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Particie heating in localized Langmuir fields
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Nonlinear particle dynamics are investigated in periodic, localized electrostatic fields which mod-
el a solution to the Zakharov equations. A large increase in the electron heating rates is observed
and related to the partial destruction of the ponderomotive potential well. The threshold fields, for
the increase in heating, are estimated from the overlap criterion and the analytical map which ap-
proximates motion of particles in the vicinity of the separatrix of the ponderomotive potential.
Evolution of the distribution function and the averaged kinetic energy are also investigated.

I. INTRODUCTION
It is now evident that nonlinear theories of Langmuir

waves can play an essential role in the interpretation of
many plasma experiments. The modulational instability
(in which the long-wavelength plasma wave breaks up
into shorter wavelengths}, the related formation of densi-
ty cavities (by the ponderomotive force}, self-focusing,
and collapse of electrostatic field envelopes (leading to en-
ergy dissipation and production of hot particles} consti-
tute the main elements of these theories called strong
Langmuir turbulence (cf. Refs. 1, 2, and references
therein}.

In the original formulation of the cavity dynamics, the
cavity collapses practically without energy loss until the
characteristic dimensions become comparable with the
Debye radius. At this final stage of collapse the energy of
electrostatic fields is transferred to electrons and the cavi-
ty burns out.

In this paper we propose a mechanism of energy dissi-
pation and particle heating related to local, stochastic in-
stability of electron trajectories in the nonlinear fields of
Langmuir cavities. This model is relevant for one dimen-
sional modeling and gives the threshold values of electro-
static field intensities beyond which the hydrodynamical
formulations may become incorrect. The hydrodynami-
cal model of strong Langmuir turbulence (the so-called
Zakharov equations ) is based on the concept of the pon-
deromotive potential, which couples ion dynamics and
high-frequency electrostatic fields. We will analyze the
ponderomotive approximation from the point of view of
particle dynamics, and show the conditions for which it
loses its validity leading to rapid particle heating.

The physical context of our model is related to Lang-
muir waves produced, for example, during stimulated
Raman-scattering (SRS) instabilities. ' In the presence
of stimulated Brillouin scattering (SBS) the SRS-
produced Langmuir waves are modulated by the excited-
ion density waves. The long-wavelength plasma modes
break up into periodic localized structures separated by
the distance defined by the ion-acoustic wavelength. A
role similar to SBS-produced ion waves can be played by
sound modes from the parametric decay instability. If
there is no separate source of density modulations, the
modulational instability of a broad envelope breaks it up

into smaller sizes of a characteristic dimension inversely
proportional to the initial field amplitude.

A number of authors have already studied, in theory '

and experiments, the nonlinear particle dynamics in the
simple standing-wave configuration and found rapid in-
crease in particle-heating rates once the threshold-field
values are reached. In particular, Schmidt discussed this
efFect in the context of the validity of the ponderomotive
potential approximation.

In this paper we will first describe (Sec. II) the periodic
localized structures given by the traveling-wave solutions
to the Zakharov equations. The motion of the oscillation
center will be studied in such fields in Sec. III. Analytic
criteria for the resonance overlap (Sec. IV A), stochastic-
layer formation in the vicinity of the separatrix (Sec.
IVB), and conditions for total destruction of the pon-
deromotive potential (Sec. IVC) will be given. The nu-
merical results of the evolution of the distribution func-
tion will be described in Sec. V. Conclusions and a sum-
mary are presented in Sec. VI.

II. LOCALIZED LANGMUIR FIELDS

Even for the simple case of one-dimensional, but driven
Zakharov equations, analytical solutions are not known.
Therefore, in proposing the form of electrostatic fields we
have relied on the results of direct numerical integration
of the nonlinear equations and on the analytical solution
to the much simpler, undriven nonlinear Schrodinger
equation. The two main characteristics of numerical
solutions, i.e., localization and periodicity, as well as the
overall shape of the field envelope, are fairly well approxi-
mated by the combination of elliptic functions. The
latter can be obtained from the Zakharov equations
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if N can be assumed in the traveling-wave form
N(x —Vt). Equations (1) are written in a dimensionless
form (cf., for example, Ref. 1) using the following units of
time, distance, electric field E, and density fluctuations,
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P =1—16exp
k

(14)
is the equation of motion of the oscillating center,
equivalent to the motion of a particle in the ponderomo-
tive potential,

Our analysis of particle dynamics, stability of the pon-
deromotive potential, and particle heating will be based
on the solutions of the equations of motion in high-
frequency electrostatic fields. The fields have the form

4p =3
2

m;
(22)

G(x, t)=Go(x)cos[(Q~ —
—,'A )t]

=E(x}cos(Q~t}, (15)

where Go is defined by Eq. (6) and correction to the plas-
ma frequency defined by constant A, Eq. (7), is usually
much smaller than Q (within the parameter range dis-
cussed below}. Assuining that we can drop this extra
term in frequency, our expression for Go [Eq. (6)] defines
the field envelope E [cf. Eq. (1)].

III. MOTION OF THE OSCILLATION CENTER

The hydrodynamical model based on the Zakarov
equations (1) relies on the validity of the ponderomotive
potential approximation. For electrons moving in the
electrostatic field (15), the equation of motion has the fol-
lowing form:

g2 6 m;zx(t)= — E(x)cosQ t,V'3 m,
(16)

g2 6 m;
2 xf = —

g E(xg }cosQ~t
V'3 me

with the solution

(17)

where we have used the Zakharov units [Eq. (2)]. If the
field amplitude is not too large, one can separate particle
trajectory into oscillations of period T =2m/Q about
an oscillation center that moves on the slower time scale.
Writing x =xf+x, where s stands for slow and f for
fast, one obtains, approximately, for the fast variable,

Figure 2 shows the typical phase space of particles
moving in the electrostatic field (15), plotted in Fig. 1.
This surface of section mapping, obtained from numeri-
cal solution of the equation of motion (16), plots position
and velocity at every plasma period. Figure 2 displays
the region of regular trajectories near zero velocity. Par-
ticles in this region experience ponderomotive potential
(15) and, if the initial distribution function is a Maxwelli-
an, the bulk of the particles is trapped between the local-
ized fields.

Adjacent to the area with ponderomotive force, we find
irregular trajectories which almost uniformly fill the
bounded part of the phase space. These particles form
characteristic high-energy tails in the distribution func-
tion and are responsible for energy absorption. We have
proposed a diffusion model' in order to describe time
evolution of the particle distribution function in this ve-
locity range. The results indicate moderate heating
which should be included in Zakharov model.

We have observed here, however, the rapid increase in
heating rates for large field amplitudes which correspond
to destruction of regular orbits in the region described by
the ponderomotive potential and to formation of the re-
gion of interconnected stochasticity. [The destruction of
last Kolmogorov-Arnol'd-Moser (KAM) surface cuts into
separate pieces the chain of resonances at zero phase ve-
locity. ] This, in turn results in a very large energy ab-
sorption by particles, because the process involves almost
the whole bulk of the distribution function. For the hy-
drodynamical evolution of electrostatic fields (15), these

m;
xf = ~ E(x, )cosQ t,V3 me Q

(18)

7.5—
provided that xf «1 or E,„«m;Im, (Q~=1.5m; I
m, ). Expanding

E(xf +x, ) =E (x, )+xf E(x, )+ (19)

we obtain an approximate equation for the slow variable
from (18}and (19),

x = 3
t 2 me

'2
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(20}

where the last term in small parentheses vanishes after
averaging over the fast time. Finally,

6f Cf
x, = — N (x, )

dt GX
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FIG. 2. The Poincare surface of the section plot, based on
numerical solutions to the equation of motion (16) with electri-
cal 6eld E as in Fig. 1. Points are mapped every T~ =2~/Qp v'

and x are dimensional velocity and position, respectively.
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processes set up the limit of validity of the ponderomo-
tive approximation and they play a role which is similar
to wave-breaking phenomena in the case of a plane wave.

IV. VALIDrr Y OF THE PONDKROMOTIVE
POTENTIAL APPROXIMATION

A. Resonance overlap

Our objective is to determine field intensities for which
two regions of mixing (Fig. 2), at positive and negative
velocities, will interconnect. $uch a transition to global
stochasticity can be determined using the overlap cri-
terion. " The latter postulates that the last KAM surface
between two resonances is destroyed if the distance be-
tween modes, measured, for example, in terms of
difFerence between phase velocities, is equal to the sum of
the half-widths of the two island separatrices formed by
the resonances. In spite of the fact that this criterion can
only give approximate values of the field, it usually pre-
dicts the extent of the stochastic regions with suScient
accuracy and it has been successfully applied in a similar
problem' (cf. also Ref. 10}. The resonance-overlap cri-
tierion can be made more accurate by taking into account
the finite width of the stochastic layers in the vicinity of
the separatrices (see next subsection).

The electrostatic field {15)can be represented in terms
of a Fourier series.

G(x, t)= —k cosQ t+21

Q~ ~cos(mk x —Q t)
m= —oo

m&0

(23)

where Q =q ~2/( I+q ), q =exp[ mK'(p)/K(p—)],
K'(P) =K((1—P )'~ ), and k is given by (12). The field
(23) has a uniform component which approximately cor-
responds to a long-wavelength Langmuir wave, which in
the process of nonlinear evolution is modulated and
evolves into a chain of localized structures. In a sightly
more general situation, this component of the wave pack-
et can have its own finite k number and the field 6 would
have the Bloch function form (cf. Ref. 10). We found
that the presence of this extra plane wave, apart from
changing the structure of the modes, does not a8'ect the
form of the ponderomotive potential well. ' It introduces
asymmetry into the phase-space plots, but it should not
qualitatively change the transition to global stochasticity.

The equation of motion (16) can now be written in the
following form:

2 co

X(t}=— g A cos(mk x Q t), (24)—
m = —oo

where

=v'6 k Q(
Plq

We have plotted the amplitudes A as functions of the

phase velocity of the modes vg'=Q~/mk~ in Fig. 3.
This plot corresponds to physical parameters of the map
shown in Fig. 2. The horizontal lines in Fig. 3 give the
width of the trapping regions,

' 1/2
1

mk
2v(m) 8trap (25)

calculated separately for each mode.
The stochastic regions in Fig. 2 are defined by the over-

lapping modes m =2, . . . , 6 as shown in Fig. 3. Al-
though modes 7 and 8 seem to overlap weakly in Fig. 3,
their amplitudes are very small and the corresponding
trapping regions are separated from the stochastic part of
the phase space. This is more apparent in Fig. 4, which
shows the magnified portion of Fig. 2 in the vicinity of
the ponderomotive potential. It displays trajectories of
particles predominantly interacting with modes: 7

(vugh
=+1.47v, }, 8 {U h

=21.29U, ); also, regular or-
bits trapped by waves 9 (v~h =21.15v, ) and 10
(

vugh
=k l.03U, }are clearly visible.

Finally, the shaded part of Fig. 3 represents the width
of a ponderomotive potential. From {21)and (22) one can
easily find the maximum velocity of the particle still
trapped by the ponderomotive potential to be

' 1/2

„max 4 ~~p 2P ' "o
{26}

V3 1+P m, ve

For the parameters of Figs. 1-4, v, '"=0.69v, .
As the field amplitude increases, and kz remains con-

stant, the trapping width of the ponderomotive potential
(26) grows and may finally link with the stochastic re-
gions defined by the overlapping modes. At this point we
should expect dramatic increase in particle heating as
thermal electrons can now access high-velocity regions.

The overlap condition for the ponderomotive potential

10
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FICx. 3. The amplitudes A [Eq. {24)]of the Fourier modes
in velocity space (m;/m, =100), for the parameters of Figs. 1

and 2. The fu11 separatrix width of a mode is indicated by the
horizontal line. The shaded region corresponds to the trapping
width of the ponderomotive potential. Only the modes with
positive phase velocities are plotted.
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FIG. 4. The surface of the section plot generated for the
same conditions as Fig. 2 with the region of small velocities en-
larged.

and mode m from the stochastic part of the phase space
can be expressed in the following form:

0
V

max+
V

(m) &vs "trap
P

(27)

In addition, the trapping of mode m must overlap with
the m —1 component of the wave packet, i.e.,

V(m) +V(m —1) +
0 0P P

(
—1)k km p m p

(28)

which at this point is already connected with mode
m —2, and so on.

We shall illustrate the above theoretical discussions by
giving a few numerical examples. Figures 2 and 4
display, apart from the regions of local stochasticity at
higher velocities, well-ordered phase space with a majori-
ty of particles trapped on regular orbits between localized
fields (maximum field intensity at x =0 corresponds to
uo/v, =0.97, and k is 0.097kD in dimensional units).

At vo/v, =1.22, and the same k~, Eq. (12) (Fig. 5), the
vicinity of separatrix of the ponderomotive potential ex-
hibits regular orbits belonging to resonances 10

(vugh =1.03v, } and 11(uv„=0.94u, ), while modes 9 and 8
seem to overlap. Another important element of Fig. 5 is
the stochastic layer formed at the separatrix of the pon-
deromotive potential. Formation of this layer contributes
to the local destruction of the zero-order resonance and
to the transition to global stochasticity by facilitating
mode overlap.

Figure 6 shows what happens for vo/u, = 1.31 [and the
same k~, Eq. (12},as in Figs. 4 and 5]. Most of the slow
and thermal particles are still moving on regular orbits
trapped between localized structures. The regions of sto-
chastic motion have been extended almost up to separa-
trices of the ponderomotive potential. The stochastic
strip around the separatrix is clearly visible, but still quite
narrow and separated from regions of interconnected sto-
chasticity at high velocities.

The mode-overlap criteria [Eqs. (27) and (28)] suggest
that for this case mode 11 should weakly overlap with the
ponderomotive potential and faster modes in the wave

FIG. 5. The surface of the section plot for vp/v, =1.22 and
k~ as in Fig. 1. The vicinity of the separatrix of the ponderomo-
tive potential displays apparent asymmetry as x'~ —x' and
v'~v' (similar to Figs. 4 and 6), while the equations of motion
(21) in the ponderomotive potential are symmetric with respect,
to this transformation. Note, however, that the map has been
constructed from the numerical solutions of the full equations
of motion (16) which do not have the symmetry x ~—x, t~—t
(i.e., x~ —x, v~v). Also, taking snapshots of exact trajec-
tories every T~ =2m. /Q~ is not equivalent to the procedure lead-
ing to the ponderomotive approximation (21), particularly at
higher Seld amplitudes.

packet. Obviously, this field amplitude is not suScient to
break up chain of resonances in the vicinity of zero veloc-
ity. As we shall see below, this will happen around
uo/v, =l.6 when the overlapping criteria (27) and (28)
predict overlap between mode 8 and the ponderomotive
potential. Also, our estimate of the stochastic layer will
predict considerable width for the latter case.

The regions of interconnected stochasticity may be
seen in Fig. 7 for uo/u, =1.8. It is clear that Fig. 7
represents a qualitatively di8'erent situation from Figs. 6
and 4. Now a large part of bulk electrons can be ac-
celerated and access regions of high, positive and nega-
tive, velocities. It is also the case of the strong mode
overlap as seen in Fig. 8. It is interesting to note, howev-
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FIG. 6. The surface of the section plot for vp/v, =1.31 and
the same k~ as in Figs. 2 and 3.
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er, that even in the case of these fairly strong fields the
trapping region of mode 1 is separated from the stochas-
tic part of the phase space. In practical terms this will in-
dicate strong energy absorption but lower-energy elec-
trons produced by wave-particle interactions.

So far we have discussed the case of constant periodici-
ty length 2~/k and different values of field intensities.
One can think, however, about various physical condi-
tions when Langmuir waves get modulated with different
k . The interesting case occurs when k becomes small-
er; then, K(p) [cf. Eq. (12)] grows at given a, and p
reaches values very close to unity for localized fields. The
Fourier series (23) will have many components with phys-
ically interesting values of k, i.e., smaller than kD. The
overlapping criterion (27) will be more difficult to satisfy,
mainly because U,",,' —1/&1 and one has to consider
higher harmonics in order to reach the same value of
mk and phase velocity as compared to larger k . Note
that q in the definition of A (24) is now very close to
unity. At the same time, harmonics with smaller k can

overlap much more easily between themselves and diffuse
particles into the hot tails (cf. Ref. 12) more effectively.

and

H=H, + V(x„t) (29)

H, =
—,'(x, ) +4 (x, ),

V=C! (x, )cos20 t .
(30)

It is well known that even for arbitrarily small field am-
plitudes, the region around the separatrix of the non-
linear resonance exhibits stochastic particle motion. "
The motion near the separatrix is extremely unstable
since the separatrix divides regions of qualitatively
different kinds of motion (oscillation and rotation), the
transition between them being possible under very weak
perturbation.

We shall first derive an approximate separatrix map"
for the particle motion in the vicinity of the separatrix of
the ponderomotive potential. Next, an estimate will be
given for the width of the stochastic layer. Using this cri-
terion, we will find the range of field amplitudes corre-
sponding to a rapid increase in heating rates.

Let us start with analytical solution to the motion of
the oscillation center x, (t). The energy H, is a constant
of motion C and can be written in the following form:

B. Stochastic-layer formation

The calculations in this subsection describe formation
of the stochastic layer in the vicinity of the separatrix of
the ponderomotive potential. They paraphrase the stan-
dard approach to this problem described by Chirikov"
for the case of a nonlinear pendulum. The results of this
derivation are valid only close to the separatrix and
therefore they describe local effects in the phase space.
We have found, however, that a transition to global sto-
chasticity corresponds to the same field intensities as for-
mation of the stochastic layer of a considerable width.
Therefore the estimates given below can supplement
overlapping criteria; in particular, they can help to deter-
mine which mode from the wave packet should overlap
with the ponderomotive potential well for the transition
to global stochasticity to occur.

We first investigate the equation of motion (20) for the
particles moving primarily under the influence of pon-
deromotive force. The oscillatory term in Eq. (20), which
describes the coupling between high-frequency oscilla-
tions and the motion of the oscillation center, will be
treated as a disturbance. The Hamiltonian function relat-
ed to variables x, can be written in the following form:

C= —'(x, ) +4E (x, ), (31)

I

2
I I

3 4
V h/V

I

5
I

6
where we used the explicit form of the plasma frequency
0 =1.5m;/m, . For the motion on the separatrix the
constant (31) is equal to

FIG. 8. The amplitudes A [Eq. (24)] in velocity space, for
the parameters of Fig. 7. Mode m = 1 is still separated from the
overlapping waves (m=2, . . . , 8). The shaded region corre-
sponds to the trapping width of the ponderomotive potential.

Ci =—', a (1+P) (32)

and the minimum value of the ponderomotive potential
(maximum velocity), at x, =2K(p) /a, is given by
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C =—'a (1—P)2 3 (33)

—[2(C y )]1/2
t

Then, by using the simple relation

(34)

In the vicinity of the separatrix we deal with two kinds of
trajectories: for C )C

&
particles are untrapped and the

motion corresponds to rotation, and for C & C, particles
oscillate on closed orbits with characteristic frequency
co(C). Even in the first case (C & C, ) it still makes sense
to introduce a characteristic frequency because our phase
space is periodic. In order to calculate this frequency, we
can first derive from Eq. (3 1}an expression of the oscilla-
tion center velocity,

dt Bx, Q'
(40}

where I, J stands for the Poisson bracket. The last ex-
pression has a simple physical interpretation in terms of a
disturbing force power, which, by using expression (30}
for the potential V, can be written in the following form:

dH, BP dx,
cos20» t .

dt Bx, dt
(41)

The presence of x, in Eq. (41) makes it possible to con-
struct a pulse-to-pulse transformation. Note that be-
tween pulses, i.e., in the vicinity of hyperbolic points, x,
is very close to zero. We thus readily obtain, by integrat-
ing Eq. (41),

dx, dP» 1{()» dP
dt dt dx, dt

4 d E2

3 dx
(35)

dx, dP»
hH, = —f dr ' cos[20»(r+'p)),

6t dv dx,
(42}

where we have used Eq. (22), we can write, for the time
derivative of the ponderomotive potential,

=~&[$»(C P» )( Ci ——
{{)»)(P» —C2 )]' ' . (36)

In the equation above we have used expressions (5), (7),
(22}, (32), (33), and (34). By introducing a new variable

y = 1 /P», we can rewrite Eq. (36) in the following form:

where the integral on the right-hand side is taken over a
region b, t which includes the temporal width of the veloc-
ity pulse, and rp is the initial time of the interaction. For
motion close to the separatrix, one can set approximately
x, =U,„,x, =x,„,i.e., substitute the motion law at the
separatrix for that one near the separatrix. We shall ap-
ply this simplification in Eq. (42) and extend the limits of
integration to infinity. Expression (42} can now be writ-
ten in the fol lowing form:

= —~3 dt
[( Cy —1 )(Ciy —1 )( 1 —C2y) ]'~2

(37) dx sx
(P»

—C i ) cos[20» (r + 'Tp )],
SX

Equation (37) can be integrated along the trajectory be-
tween x, =0 and x, =4K(P)/a, for C & Ci, and along
half of the c1osed orbit for C (C

„

in order to obtain a
period o the motion T,

(4/i/3)[c, (c—C2)] '~ E(a), C & C,

(4/&3)[C(C, —C2)] ' E( 1/v), C & Ci

where K stands for the complete elliptic integral and

C
&

—C2
K

C) C —C2
(39)

It follows from the properties of the elliptic integral that
for the motion on the separatrix (C~c, ) expression (39)
diverges logarithmical ly to infinity. It takes infinite time
for the particle to reach the points of maximum potential
(x, =0, 4E /a ). This is also one of the peculiarities of
motion close to the separatrix, i.e., particles spend most
of the time in the neighborhood of hyperbolic points
x, =0, +K /a, . . . , where velocity is almost zero. The
rapid variation of velocity takes place over much shorter
time and has an irnpulselike character. " %e use this fact
to introduce a discrete approximation to the motion close
to the separatrix.

We need to calculate the change in the energy H [Eq.
(29)] of the oscillation center during the time correspond-
ing to the period T [Eq. (38)]. Instead of calculating the
change in the full Hamiltonian (29), one may find that in
unperturbed energy H, we have

(43)

where the constant C
&

was subtracted to simplify integra-
tion by parts, leading to

where

20» 1 +v'p
X sin ln

1 — P
L

sinyp, (45)

~ =[(c, c, )/c, ]'", s= c,y-v' 3

where we have introduced the phase variable
(gp= 20»7 p), which satisfies the equation

hH, = —20» f dr[/ (x,„(r)) C, ]sin[20—(r+rp)] .

(44)

Evaluation of the integral in Eq. (44) consists of two
parts; first, we find the ponderomotive potential as a func-
tion of time, calculated on the separatrix 4» (x,„),and
next we integrate it with the sine function by choosing
the appropriate contour of integration. Details of these
calculations are presented in the Appendix B and the
final results (Bl 1},reads

20 C) my

sinh( ~0 /5 )
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d ~=2n .
dt

(46}

The discrete from of Eq. (46) defined the relation between
phases of the distributing force before and after interac-
tion,

with C=H&. Equations (45) and (47) constitute the
discrete approximation to the motion of the oscillating
center in the vicinity of the separatrix. We will linearize
Eq. (47) with respect to AH„Eq. (45), use an approxi-
mate form of the elliptic integral (13) in (38), and assume

C2 «C, (P~ 1 }to obtain

q, —
gap =2Qp T(H, ) . (47)

pre (po=Q(Ho)+S(Ho }sinqro (48)

where the period T [Eq. (38)] corresponds to the motion where

SQ '" C 8
Q= — ln 4v'3 C,Ho C2 (C) —Hp ~

(49)

1S , mQ
1 0

C 01 0
ln 4

Hp C2 ~C) Hp ~

' 1/2
C, 1 2Q 1+~P+ sin ln

~ C, —Ho ~ sinh(~Q~ /5) 5 1 —VP
(50)

The transition to chaos" takes place in the motion de-
scribed by Eq. (48) when the parameter ~S~ & 1. This re-
lation for the given form of the field defines the width of
the stochastic layer ~Ho

—C, ~
around the separatrix.

Among the numerical examples given in the preceding
subsection, Fig. 6 (uo/v = 1.31) shows a narrow stochas-
tic strip at the separatrix. The analytical model (45) and
(48) predicts that in this case ~S~ [Eq. (50)] reaches the
values of order unity for the parameter
~Ho —C, ~/C, -0.0025, which corresponds to the energy
width of the stochastic layer of the order of 0.5% of C, .
Choosing the parameter ~Ho —C, ~/C, of order 0.10,
which gives the energy width of the stochastic layer of
the order of 20% of C, , we have ~S~ =1 if uo/U, =1.63.
This is also the case when mode 8 (cf. Fig. 3) overlaps
with the ponderomotive potential and a dramatic in-
crease in heating rates (cf. Fig. 9) is observed. Finally,
Fig. 7 shows the phase-space plot for Up/U, =1.8, where
the parameter ~Ho —C, ~ /C, =0. 1 gives ~S~ -2.5.

x (t) =xo(t)+ g, (51)

where

xp(t) xp +xf (xp }

order. Half of these fixed points are stable, the other half
are unstable. As the strength of the fields increases and
localization becomes more pronounced, the stable fixed
points destabilize, producing local chaos and more stable
points close by. The destabilization of such orbits has
been identified as the mechanism responsible for the
spread of chaos (cf. Ref. 13, and references therein).

As an example we shall analyze the linear stability of
the elliptic point corresponding to a minimum of the pon-
deromotive potential 4 [Eq. (22)] at xp =2K/a. This is
the most stable point in the ponderomotive potential, and
its destabilization corresponds to the total destruction of
the potential well. Its stability properties can be deduced
from the behavior of an adjacent point,

C. Total destruction of the potential well

To conclude this section, we look at another aspect of
the transition to chaos. The results are less important for
the transition to global stochasticity —they indicate the
strong stability of the orbits at the bottom of the pon-
deromotive potential well.

Our computer-generated map shown in Fig. 2 gives
rough indications about the existence of fixed points,
periodic orbits which are just fixed points of the higher

and xf(xp) is the oscillatory part, Eq. (18), of the solu-
tion, and xf «1. The equation of motion (16) with the
field E(x) defined by (6} is linearized around xp(t) [Eq.
(51)],giving the following result:

d2

dt2
6

v'3
m; d2E 2xf (xo )cos Qp tg
m dX & &0

L

(52)

where the second derivative of the electrostatic field (6)
reads

d a
dx

E(x)= ap (E[xc}(napx)d ( napx—) —psn(ax, p)] xztt~~= (1 P) .
2

(53)
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Note that the first-order derivative of E, Eq. (6), evalu-
ated at the stable point xo=2E/a vanishes. Equation
(52) can be rewritten in the following form:

g(r)+8, (1+cosr))=0,
d

(54)

where the time variable is ~=20 t, and the constant is
given by

cg 4.00

O)
C

~~
3.000)

Z

B)= 4 PPl ~

27 mi

'2

a P(1 —P)
2.00

1 Uo

48 U,

4
P(1 P)'—
(1+P)

1.00
1.0

I I

1.2
I I I

1.4

V Ve

1.6
I I

1.8 2.0

Equation (54) is the Mathieu equation with stable solu-
tions for small enough B&. However, it destabilizes' at
B,=0.19. One therefore expects the complete break-
down of the ponderomotive potential at

& 1.76
P( 1 P)1/2

(55)

For the model analyzed in our paper, if the periodicity
length is kept constant as the field strength increases
[4K(p)/a=const], the parameter p can reach values very
close to unity and the inequality (55) is impossible to
satisfy. For example, fields shown in Fig. 1 correspond to
p=0.9875, which gives the threshold value of
vo/v, =31.5. Thus, criterion (55) shows how stable the
orbits are in the vicinity of the minimum of the pondero-
motive potential. Equation (55) can have practical im-
portance at small values of the field intensities, when
vo/v, is not too large. In such cases we would, for exam-

ple, exclude short-wavelength ion waves modulating
Langmuir fields. It should be also emphasized that for
fields much smaller than the threshold values (55), the de-
struction of regular orbits in the vicinity of the separatrix
leads to the rapid spread of chaos and to particle heating
which changes the hydrodynamic al evolution of the
fields.

V. EVOLUTION OF THE DISTRIBUTION
FUNCTION

One of our major objectives in studying the destruction
of the ponderomotive potential well and the transition to
global stochasticity is the expected dramatic increase of
hot-electron production. We shall illustrate this point by
numerical calculations of the particle-heating rates and
by giving the examples of the distribution functions. Our
model assumes constant electric field amplitudes, and
therefore it does not include any self-consistent effects;
nevertheless, it can give useful indication of the strength
of field necessary for large hot-electron production.

Figure 9 summarizes the dependence of the heating
rates on the field amplitudes, while the characteristic
periodicity of the localized fields is kept constant and cor-
responds to k~ (as in Fig. 1). The plot shows the ratio of
an averaged kinetic energy per particle after 20 plasma
periods to its initial value. The initial distribution func-
tion is a Maxwellian with parameters given below Eq.

FIG. 9. Dependence of the heating rates on the field ampli-
tudes. Vertical axis gives the ratio of the averaged kinetic ener-

gy per particle after 20 plasma periods to the initial one. Parti-
cles are evolved in the field configurations characterized by con-
stant k~ (as in Fig. 1) and an initial Maxwellian distribution
function. Horizontal axis gives uo/u, .

1.0 —..

o 0.80
C

V
C

0.60
C0

0.40

Ch

0.20

0.00
0.00

I I

1.00
I I~~i

2.00 3.00 4.00 5.00

V/V

FIG. 10. Three particle distribution functions: dots, initial
Maxwellian; long dash, field intensity during evolution corre-
sponds to uo/u, =1; solid curve, uo/v, =2. The last two distri-
butions are calculated after 20 plasma periods. Horizontal axis
gives velocity in units of thermal velocity.

(11). On the time scale of 20 plasma periods, the time
variation of the averaged kinetic energy is approximately
linear; therefore Fig. 9 represents the heating rates as a
function of field intensities. The increase in the heating
rates is apparent for intensities corresponding to the par-
tial destruction of the ponderomotive potential well seen
in Fig. 7.

Figures 10 and 11 illustrate the increased electron
heating by showing two examples of the distribution
functions after 20 plasma periods. The comparison be-
tween the results at vo/v, =1.0 and 2.0 indicates two im-

portant reasons for the rapid transfer of wave energy into
particles. First, in Fig. 10 one sees more particles from
the bulk of the distribution function being accelerated
into the tails at higher field intensity, which is the main
consequence of the destruction of the ponderomotive po-
tential well. Second, in Fig. 11 we see fully developed
tails which also extend to much higher energies when

vo/v, =2.0. The regions of mixing and stochastic insta-
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FIG. 11. Same as Fig. 7, but the vertical axis gives loga-
rithms of the distribution functions plotted with respect to the
kinetic energy of particles normalized to the thermal energy.

bility not only connect parts of the phase space with neg-
ative and positive velocities, but also extend themselves
to much higher kinetic energies.

VI. CONCLUSIONS

We have analyzed particle dynamics in Langmuir fields
which model the physical processes described by the
Zakharov equations. In particular, we have investigated
one of the possible mechanistns, which is related to sto-
chastic instability of particles moving under the influence
of the ponderomotive force, limiting the validity of a hy-
drodynamical description by the Zakharov equations.

The electrostatic fields are given by the combination of
elliptic functions, for which we have kept the same
periodicity length while changing the field amplitudes.
Therefore we could reproduce in an approximate way the
field evolution obtained in numerical analysis of the
SBS/SRS problem, or in the development of a modula-
tional instability.

We have determined the threshold field intensity for
the rapid increase in the electron-heating rate. This in-
crease in heating is related to partial destruction of the
ponderomotive potential well and the stochastic heating
of particles from the bulk of the distribution function.
Similar observations of rapid hot-particle production
have been reported in the particle simulations' of the
modulated Langmuir waves.

We have also found stable behavior of the particle or-
bits at the bottom of the ponderomotive potential well.
The total destruction of the well requires very high field
intensities. Depending on the strength of the source, the
field evolution may be then altered by the formation of
the large region of interconnected stochasticity and parti-
cle heating, or we can observe strongly localized fields
leading to harmonic generation and strong Landau
damping, as is usually assumed in the models of strong
Langmuir turbulence. Finally, it is interesting to note
that periodic localized electric field structures correlated
with density depletions were recently found in the auroral
acceleration region. ' The mechanism of particle heat-
ing, described above, may also contribute to hot-electron
production in rnagnetospheric plasmas.

APPENDIX A: DERIVATION OF EQ. (5)

Assume that N depends on x, t through a variable
g=x —VT; only then,

N = isa'/w,

+60 V

(A2)

8 G2 V+ BQ

Bg 2 Bg
=0, (A3)

where we have used (BGD/t}t )& „„„=0.
Equation (A3) may be integrated immediately (we limit

our attention to the case in which the constant of integra-
tion is 0). Hence,

)+$0(t), —V
(A4)

and, from (A4} and (A2},

d40 V' 1 ~'G0
+

)=const GO 0

G2

8' (AS)

The right-hand side does not depend on t when g is con-
stant; therefore the left-hand side is also a constant,
which, for the of convenience, will be set as V /4+ A /2,
A =const. Hence, we get

Go
(g'~ 22 GO GO

from which (5) follows immediately.

(A6)

APPENDIX B: CHANGE IN THE ENERGY
OF THE OSCILLATION CENTER

Consider an integral in the expression (44) for the
change in energy of the oscillation center

AH, = —20 f d~[Pp(x,„(r)) C,)—
Xsin[20 (~+~0)] .

where 8'= V —1 is the physically relevant solution of
(lb}. Inserting it into Eq. (la) and substituting (4) for E,
we obtain the following system of equations correspond-
ing to the real and imaginary parts of (la):

BP BP
at (=const

a'G, G,'+ — =0,
W
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Following the steps outlined in calculations of the period
T, Eq. (32), we first evaluate P (x,„}.Equation (36), for
the motion on the separatrix C =C&, takes the following
form:

I, = f dre

C, —C2 —C, y tanh (5~)

y [(1/y ) +tanh(5r) ][(1/y ) —tanh(5r) ]
dP

~3(C y )[y (C y )]1/2

By introducing a new variable,

C ~n
2x= 1—

2 Q 2

we can reduce Eq. (82) to the following simple form:

dx v3
Comdt .

2

(82}

(83)

(84)

(88)

g, (,)=(+)(—) ln +t1 y+1 . m

y —1 25
(89)

The integral above is related in a simple way to the in-
tegral over a closed contour running from —ao to + ao

along the real axis and back from + ~ to —~ along the
line parallel to the real axis and separated from it by the
distance i m /5 corresponding to the periodicity of the hy-
perbolic tangent. Only two simple poles at

Integrating (84), we obtain

ln =&3C,y(t —t, ),y+x
y X

(85)

where y=[(c, —Cz)/C, ]', and to corresponds to the
constant of integration. From (85), after simple manipu-
lations, we get the expression for the ponderomotive po-
tential evaluated along the separatrix,

myC2 1I)=
5(1—y~) sinh(n. Q /5)

2' y+ 1X sin ln
5 y —1

(810)

are encircled by this contour. Finding residua of Eq.
(88), we can write

Cq
p~(x,„(t))=

2
1 —y tanh [(W3/2)C&y(t to)]— (86) and, for the energy increase,

2mQ Ciy
5

1

sinh(srQ~ /5)

2Qp I +Qp'ln
5 1 —v'P

hH, =Substituting Eq. (86) into (81),we have

C, —C2 —C, y tanh (5v )
hH, =20' dv

1 —y2tanh (5r)
X sin [2Q~ ( ~+~o)],

sin(2Q ro) . (811)X sin

(87)

where 5=(v 3/2)C, y. The essential part of the integral
in Eq. (87) can be written as

This is the increase of energy of the oscillation center
during the motion close to separatrix due to the coupling
between the slow and fast components of the motion.
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