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Electron correlations in quantum and classical plasmas in a layered structure
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We present a theoretical calculation of electron correlations in quantum and classical plasmas in

a layered structure. This treatment rests on the solution of the first member of the Bogoliubov-
Born-Green-Kirkwood-Yvon hierarchy and the fluctuation-dissipation theorem. For arbitrary
wave number this leads to a set of coupled integral equations which has to be solved self-

consistently. In the long-wavelength limit it is found that the phase velocity of the collective excita-
tion is renormalized due to short-range correlations. Our result is an extension of the earlier theory
of K. S. Singwi et al. [Phys. Rev. 176, 589 (1968)] for bulk plasmas to the case of a layered electron
gas. Our numerical results show that the correlation function for a layered structure is an oscillato-

ry function of the lattice period, which reflects the interference between the density fluctuations in

different layers.

I. INTRODUCTION

The problem of strongly coupled electron plasmas has
been attacked by many authors' through diferent ap-
proaches with a considerable success. The methods can
be classified according to whether they rely on the first
Bogoliubov-Born-Green-Kirkwood- Yvon (BBGKY) or
on the second BBGKY equation. The former can be
characterized as considering the dielectric function to be
the central object, deriving an expression for it from the
first BBGKY equation, and then guaranteeing self-
consistency through the use of fluctuation-dissipation-
theorem-ty e relations. Hubbard, Singwi, Tosi, Land,
and Sjoland (STLS) and Golden, Kalman, and Silevech
followed this approach in difFerent ways. In the second
BBGKY-equation approach the central object is the equi-
librium pair-correlation function for which the equation
is made self-consistent by the introduction of a decompo-
sition of the triplet correlation function into clusters of
pair-correlation functions. Ichimaru et al. have pur-
sued this method; their solution depends on the choice of
equilibrium triplet correlation which was first suggested
by O' Neil and Rostoker. All these approaches have
achieved important results. The equilibrium pair-
correlation function has been calculated by numerically
solving integral equation which result from the
theory; ' ' '" equations of state have been obtained '"
condition for phase transition have been computed and
the theory have been refined to the point that the original
inconsistencies concerning the satisfaction of the sum-
rule requirements can be removed. ' '"

The generalization of STLS theory to the two-
dimensional electron gas (2DEG), such as electrons in the
inversion layers and semiconductor heterojunctions, was
given by Jonson' and Rajagopal. ' Jonson' examined
the dielectric function, pair correlation and exchange and
correlation energy in 2DEG, taking into account proper-
ly the many-body e5ects. It was pointed out by Jonson'
that the random-phase approximation (RPA) and Hub-
bard approximation were less satisfactory approxima-

tions for a 2DEG than for a bulk electron gas.
An intermediate situation between bulk electrons and

2DEG is the layered electron gas' (LEG). Here, elec-
trons or other mobile particles are confined in planes ar-
ranged in a periodic array. To the lowest approximation,
this model represents the superlattice structure. Within
the RPA, the dielectric function, electronic properties,
and the collective excitations were intensively studied
during the past decade. ' ' To lowest order in the plas-
ma parameter the dielectric response depends solely on
the self-consistent fields. In a discussion of the many-
body effect, Vinter' stressed the importance of vertex
corrections. In the study of light scattering in LEG, the
density-density correlation was calculated and optical
properties were investigated. ' ' However, in the most
theoretical studies of LEG the short-range correlations
have been neglected. It is expected that the short-range
correlations will become important when large wave
numbers and low densities are considered.

In this paper we shall present a scheme to calculate the
dielectric tenser of LEG including the short-range corre-
lation. We use the solution of the first equation of the
BBGKY hierarchy and linear-response theory to find the
induced density on the lth layer. Our treatment rests on
the ansatz that the two-particle distribution function can
be replaced by a product of one-particle distribution
functions and a pair-correlation function. The dielectric
tensor for a LEG is obtained and collective excitation is
discussed. Our formalism is an extension of an earlier
theory developed by STLS (Ref. l) for bulk plasmas, to
the case of the layered electron gas. A numerical calcula-
tion for local field corrections is presented for several
values of the structural parameters.

II. CLASSICAL PLASMAS

We consider here a system consisting periodic layers of
electrons. Let the electrons have density per unit area n

and mass m, occupying layers which are positioned at
z =la (where I =0, +I,+2, . . .). Here a is the period of
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the layered structure, i.e., the distance between adjacent
layers. The equation of motion for the classical one-
particle distribution function in the presence of an exter-
nal potential V'"'(x, t) is given by the first member of the
BBGKY hierarchy. For our layered system, we denote
the one-particle distribution function on the 1th layer as
f&(r, p, t), where r and p, are, respectively, the position
and momentum vectors on the layer. The equation of
motion for ft(r, p, t) can be written as

c}

B~ m ar

c}V!'"'(r,t)
f!{rp t}r p

2
V"'(r —r') =

[(r r )2+(1—1')2a2]l/2 (2)

and f&!.(r, p;r', p'; t) is the two-particle distribution func-
tion. The equation of motion of the two-particle distribu-

—g fdr'dp' V" (r —r') f&! (r, p;r', p';t)
I' r c}p

=0, (1)
where V" (r —r') is the Coulomb interaction potential be-
tween two charged particles on 1th and 1'th layers which
is given as

tion function contains, in turn, the three-particle distribu-
tion function and so on. We terminate this infinite
hierarchy of equations by making the ansatz (see Ref. 1)

f«(r p'r p it) fl(r pt)f!'{r p t)g«'(1 r (3)

where g&! (r —r') is taken to be the equilibrium, static
pair-correlation function. The ansatz [Eq. (3)] takes care,
in an approximate way, of the short-range correlations
between the charged particles, through a function which
has a simple physical meaning. The function g&!.(r —r')
tends to unity for large value of its arguments (r —r') and
(1 —1'), while for small values of its arguments, it is ex-
pected to be finite and smaller than unity. The assump-
tion g&!.(r —r')=1 for all values of its arguments corre-
sponds to the approximation leading to the Landau-
Vlasov equation in layered structure.

Now we apply the linear-response theory to our system
by writing

f!(r,p, t) =f!(p)+f!'(r,p, t), (4)

where f!(p} denotes the thermal equilibrium distribution
and f!'{r,pt) denotes the deviation from the thermal equi-
librium induced by the weak external potential. After
linearization we obtain the following equation for
f!'(r,p, t):

Tl—+~ f!'(r,p, t)
"c}f m c}r

c}V!'"'(r,t) «+ g fdr'dp' V" (r —r')g&! (r —r')f, '(r', p', t) =0 .
r II r c}p

(5)

Now let us define an effective interaction for the layered
structure including the short-range correlations by the re-
lation, '

U" (r —r') =g&! (r —r') V" (r —r'} .
c}r c}r

Its Fourier transformation in momentum space can be
obtained as

(6)

d2 I I

U" = V" +— V" (S"(
'—q') —1),

n (2~)2
where

S«{q)=

2
@II' 2~e —

q ~
I —I')a

(g)

and S"(q) is the usual static structural factor which is
defined by

S"(q)=fi«+n f«e"'[g«(q) &« ]. — '

This structural factor is related to the dielectric function
of the layered structure through the exact relation '

f Im[et!.'(q, co)] . (10)
e n

Here the inverse of the dielectric tensor e&!. (q, co), which
will be defined shortly, is a functional of S,!(q). Equation
(10) impose a self-consistent requirement on S"(q) and
e!!'(q, co) Not. e that .e&! '(q, co) is the inverse of the dielec-
tric tensor e&! (q, co) (see Ref. 16).

Because of the linearity of Eq. (5) we can construct a
general solution from the response to an external field

with single frequency and wave number, respectively.
We write

V'"'(r, t)= fdqe'!'e ' 'V'"'(q, co)+c.c. (11)

Taking the Fourier transformation of Eqs. (5) and (6)
with respect to r, we find

~f!'(p)
(co —q v}f,'(q, p, co) —V'"'(q, co)q.

c}p

af,"'(p)
+ gq U" fdp'f, '(q, p', co) . (12)

The induced charge density on the Ith layer is defined as

p!(q ~)=fdpf!'(q p ~)
and its explicit integral equation can be obtained from
Eq. (12)

(13)

p((q, co) =Q!(q,co) V'"'(q, co)+ g U"p! (q, co) (14)

where

dp q. [c}f,(p)/c}p)
Q'(q, co) =

4~2 co —q.v+i 5
(15)

el'l(q~) =~!!' U Q!{'q

we can write

(16)

If we define the element of the dielectric tensor of the lay-
ered structure as
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g pl(q, co)el.l(q, co)=Q'(q, co) V'"'(q, co) .
1'

(17) and

The inverse of the dielectric tensor can then be found
through the relation

/el l-(q, co)ei-i(q, co}=5ll .—1 (18)

ik (I —I')a
y ell. (q, ~)e
1' e q, k„co

(20)

where use has been made of the fact that all functions
here only depend on the quantity (1 —I'}. It is easy to
show, by direct substitution, that Eqs. (19) and (20) are
consistent with Eq. (18). To find e(q, k„co) we would like
to use the fact that a layered structure is completely
periodic in the z direction with periodicity a. Therefore
we can use following Ansatze for Eq. (14):

ik la
pi(q, co)=p(q, co)e

For a periodic layered structure, the number of elements
of the dielectric tensor is infinite and therefore it is
diScult to find its inverse. However, if we introduce the
discrete Fourier transform in the z direction, we can find
the following relation:

ik (1—1')a
pell(q, co)e =e(q, k, co) (19)
1I

and

Q(q, co) V'"'(q, co)

1 —Q(q, a)) U(q, k, )
(21)

where U(q, k, ) is the Fourier transform of the effective
interaction

U(q, k, )= g U' (q)e
I'

= V(q, k, )+ G(q, k, ),
q

with V(q, k, ) the bare Coulomb interaction

2me sinh(qa)

q cosh(qa} —cos(k, a)
277e

F(q, k, )

(22)

(23)

and G(q, k, ) the local field correction. To find G(q, k, )

we insert Eq. (7} into Eq. (22), taking the inverse Fourier
transform for V" and S"(q —q'), summing over l', we
then obtain

Q'(q, co) =Q(q, a))e

The "wave number" k, that labels the induced density
fiuctuation in the periodic system is restricted within the
first Brillouin zone of the layered structure, i.e.,
0& k, &2m/a. With these Ansatze Eq. (14}becomes

T

G(q, k, ) =—f, f F(q', k,')S(q —q', k, k,') F(q'—, k, )—a dq' q q' ~kz

n 4~2 qq'
(24)

and

S(q, k, )= ge ' Sl'(q) .
I

(25)

p(q, k„co)= —1 V'"'(q, co),
1 1

V q, k, e q, k„co
(26)

we find

By comparing Eq. (21) with the standard definition for
the dielectric function

III. QUANTUM PLASMAS

Our treatment in the case of classical plasmas rests on
the ansatz expressed in Eq. (3). Using this ansatz allowed
us to calculate the dielectric response of classical plasmas
including short-range correlations. However, this Ansatz
is not applicable for the case of quantum plasmas. Here,
in order to find the effects of short-range correlations, we
will consider the equation of motion for the density ma-
trix and calculate the dielectric response function.

We begin by defining the Hamiltonian of the system
which can be written as (in units A'= 1)

Q(q, co) V(q, k, )
e(q, k„a))=1—

2
. (27)

1 (2ne /q)Q(q—,co)G(q, k, )

The essential point of our result is that the solution of
Eqs. (24}and (27) together with the relation

S(q, k, }=— f Im[e '(q, k„co)]eno co

provide us with a set of equations which, when solved
self-consistently, determined the dielectric response for a
layered electron gas including short-range correlations.

Pl(q)= Xap+qlapi ~

p

(30)

where a p 1 and ap 1 are, respectively the creation and de-

Ho Pap, lap, IEp
p, l

+
A X QVq ap+q, lap' —q, l'ap'l'ap, l

ll'

p, p', q 1, 1'

where Vq~ is given by Eq. (8), A is the area of the layer,
and Ep1=p /2m. We consider first the equation of
motion for the density operator, which in second quan-
tized notation, is given as
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struction operator of the electron with momentum p on
the 1th layer. Its first time derivative is

p.q+ q'
Bt ~ 2 P+q, I P, I

P

(31)

which is independent of the Coulomb interaction. How-
ever, the second time derivative of p& yields an expression
including electron-electron interactions:

2'
p'q + q t~ p+q, )~p, l

8'p, (q)

Bt 2m

2

+ 2n.e qn ~ q[l I
pg q

(I

2&e 1

+ X, e '~' "p"i(q'}p"I(q—q'}

8 Pi(q)

dt

2
2

p'q+ q
m 2m

L

+~2 y e
—

q I
I —I '

I ap & ( q )
1'

p+q~ p~

(33)

where ai~ =2m.e qn/m is the plasma frequency for a
2DEG. It is obvious that for the limit q~0, the first
term in the RHS of Eq. (32}vanishes and the density fluc-
tuation oscillates with the plasma frequency of LEG (Ref.
16) given by cot Ho=co [qa/1 —cos(kza )].

To include the short-range correlations, the nonlinear
term in Eq. (31) (i.e., the third term in the RHS) must be
retained. It can be rewritten if we express pi(q) in terms
of the electronic coordinates, i.e., pi(q)
=g,. exp[iq r,.(1)],we obtain

pi (q')pi(q —q') = g exp[iq' r,.(l')] exp[i(q —q'). r (I)]

(32)
The first term of the right-hand side (RHS) of the equa-
tion represents the single-particle recoil and Doppler
shift. The second term in the RHS is due to the long-
range part of the Coulomb potential and is proportional
to the plasma frequency. The last term on the RHS in-
volves the product of two density operators. Since

I(q —q') r, ~O

pi(q —q'), given by g,.e ' [where ri(i) represents
the electronic coordinate of the ith electron], is a sum of
complex exponential terms with differing phases for q&q'
and since the ensemble average of pi(q —q') vanishes for
q&q' if the system is homogeneous, we expect destruc-
tive interference to occur in this term and therefore we
drop it from the equation as our first approximation.
This gives the original random-phase approximation as
proposed by Bohm and Pines. Therefore within the
RPA we obtain

=s"(q —q'),
Eq. (32) can be rewritten as

'pi(q p q
Qt2 m

2
'2

q
2m

7l+ g U" (q)pi (q),
m

p+q 1 p I

(35)

(36}

where

d2
Uu VII +qqqV [/(qq)1]

(2n) q
(37)

Comparing the RPA result, Eq. (33), with Eq. (36) we
find that the last term in Eq. (36}has the same structure
as the last term of the RPA expression, except that the
bare Coulomb potential in Eq. (33) has been replaced by
an effective potential U" (q). The Ansatz for quantum
plasmas will therefore be to derive the dielectric response

within RPA but to replace the Coulomb interaction V"
by the effective interaction U". This procedure was first
used in STLS (Ref. 1) with considerable success for bulk
plasmas.

Let us now consider a layered plasma. In the absence
of external disturbance, the dynamics of the system is
governed by the Hamiltonian Ho consisting of kinetic
and Coulomb energies. We now apply a weak external
potential V'"'(x, t} which acts on the layer plasmas. The
dynamics of our system are then governed by the Hamil-
tonian

1
H =Ho+ — g a &+z I a& I V'"'(q, t) .

p, q, l
(38)

In order to obtain the induced density in the external po-
tential we define the single-electron density matrix ele-
ment between states (p, l

~
and ~p+q, l ) as

F,(p+q, p, t)=(a, ,(t)a,+, ,(t)) .

In the Heisenberg representation, the equation of motion
for the single-electron density matrix is

If we now replace the sum over j by its static average
value, i.e.,

g exp[ i(q —q'). [r,.(1')—r.(l)]]
J

=1 x expf)(q q
—)[r';)) ) 'r;—())]))

I,J

= g exp[iq. r,.(l'}

X g exp(i(q —q') [r,.(l'}—r.(l})j .

i FI(p+q, p, t)=((a—
~ ia~+sH)) .. a

(39)

(34)
This equation can be easily worked out with the help of
the commutation rules, and we obtain
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i—Fl(p+q, p, t)=(E + —E )Fl(p+q, p, t)+ g g V/'(ap. lap+ll, ('apla +q ~l —a +t la +pl)~
Bt p', k /'

—g Vl'"'(k, t)[Fl (p+q —k, p, t)—Fl.(p+q, p+k, t)] .
k, I'

(40)

where the higher order of exchange and nonlinear correlation terms has been neglected. Our scheme to include the
short-range correlation is to neglect the exchange and nonlinear correlation terms but replace the bare Coulomb in-
teraction by the efFective interaction. We write

Vl, (ap lap+i, l ap lap+q i, l ) —Uk (ap lap+i, i)(ap lap+q (41)

This approximation is similar to the derivation of Eq. (36}. With this approximation in mind, Eq. (40) can be written as

This is a complicated equation which, through the Coulomb interaction, couples one- and two-particle operators. To
make any progress in solving it one must somehow approximate the latter by simpler functions. The RPA procedure is
to replace the two-particle correlations by suitable products of one-particle functions, i.e.,

(ap. i.ap+lcl. apl p+q lcl) ( p l p+lcl )( pl p+q

i—F,(p+q, p, t)=(Ep+q —Ep}F,(p+q, p, t)+ g Uk'p, .(k)[F, (p+q —k, p, t) —F,.(p+q, p+k, t)]
dt

k, I'

—g V;."'(k, t)[F,.(p+q —k, p, t) —Fl (p+q, p+k, t)] .
k, I'

(42)

The time-dependent function Fl(p+q, p, t) can be written
as F,(p+q, p, t)=Fl(p+q, p, co)e'"' to represent the
response in the external potential which varies as e'"'.
Our next step is to expand all quantities in terms of exter-
nal perturbation, i.e., FI =FI +FI'+, where subscript
0 and 1 denotes the equilibrium function and linear devia-
tion from equilibrium, respectively. In this approxima-
tion Fl (p+k, p}=f 5„0, where f is the Fermi distribu-
tion function which is independent of layer index

Our expression for p(q, k„co) in Eq. (47) is identical to
that of Eq. (21). However, here Q(q, co) is the quantum
pair fluctuation function. Therefore we conclude that
efFective interaction alter the dielectric response in an
identical way for classical and quantum plasmas, respec-
tively.

As was done for the classical case, by comparing Eq.
(47) with Eq. (26) we obtain the dielectric function for
quantum plasmas as

1

p p(E —p)
e ' +1

(43}
Q(q, co)V(q, k, )

e(q, k„co)= 1—,(48)
1 (2ne —/q)Q(q, )cGo(q, k, )

P is the inverse temperature in energy units, and p is the
chemical potential. After the linearization we obtain

where G (q, k, } again represents the local field correction
and is given by

«p+q Ep ~)F—I'(p+—q p ~)
= g [U"p,'(q, co)+ Vi'" (q.co)](f,+,—f,» (44)

G(q, k, )=-f
n 4' qq'

dk,'
X f F(q', k,')S(q —q', k, —k,')

(45)

In Eq. (45) Q(q, co) is the two-dimensional (2D) polariza-
bility defined as

d2

(2~)2 E + E co i5- ——~ ~ (46)

By taking the Fourier transformation with respect to I in
Eq. (45), we obtain

Q (q, co) V'"'(q, co)

1 —Q (q, co) U(q, k, )
(47)

where pI(q, co)= g Fl'(p+q, p, co) Equation .(44) is an
integral equation for the density matrix FI' and the densi-
ty fluctuation pI. Upon solving it we obtain

pl(q, co) =Q(q, co) V;"'(q, co)+Q(q, co) g U"p, (q, co) .

F(q', k,)— (49)

For quantum plasmas S(q, k, ) is related to the dielectric
function e(q, k„co) by the relation

(50)

Our result for the dielectric function is again given in
terms of the self-consistent solution of Eqs. (48)—(50).
Here the solution of these equations leads to the deter-
mination of the dielectric function and the pair-
correlation function, respectively.

Contact with the experiments could be made by com-
paring the roots of the dielectric function with the plas-

S(q, k, )= — dcocoth Im[e (q, k„co)] .
a) Pco

2~e n 2



38 ELECTRON CORRELATIONS IN QUANTUM AND CLASSICAL. . . 5791

1.5

1.0-

Q.5-

0.0
.0

G(q,

2.0

1.5

1.0

0.5

0.0
.0

p p 0.0
0.0

FIG. 1. Plot of the local 6eld correction G(q, k, ) as a func-
0

tion of k,a and q/kF, where a =50 A, r, =3.0.
FIG. 2. The plot of local correction G(q, k, ) as a function of

0

k,a and q/kF, where a =100 A, r, =4.0.

' —1

mco
(51)

with

G(q, k, )=
2 fq'dq'dacosa

4m n

dk,
'

X f F(q', k,')q.

XS(q', k, —k,')

F(q', k,)—(52)

where a is the angle between the directions of q and q'.
Since F'(q', k, ) is independent of the direction of q', the
second term in the above equation vanishes. Integrating
over a, we obtain

G(q, k, )= fq'dq' f ' F(q', k,'), S(q', k, —k,')qa, , dk4nn2. ~ ' ' Bq'

=A(k, )q . (53)

In the present formalism the quantity A (k, ) has to be
determined from the self-consistent solution of S(q, k, ).
From Eq. (48) we find that the plasma dispersion relation
is given by

ma resonance frequencies observed by inelastic light
scattering. Here the small-q limit is applicable, and we
look for an expression of the dielectric function Eq. (26)
in the limit q —+0 for finite co when k, +0 (k, =0 is not
considered here, since it represents a situation equivalent
to a bulk electron gas). Our explicit expression for the
dielectric function when q ~0 is

e(q, k„co)=1- 27Tp pgq g

adam [1—cos(k, a)

co&(q) =[1+A (k, )]' q
m 1 —cos k, a

' 1/2

(54)

IV. DISCUSSION

In this paper, we have derived an expression for the
dielectric function for both quantum and classical plas-
mas in a layered structure. Our result goes beyond the
RPA treatment for the density fluctuations to include not
only the self-consistent field effects but also the effects of
short-range correlations. Our result for the dielectric
function would provide a more accurate description of
the dielectric properties such as the roots of the collective
excitations, the determination of the pair-correlation
function, and the Coulomb contribution to the ground-
state energy for a system of layered electron gas. In
terms of the plasma parameter r, (r, =me /k+4' for the
quantum case and r, =e &n Ikz T for the classical case),
our result approaches the RPA result for vanishing r,
and finite wave number. Our result provides a more real-
istic description of the dielectric function than the RPA
result when finite values of r, and finite values of wave
number are considered. The numerical calculation for
e(q, k„co) is given in terms of a highly nonlinear integral
equation, or by the self-consistent solution of the coupled
integral equations for e(q, k„co), S(q, k, ), and G(q, k, ) as
described in the text. We point out that the numerical
solution in our case is more complicated than in the 3D
case due to the loss of translational invariance in the z
direction. We have carried out numerical calculations
for local field correction G(q, k, ) for some typical values

As is well known, the long-wavelength excitation in a lay-
ered structure, when the coupling between layers is
strong, is an "acoustic like" plasma wave. Here we found
that the effect of short-range correlations is to renormal-
ize the phase velocity of this acousticlike mode.
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of the structural parameter. The method used in our cal-
culation is simply iteration. To achieve a convergent re-
sult more than ten iterations are needed. The results are
plotted in Figs. 1 and 2. As in the 2D and bulk cases, the
correlation effect is very important for large r, and large
momentum transfer in the plane (q is of the order of the
Fermi wave vector). The local field correction always
vanishes as q approaches zero. The interesting point one
can see from present results is the strong interference
effect. When the density fluctuations in different layers
oscillate in phase (k,a =n 2m, n =. 0, 1,2. . . ), the correla-

tion effect has its maximum for a fixed value of in-plane
momentum. When the density fluctuations in different
layers oscillate out of phase (k,a=nm. , n =1,3,5. . . ),
the correlation effect is greatly reduced. The 2D case can
be obtained by taking the limit qa &&1. For qa &&1 and
k, a =n 2m, the system is equivalent to a bulk material.

In conclusion, we have calculated the dielectric
response for a layered structure with short-range correla-
tion included. Our numerical result shows that the effect
of short-range correlation is very important if the plasma
parameter is large, especially when k,a equals 2n m.

'Present address: Max-Planck-Institut fur Festkorper-
forschung, 7000 Stuttgart 80, West Germany.
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