of
course not just semantic. We regard the nucleon-nucleus
channel space E as a finite-dimensional Hilbert space in
which P+ and P correspond to output and input states,
respectively. The compound-nucleus states tP belong to
the interior space H, which is coupled to E through the
operators I, I . The interaction between the compound-
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III. RESOLUTION OF OPEN SYSTEMS
AND DERIVATION OF THE PRODUCT FORMULA

One of the most important processes in the analysis of
open systems is the resolution of an open system into a
chain of elementary systems. This procedure will lead us
to the factorization expression (4). The mathematical
basis for the above procedure requires acquaintance with
the concept of coupling and resolution of operator clus-
ters. We recall that operator cluster is a collection of
spaces H, E and operators T, I, satisfying Eq. (24). Let
us start with coupling of two clusters M, =(H, ,E, T, , I, )

(i=1,2) with identical channel space E. We form the
direct sum H =H

&
H2 and in the space H we define the

linear operator T by means of

T= T,P, + T2P2 —ir, r2P2 = T] 4 T2, (26)

where P, is the projection operator of H onto H, . We call
T the coupling of T& and T2. The third term on the rhs
of Eq. (26} is called the coupling coefficient. It maps H2
into H& and annihilates H&. The reason for its appear-
ance will be clear immediately. (Notice that the subspace
H& is invariant under T.)

First we define the imaginary part of T as

Im( T) =—( T T)—

nucleus states is given by the non-self-adjoint operator T
of Eq. (2). Thus Eqs. (24} are valid, and so the physical
system of compound nucleus fits nicely into the
mathematical concept of operator clusters, so that Eqs.
(1) and (25) are conceptually identical. In Sec. III we
shall follow the mathematical ideas which lead to the fac-
torization expression (4).

Before doing so, we remark on the appearance of the
resolvent operator (T coI—) '. It may be tempting to
draw some parallelism with system in which the resolvent
operator is (H coI)—', where H is the Hamiltonian of
the system. However, H is self-adjoint while T is not.
Hence, investigation of the resolvent (T coI )—' requires
elements of the theory of non-self-adjoint operators,
which is much less familiar, and has been investigated by
Livsic.

ia /2——iab
(a, b real) .

Then the requirement Im( T)=(1/i )( T T)= —I I i—s
satisfied for

T, =P, TP, in the sense of Eq. (26)? We show by con-
struction that the answer is positive. Taking into account
that P2TP, =0 we multiply by (P, +P2~ I ——on the left
and right of T to get

T=(P, +P2)T(P, +P2 }

=P) TP, +P2TP2+P] TP2

=P) TP)P)+P2TP2P2+P] TP2 —P) T P2

t=T, P ) + T2Pz+P, ( T T}—P2

(we have subtracted P, T P2 ——0). The desired form (26)
follows immediately if we use Im( T)=(1/i )( T
—T )=—I I and identify I;=P;I . Furthermore,
since T; =P; TP; we trivially get

Im( T; ) = P; ( I I—)P; = —I;I;
so that the "components" T; of T can be embedded into
operator clusters. It should be pointed out that the re-
quirements T; =P;TP; and H& being an invariant sub-
space of T [without the requirement Im(T)=(1/i)(T—T )= —I I ] do not imply a unique decomposition.
For example, the operator T'= T&P&+ T2P2 satisfies
these last two requirements but does not have the form
(26). The operator T' does not fit into our procedure
since Im(T')= —(l,I,+I'2I'2). Thus if the rank of
Im(T; ) =m the rank of Im( T')=2m. In our decomposi-
tion of the S matrix all the components must act in the
same space E so that the equality rank[Im(T)]
=rank[Im(T, )]=rank[Im(T2)] must hold. Thus the ad-
ditional requirement Im(T)= —I I is essential in order
to couple two operator clusters with identical E spaces
into an operator cluster with the same E space.

It may be helpful to illustrate the above discussion with
a matrix example. Let us take H to be a two-dimensional
complex Hilbert space and let the operator T be
represented by the matrix

[note that the operator (T T), which is t—he skew Her-
mitian part of T, is anti-Hermitic, while the prefactor 1/i
implies that Im( T) is Hermitian].

The special form (26) is chosen so that
Im(T) =(1/i )( T T)= —I I, wh—ere I =I,+ I z

——P, I
+P2 I . To prove it we compute

Im(T)=Im(T, )P, +Im(T2)P2 —I,I 2Pq —I qI (P(

= —(I,+I )(I,P, +I P )= —I I

hence

I I t=
~ (a, b)

so that it is an operator of rank one. The components

The above construction shows also that if the rank of
the imaginary parts of T, and T2 are identical (say, m)
then the rank of Im(T) is also equal to m. We now ask
the reverse question in the following way: Let there be
given an operator cluster M =(H, F., T, I ) and let H, be a
nontrivial subspace of H invariant under T, and
H2 ——HBH &. Is T a coupling of its projections

and

—ia /2 0
0 0

0 0
T2 ——P2 TPz =

0
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have Im( T, ) = —I
& I, , Im( Tz }= —I zl z, where

a 0
r, =

0 and I2=

It is trivial to show that if we couple T, and T2 accord-
ing to Eq. (26) the result will be the operator T. Thus
we have rank[Im( T)]=rank[Im( T, )]=rank[Im( Tz )] = 1,
whereas for

T'= T]P) + T2P2 ——
—ia /2 0

ib —12

T=T) 4 T2 (27a)

(2)

r=—r, +r, =P, r+P, r . (27b)

A little algebra will show that M is indeed a cluster, satis-
fying Eqs. (24). The third of these equations is satisfied
due to the peculiar definition (26), hence, the role of the
coupling coefficient —iI;I 2P2. It can easily be shown
that the coupling operation is associative:

(M)eM~)eM3 ——M, e(M~+M3) . (28)

Having defined the coupling of clusters, we now turn to
the inverse procedure, namely, a resolution of a cluster.
If we are given any cluster M =(H, E, T, I ) and an invari-
ant subspace H& of the interior operator T, then, with
Hz HBH, , we ——define M, =(H;,E,P;T,P;1 ) (i =1,2),
and call M; the projection of the cluster M onto the sub-
spaces H, (i =1,2). It is trivially shown that the cluster
M is the coupling of its two projections, namely,

M=M]eM2 . (29)

Equation (29) then expresses the cluster M as the cou-
pling of its projections and will be termed as the resolu-
tion of M into its components M, and M2.

The generalization to n components can be formulated
as follows. Let M=(H, E, T, I ) be an operator cluster
and H =Hp DH& DH2 ' ' DH ] OH„=O be a decreas-
ing sequence of invariant subspaces of the interior opera-
tor T. Performing the resolution (29) a sufficient number
of times we obtain the resolution of M into its com-
ponents,

M=+ (eM ),
k=1

(30)

where Mk is the projection of M onto the subspace
Hk =Hk )BHk (k = 1,2, . . . , n ).

We now recall that an operator cluster is related to the
transformations R and S of an open system according to

we have rank[Im( T')]=2.
We are now in a position to define the coupling of two

operator clusters M; =(H;,E, T;,I;) (i =1,2). We will

say that the operator cluster M(H, E, T, I ) is the coupling
of the clusters M, and Mz (and write it as M =M, +MAL)
if the following conditions hold: (1)

Eqs. (25). The coupling of operator clusters defined
above will be very helpful when the concept of coupling
of open systems is introduced, which must have a physi-
cal meaning beside its mathematical structure. In fact,
guided by physical reasoning let us consider the set

E~E
F E~Hk (k=1,2, . . . , n }

of open systems with identical E spaces. We construct a
new open system

E~E
F E~H

F= g(eFq) .
k =]

(32)

It has the associative property but the components Fk
commute only in very special cases.

The question now arises what should be the coupling of
the operator clusters Mk corresponding to the open sys-
tems F& in such a way that Eqs. (31) will be guaranteed.
The answer is that the cluster M=gz ~(eM&) defined

by Eq. (30) is the cluster belonging to the kymological
chain F= Q z r t ( e F& ). The proof is by induction. For
two systems F„F~ with clusters (Hq, E, T&, I & ) (k =1,2)
we have according to Eq. (25)

R =(T coI) 'I =(T—, coI) '1, +(T—coI) 'I—
+t(T& I ) 1 zl &(T~ —coI) 'I z—

=R )+R2S),
since by definition

Rq ——(T„coI) 'I q, —

Sk ——I+i I kRk .

Thus the first of Eqs. (31) is satisfied.
For the S operator we have

S=I+i I R =I+ t I",R, + t I R S,
=S + I 2R2S =S2S

which is the second of Eqs. (31).
We are now close to our initial goal of factorizing the S

operator. What is needed is of course the "inverse" of a

with interior space H=ek, Hk in such a way that the
operators R and S of F are given by

R =R )+R2S&+R3S2S~+ ' ' ' +R~S& ]S& 2
' ' ' S~

(31)
S=S„S„ i Si,
where Rk and Sk are the corresponding operators for the
system F&. Equations (31) indicate that in coupling the
systems Fk, the output of each system is delivered to the
input of the succeeding system, the input of F coincides
with the input of F, and the output of F coincides with
the output of F„. The system F determined by Eqs. (31)
is termed by Livsic as the kymological coupling of the
systems F, ,F2, . . . , F„:
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kymological coupling, namely, a kymological resolution.
Since we know already how to resolve an operator cluster
[see discussion leading to Eq. (30)], then a resolution of
an open system F into its components Fk is as follows:
Let M=(H, E, T, I ) be the operator cluster belonging to
F and let H =Hp D H1 D H2 D H =0 be a decreasing
sequence of invariant subspaces of T. Then F can be
resolved as F=11&,(+FAN, ), where Fk are open systems
with clusters Mk (the projection of M onto

Hi, Hk ——iBHk ).
If the system F has a finite number of degrees of free-

dom (dimH =N & ~) then the sequence of invariant sub-

spaces can always be chosen so that

adjoint operator T. It can now be shown that the 1)&m
matrix I k appearing in Eq. (33) is given by the following
expression (summation convention on j=1,2, . . . , N is
assumed henceforth):

rk=(rJ U,'i, r, U,*, , rJ U',-" ) (k=1,2, . . . , N),

(37)

where I, (j=1,2, . . . , N, a =1,2, . . . , m ) are the ele-
ments of the original operator in Eqs. (1) and (34). Thus
the m Xm matrices A& (k =1,2, . . . , N) in Eq. (4) are
given by I &I k. For the sake of completeness we now
rewrite Eq. (4) as

dim(Hk iBHk)=1 (k=1,2, . . . , N) . N

S= ff I+i (38)

r~
—1

s„=a+i(r„—~)-'r', r„, (33)

where ~j,. is a number and I A. an operator mapping the
space E into the one-dimensional space Hk Hi, iBH——&.
Thus knowing I k and vA. we can construct the S operator
according to Eq. (31), and it will have the product form,
Eq. (4). We note that if the open system F is stationary
[see the definition after Eq. (12)] then ri, and I & are in-

dependent of co.
The above discussion leads to the following result: In

order to obtain the resolution of the open system into a
chain of elementary systems we need to reduce the opera-
tor T to its triangular form by means of a unitary trans-
formation.

We come now to the final and practical stage of deter-
mining the factors Sk of Eq. (33) from the original'S ma-
trix of Eq. (1), so that Eq. (4) can be constructed. We as-
sume that all the operators in Eq. (1) are given in their
matrix representation,

S=S,& (a, b=1,2, . . . , m),
T= T, (i,j = 1,2, . . .",N ),
I =I;, (i=1,2, . . . , N, a=1,2, . . . , m),

(34)

and denote by U the N XN unitary matrix which triangu-
larizes the matrix T,

~11 ~12

0

U TU=5= 0

~1N

~2N

In this case, the interior spaces of all the links in the
kymological chain will be one dimensional, and the links
themselves will not admit any further resolution. The
transformations Rk and S~ for the link Fk are then

h= ( h i i, h 22 real, h, 2
——h ~, ) . (39)

The coupling terms I, [j= 1,2, a =1; see Eqs. (1) and
(34)] are chosen as I, i

——y„ I zi ——y2, where y. are com-
plex numbers. The non-self-adjoint operator T has then
the form

l
~21 V1 X22

l
h12 ——F1722

h22 —
2 I y2I'

(40)

As a special case we take h2, (i/2)yi"y——z so that T has
already the triangular form

hii —
2 I yi I

' —l f1/2

h22
2 I

y21'
(40a)

in this case U is the 2X2 unit matrix. The resonance en-
ergies rk [Eq. (36)] and the matrices (in this case c num-
bers) I k [Eq. (37)] are given by

l 2
ri, =hkk ——

I yk I2
(41)

The S matrix then factorizes as

where I i, are given in Eq. (37) in terms of the original 1

[Eq. (1)] and the matrix U [Eq. (35)], and rk are the eigen-
values of T given by Eq. (36).

Example. Consider the case N=2, m =1, namely, two
internal states (diinH =2) and one external state
(dimE=1). The internal Hamiltonian h [see Eq. (2)] is
written explicitly

~ 11 h 12

0 0 ~NN
. I yk I

'
s=g

'Tk —0 (42)

The diagonal elements of 6,
(36)

are of course the complex eigenvalues of the non-self-

Simple algebra shows that in fact

'Tk —69
(43)
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which guarantees the unitarity of S and indicates that in
the one-dimensional case, our factorization coincides
with the one obtained from dispersion rc;lations.

Before concluding, me mould like to stress tmo points.
(I) The terms in the factorization expression do not

commute. The order is determined uniquely by the de-
creasing sequence of invariant subspaces of the operator
T, which thereby dictates a natural hierarchy.

(2) The transition from input to output in Livsic's
theory is instantaneous, so that the factorization scheme
does not imply any chronological order or sequential
mechanism.

In conclusion, we hope to have drawn attention of phy-
sicists to the concept of open systems introduced by
Livsic, which is very rich in physics. Our main concern
here was the compound-nucleus S matrix, for which we

have derived a product expression. So far, we have as-
sumed that the interior space (that is, the compound-
nucleus space of states) is finite dimensional
{dimH=N & 0D). If %~00 the theory becomes even
richer, but this goes beyond the scope of the present arti-
cle.

Finally, it should be mentioned that the concept of
open systems is very powerful in numerous branches of
physics. In fact, most of the examples in Ref. 1 are taken
from the theory of electric networks.
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