
PHYSICAL REVIEW A VOLUME 38, NUMBER 11 DECEMBER 1, 1988

T-matrix approach to the nonlinear susceptibilities of heterogeneous media
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The nonlinear susceptibilities of a heterogeneous medium are calculated by using a generalization

of the standard T-matrix approach. Results for the susceptibilities for degenerate and nondegen-

erate four-wave mixing and nonlinear absorption are obtained. These are evaluated explicitly for a
medium with nonlinear spherical grains. The role of various resonances in the generation of the sig-

nals is discussed. In the special cases of low concentration of inhomogeneities, present results agree
with those of Flytzanis and co work-ers [Opt. Lett. 9, 344 (1984); 10, 511 (1985); J. Opt. Soc. Am. B
4, 5 (1987}].

I. INTRODUCTION

The linear optics of the heterogeneous media is reason-
ably well understood. ' One has a variety of methods to
calculate the effective dielectric function using different

approximate schemes. For the small volume fraction
f((0.1) of the inhomogeneities, the Maxwell-Garnett
formula and the coherent-potential approximation ' are
very often used. The nonlinear-optical properties of the
heterogeneous media have become important in connec-
tion with metal colloids and semiconductor crystal-
lites. ' Flytzanis and co-workers have carried out a
series of investigations on nonlinear mixing signals pro-
duced by a colloidal medium. They have also developed
a phenomenological approach to calculate the effective
third-order nonlinearity 7' ' of such a medium. Howev-
er, no general methods exist for the evaluation of the
effective nonlinearities of heterogeneous media in a sys-
ternatic way.

In this paper we describe a T-matrix approach for the
calculation of the third- and fifth-order nonlinearities of a
heterogeneous medium. In Sec. II we present the general
formulation. In Sec. III we present the explicit forms of
X' ' and X' ' for a medium with nonlinear spherical
grains. Each grain is assumed to be a Kerr-like medium.
In Sec. IV we discuss the effect of the cooperative reso-
nances' on the four-wave-mixing signal. We show the
dependence of the cooperative resonances on the volume
fraction. In the limit of very small volume fraction, the
cooperative resonances go over to the usual shape reso-
nances and our formula for effective 7' ' reduces to the
phenomenological result of Flytzanis et al. In Sec. V we
study the reflection characteristics' ' at a nonlinear col-
loid interface. Finally, in Sec. VI we calculate the
effective nonlinearities for nondegenerate four-wave mix-
ing; we give explicit results for a medium with spherical
grains.

II. T-MATRIX APPROACH FOR EFFECTIVE
NONLINEAR SUSCEPTIBILITIES

In this section we develop the T-matrix formalism for a
nonlinear heterogeneous medium. We restrict ourselves

only to the case of odd-order nonlinearities up to fifth or-
der. We make a quasistatic approximation, i.e., we as-
sume that the linear dimensions of the inhomogeneities
are much smaller compared to the wavelength of the in-
cident radiation. For simplicity, we take the linear
dielectric function and the higher-order nonlinear suscep-
tibilities of the constituent media to be scalars. We adopt
the method of Gubernatisz to obtain the elfective third-
and fifth-order nonlinear susceptibilities.

Let the nonlinear medium be characterized by a dielec-
tric function

e eo+ 5eM (2.1)

where eo is the spatially invariant (homogeneous) part
and 5eM is the nonhomogeneous part with field-

independent as well as field-dependent parts

5eM 5e+—4—X' 'iE[ +4 X' 'iEi~. (2.2)

In Eq. (2.2) 5e is the linear part, X' ' and X' ' are the
third- and fifth-order nonlinearity coefficients, respective-
ly. We treat 5eM as a perturbation to eo and solve the
Maxwell equation

V D=O, D=eE (2.3)

V eoG =5(r —r' )I,
then the solution of Eq. (2.3) can be expressed as

E(r) =ED+ fdr'[5el(r')E(r'). V']G(r, r') .

(2 4)

(2.5}

In Eq. (2.5} Eo is the solution of the homogeneous equa-
tion

V-eoEO ——0 . (2.6}

Following Gubernatis, Eq. (2.5) can be rewritten in a
compact form

E=EO+ 65e~E . (2.7)

where D is the displacement vector and E is the electric
field. If G(r, r') is the Green's function satisfying the
equation
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Substituting Eq. (2.2) in Eq. (2.7), we obtain

T' "=5@(I—65e )

T =X (I+GT ) (
i
I+GT

i
)

(2.10)

(2.11)

It will be shown later that for actual calculations, one
does not need the explicit forms of the T matrices. Only
the averages of the T matrices are needed. Keeping in
mind the expression for 5@sr given by Eq. (2.2), we com-
pare Eq. (2.7) with Eq. (2.9) to obtain

5~E= T"'E, ,

X"'
I
E

I

'E=T"'
i E() I

'E(),

X' 'iEi "E=T' 'iE
i

E

(2.12)

(2.13)

(2.14)

E=Eo+65eE+4~6X"'
I
E

I
E+4~6X"'

I
E

I
E .

(2.8)

The integral equation (2.8) has a solution which can be
obtained iteratively. We write the solution in the form

E=Eo+GT Eo+4)rGT' '
I Eo I

Eo+4~6T' '
I Eo I Eo .

(2.9)

The T matrices (T'",T' ', T' ') can be expressed in terms
of the integral operator 6 and the medium characteristics
5e, X' ', and X' ', e.g.,

In what follows we perform an ensemble averaging
(denoted by angular brackets) of Eqs. (2.9) and (2.15) to
obtain the relations

(E& =(1+(GT"') )Eo+4m(GT"') i E() i
'E()

+4m(GT' ')
i Eo i Eo, (2.16)

&D&=~o&E&+(T"'&Eo+4~(T"')
i E, i'Eo

+4)r &
T' ')

i E() i E() . (2.17)

Note that Eqs. (2.16) and (2.17) hold only up to the fifth
order. Introducing the effective linear dielectric function
(F) and effective third- and fifth-order nonlinear suscepti-
bilities 7' ' and 7 ' ', we can write the average displace-
ment vector as

(D) =F(E)+4@X' '
i
(E)

i
(E)

+4~X("i (E) i'&E)+ ". (2.18)

Substituting Eq. (2.16) into Eqs. (2.17) and (2.18},we ob-
tain two different forms for the mean displacement

Equations (2.12)—(2.14) enable us to rewrite the second
equation of Eq. (2.3) as

D =eoE+ T' "Eo+4~T'"
I Eo I

'Eo+4~T'"
I Eo I

'Eo .

(2.15)

(D) =[@(1o+(GT'"))+(T'")]E+o4m(e (oGT' ')+(T' '))
i E()i Eo+4n(eo(GT' ')+(T' '))

i E()i E(),

(D) =F(1+(GT"'))E +o4m[( (eGT' '))+X' 'i 1+(GT'")
i

(1+(GT'"))]
i E() i E()

+4mIe'(GT' ')+4@X' '[2(GT' ')
i
1+(GT'")

i
+(GT' ')'(1+(GT"')) ]

+X"'i 1+(GT'") i'(1+ &GT'") )I i E, i'E, .

(2.19)

(2.20)

A comparison of Eqs. (2.19) and (2.20) yields the follow-
ing expressions for F, X ' ', and X ' '.

(2.21)

Note that a substitution of Eq. (2.21) in Eq. (2.22), and
Eqs. (2.21) and (2.22) in Eq. (2.23) gives the explicit ex-
pressions for the effective third- and fifth-order nonlinear
susceptibilities 7' ' and 7' ', respectively. For example,
for 7 ' ' we obtain

X [(1+(GT ) ))
i
1+(GT()))

i
z]

X [(T'"
&
—(~—e, ) & GT"'&], (2.22)

(2.24}

X"'=[(1+(GT"'))
i
1+(GT'") i'] —'

X I & T'"& (e e, )& GT"')— —
—4~X' '[2(GT' ')

i
1+(GT'")

i

+(GT' '&'(1+&GT"')) ]] .

(2.23)

It can be clearly seen from Eq. (2.24) that the resonant
character of the effective third-order nonlinear suscepti-
bility will be given by the zeros of (1+(GT"')). Note
further that the zeros of the denominator in Eq. (2.24)
have a multiplicity of 4. Hence the electromagnetic reso-
nance contribution to the third-order nonlinear phenome-
na will be rather strong. Moreover, the average value
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& GT"') is sensitive to the volume fraction. As a conse-
quence, the location of these new resonances will depend
on the values of the volume fraction.

III. EFFECTIVE NONLINEAR SUSCEPTIBILITIES
FOR A HETEROGENEOUS MEDIUM

WITH SPHERICAL GRAINS

In order to have a better understanding of the results
cited in Sec. II, we consider a simple model heterogene-
ous medium. Let the medium consist of nonlinear spheri-
cal grains embedded in a linear dielectric with dielectric
constant ep. Let the grains be characterized by the non-
linear dielectric function

e(co)=e,(co)+e2
I
E

I
(3.1)

36'p
Eo.

e(co ) +2eo

Using Eq. (3.1},Eq. (3.2) can be written as

(3.2)

where e, is the linear part and e2 is the nonlinearity con-
stant. Note that we are assuming that the grains have cu-
bic nonlinearity. A cubic nonlinearity in the constituent
medium can also lead to higher-order nonlinearities so
far as the macroscopic properties of the composite medi-
um are concerned.

For a sphere the applied field Ep and the Maxwell field

E are related by the expression

4~& GT"'& =
3E'p

(3.8)

Substituting Eq. {3.4) in Eq. (2.4), the following equation
can be obtained:

E'iX
2 2D=epEo+e2 1 — x

I
x

I I Eo I Eo
3Ep

E' iX—e2 1—
3E'p

Bx Ix I IEoI Eo. (3.9)

Comparing Eq. (3.9) with Eq. (2.19) we obtain

&
T"')={a,—eo)x,

4~& T"'& =e,x'
I
x

I
',

4m &
T"')=—e,x'

I
x

I

4a .

(3.10}

(3.11}

(3.12)

The results given by Eqs. (3.6)-(3.8) and Eqs.
(3.10)-(3.12) hold well for a single nonlinear sphere,
where averaging of Eqs. (3.4) and (3.9) was performed in
a trivial manner. These results can be generalized to the
case of a colloidal medium if we neglect such features as
size dispersion, correlation effects, etc., i.e., we assume
that the T matrix for composite medium can be written
as the sum of the T matrices of the individual grains. We
have thus generalized the Maxwell-Garnett approxima-
tion to nonlinear medium. If f is the volume fraction of
the grains in the composite medium, Eqs. (3.6)-(3.8) and
Eqs. (3.10)-(3.12) are modified as follows:

6i +26'p 6'i +2E'p
(3.3}

& GT" ') =f(x —1}, (3.13)

E=Eox — x Ix I I EoI 'Eo
3E'p

+ ' x'
I

x
I

4&
I Eo I 4Eo.

3E'p

where x and 8 are defined by

3&p 62X 62K
, 8=2

e&+2' 3&o 3&o

A comparison of Eq. (3.4) with Eq. (2.16) yields

1+&GT"')=x,

(3.4)

(3.5)

(3.6)

4~& GT"') = —
I
x

I

'x',
3E'p

(3.7)

Making use of iterations, Eq. (3.3}can be expressed as 4n&GT"'&= f I
x—

I
x

3E'p
(3.14}

4~&Gz'"& =f '
I
x I4X'a,3'

& T'")=f(e, —eo}x,

4~& T'"&=—fe,x'IX
I

4m .

(3.15}

(3.16}

(3.17}

(3.18)

Thus we obtain the T matrices from the studies of the
macroscopic Maxwell equation for a Kerr medium.

Next, we derive the explicit expressions for the effective
linear dielectric function as well as effective nonlinear
susceptibilities. Substituting Eqs. (3.13}—(3.18) in Eqs.
(2.21)—(2.23) we obtain

f (e, —eo}x
E=&p+ 1+f(x —1)

=eo+f (~& eo) IP (3.19)

X X
=(e2f)/{4m

I
P

I
P ),4~

I
1+f (x —1}

I [1+f (x —1)]2
{3.20)

T

62X E'2X
X"'=(eg} ~+f 2 +

3e 3e
(4nIPI P). (3.21}
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In Eqs. (3.20) and (3.21) we have used the following
definition:

P= —[1+f(x—1)] .1 (3.22)

We notice that Eq. (3.19) gives the standard Maxwell-
Garnett result. From Eq. (2.20) it is clear that the limit
of 4m/' ' as f~1 is ez. This implies that the effective
third-order susceptibility coincides with the nonlinearity
coefficient e2 when the whole space is filled by the non-
linear medium. On the other hand, f~0 implies that
the space is filled by the linear medium only. Hence the
effective nonlinear susceptibilities vanish. A very in-
teresting feature which emerges from Eq. (3.21} is that
the effective fifth-order susceptibility is nonzero though
the grains possess a nonlinearity of only third order. In
fact, a third-order nonlinearity of the grains can lead to
all higher odd-order nonlinearities in the macroscopic be-
havior of the composite medium. If e2 is real then 7' ' is
proportional to ez In th. e limit f~1, P~l and Eq.
(3.21) yields X' '=0 because the whole space is filled by a
cubic nonlinear medium.

In this section we have written the T matrix for a com-
posite system as the sum of T matrices corresponding to
the individual grains. One can, in principle, also investi-
gate the effective nonlinear susceptibilities in the coherent
potential approximation. There are various ways in
which this approximation can be improved upon and the
effects of correlations, etc., can be included. Sheng's'
approach, for example, treats the pair correlations be-
tween nearest neighbors by using cluster approximation.
Another possible approach for somewhat higher f values
would be to generalize Bruggeman's' approach to non-
linear media.

IV. RESONANT CHARACTER OF THE NONLINEAR
SIGNALS GENERATED BY HETEROGENEOUS

MEDIA

In this section we restrict ourselves to the discussion of
the resonances in the effective linear dielectric function
and effective third-order susceptibility for a composite
medium having spherical grains. The resonances in the
linear effective medium are well understood. They have
been studied' ' ' in connection with the anomalous ab-
sorption behavior of colloids and very thin metal films.
The pred. ominant feature which appears in the optical
properties of metal colloids or very thin granular metal
films can be attributed to the excitation of collective os-
cillations of the conduction electrons by the electric field
of the incident light waves. Indeed, from Eq. (3.19) we
notice that the resonances in 5 are determined by the
zeros of the function P =[1+f (x —1)]/x, which can be
rewritten as follows:

(4.2)

Note that Eq. (4.2} is identical to our result given by Eq.
(3.20) in the small f limit. Obviously Eq. (4.2) does not
reAect the dependence of the resonance positions on the
value of f. In fact, the resonances shift towards larger
wavelengths as the value of f is increased. The amount
of the shift can be easily calculated if we assume a free-
electron model for the grain material, i.e., we assume that

Re@(A.) =1— (4.3)

where k is the plasma frequency. The location of the
resonance is then characterized by the equation

1 — + eo ——0,2+f
P

and the amount of shift is given by the relation

(4.4)

(4.5)

Thus, the resonances will be given by the zeros of
D+f(N D—) and their location will depend on the
values of eo e, and f. In the small f limit the resonances
are characterized by the zeros of D ( =e&+2eo}. For me-
tallic grains, when Re(e, ) can be negative, D can have
complex zeros depending on the dispersive properties of
the grain material. Physically this implies that localized
plasmons can be excited in the grains. Because of the ex-
citation of the localized plasrnons there can be significant
enhancement of the local fields (recall that in the lowest
order E=Eox}. Thus, to summarize, the cooperative res-
onances given by the zeros of D+f (N D) (—which are
sensitive to the value of f) in the small f limit reduce to
the standard shape resonances given by the zeros of D
and the resonances are associated with significant local-
field enhancement.

The role of local-field enhancement can be even more
significant in case of third- and higher-order nonlinear
processes. This is because of the fact that the zeros of
D+ f(N D} are—of multiplicity 4 for F3' [see Eq.
(3.20)] and of multiplicity 6 for X'5' [see Eq. (3.21)]. The
local-field-enhanced third-order nonlinear process like
phase conjugation in heterogeneous media was studied
experimentally by Flytzanis and co-workers. They
showed that at resonance a metal dielectric composite
medium with volume fraction of metallic grains as little
as 10 can show a nonlinearity comparable to that of
CS2. For theoretical calculations they used the phenome-
nological formula which in our notation reads

D+f(N D)—
where

N =3',
D =6i+2Ep .

(4.1) It is clear from Eq. (4.5) that the shift is positive (for
f (1) and, for example, for e'0=1, f =0. 1 it is approxi-
mately equal to 5%.

In order to have a better understanding, we study the
real (e') and imaginary (e "}parts of the effective linear
dielectric function F(=@+i@')as a function of wave-
length A, for @0=1. We also study

i
X ' '

i
which reflects
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~ e ~ OQ
~ 01~ ~

1.0 ''
~ ~

0 36 '~ X 0 35~ X(pm)

2.0 .

the intensity of the nonlinear signal generated by the
heterogeneous medium and Im(X' ') which characterizes
the change in the absorption in the medium. We have
taken the complex values of the bulk dielectric function
e&(A, ) for silver (we have used silver as the grain material)
from the work of Johnson and Christy. ' The results for
e'{A)a, nd e "(I,} are shown in Fig. 1. The graphs of

~

4nX' '/e2
~

and Im(4nX' '/e2) as functions of )(, are
plotted in Figs. 2(a) and 2(b), respectively. Different
curves in Fig. 1 correspond to three different values of f,
namely, f=0.1, 008, 00 6. In Figs. 2(a) and 2(b) we have
used the following values of f; namely,

f =0.1,10,10 . It is clear from Fig. 1 that with an
increase in f the resonance gets red shifted. The reso-
nance also becomes more prominent as f increases, i.e.,
the total absorption in the medium increases. Besides,
for larger values of f there is a wavelength region where
F'(A, )&0. The linear effective medium behaves like a
metal in this region. With a decrease in the value of f
this region shrinks and ultimately vanishes, thereby
meaning that the macroscopic behavior of the hetero-
geneous medium is close to that of a dielectric. Never-
theless, the cooperative resonances given by the zeros of
D +f (N D) rem—ain intact even in this case. The loca-
tion of the resonances in

~

4mX' '/e2
~

is analogous [see
Fig. 2{a}] to that discussed above. For very small f,
D +f (N D)-D, t—he resonance is basically the shape
resonance and occurs near A, =3550 A. With an increase
in f the resonance shifts towards larger values of )(,. The

)ooo /

/
~ X)O4

100

10

r

/
/

/
3/

/
/

/Xio 4
h.

0.36 0.35 ) (p.m)

A

(b)l(xl0 )

/ \

2/10 )

ir
r ~r~ y' 3(&10-2)

g)
~~ l.

0 .36 = &(pm)

\

-01.

shift is significant in the range of f from 0.01 to 0.1. For
example, for f =0. 1 the shift is about 2%%uo. The deviation
from the calculated value (5%%uo} is due to the fact that
free-electron model is not a good approximation for the
metal in the wavelength range under consideration. We
did not perform calculations for values of f larger than
0.1 since for such values correlation effects have to be
taken into account. One more feature that can be noted
from Fig. 2(a) is that the nonlinear signal intensity is pro-
portional to f and hence increases drastically with an in-
crease in f [note the logarithmic scale in Fig. 2(a)]. The
imaginary part of 4nX( '/e2 proportional to the non-
linear absorption is plotted as function of A, in Fig. 2(b)

FIG. 1. Wavelength (pm) dependence of the real (dashed)
and imaginary (dotted) parts of the effective dielectric function
F. Curves 1, 2, and 3 correspond to f=0.1, 0.08, and 0.06, re-
spectively.

FICx. 2. (a) Four-wave-mixing signal S-
~

4nX'"/e2
~

as a
function of wavelength k (pm). Curves 1, 2, and 3 correspond
to the values of f =0.1, 10, and 10, respectively. (b) Non-
linear absorption A-Im(4m+' '/e2) as a function of wave-
length )(. (pm). Curves 1, 2, and 3 correspond to f =0.1, 10
and 10,respectively.
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for three different values of f, namely,

f 0. 1,10,10 . It is clear from Fig. 2(b) that the
nonlinear contribution to the absorption of the medium is
with different signs depending on the wavelength. For
example, for f=0. 1 nonlinearity of the effective medium
decreases (increases) the total absorption if A, &3603 A
Q, )3603 A}.

The solution of Eqs. (5.7) and (5.8) can be written as
—CXZ

A (z)=
[1+pA 2(1 e

—2~)]1/2

y(z)=go+ ln[1+pAO(1 —e ')],
2aP

(5.9)

(5.10)

V. REFLECTION FROM
A DIELECTRIC-NONLINEAR COLLOID
INTERFACE: NUMERICAL RESULTS

where

kpe2 p=
koan",a=
2+a',

(5.11}

%e consider a semiinfinite nonlinear heterogeneous
medium bounded by a linear dielectric with dielectric
constant e;. The nonlinear heterogeneous medium con-
sists of metallic grains embedded in a dielectric with
dielectric function ep. The macroscopic properties of
such nonlinear medium are characterized by the effective
linear dielectric function given by Eq. (3.19) and effective
cubic nonlinearity given by Eq. (3.20) (we consider a non-
linearity only up to third order}. Let the half-space z & 0
be occupied by the nonlinear medium and let the dielec-
tric occupy the other half-space z &0. Let a transverse
electric (TE)-polarized plane monochromatic wave be in-

cident normally on the interface from the linear medium
side. For the half-space z &0 the wave equation for the
nonzero component of the electric field E„~ can be writ-
ten as

~ —IIlE' ) E'2

Hy —— '1/e'( 1+ + A Ae'I' . (5.12)
2e',

If e'", « e ', , then Eq. (5.12) can be rewritten in the form

H =Qei 1+
2 5')6' )

A Ae'+ . (5.13}

For the half-space z & 0, the field components E, and H
can be written as

and Ao is the amplitude and yp is the phase at z =O. Us-
ing Maxwell's equation and Eq. (5.5), the tangential com-
ponent of the magnetic field H~ can be expressed as

12E„~
+ko(e(+e2 (

E„~
~

)E„=O,z' (5.1)

ik QOzziko Q—z z.
(5.14)

(5.15)
where e& eand e2 ————4m'&. It is clear from Eqs. (3.19}
and (3.20) that for metallic grains or for lossy media the
effective linear and nonlinear susceptibilities are complex,
s.e., A;++ A; = Ape (5.16)

Using the continuity of the tangential components of E
and 8 across z =0, we obtain

1
E'1+l6')

E'2 =E' 2+ l E'
2

(5.2)

(5.3)
F2A pQe(A + —A; )= e, 1+

1/2

A,e'" .

Because of the complex character of F& and F2, the solu-
tion of Eq. (5.1) is not trivial. In what follows, we let

(5.4)

with ko ——co/c and make the slowly varying envelope ap-
proximation. Then the equation for E(z) can be written
as follows:

(5.17)

On solving Eqs. (5.16) and (5.17), we obtain the
reAectivity R and the intensity of the incident field I; as
functions of the intensity A p in the medium:

1/2
E') DIp

1 — —1+
2iko+F &

+ko(le'i +e2
~

E
~

}E=O .
dz

(5.5) A;
1/2 (5.18)

Introducing the real amplitude A and phase y of E(z) as E] DIp
1+ —1+

E(z)= A(z}e'~", (5.6)

koan') f 21+ A' A=O,
dz

(5.7}

Eq. (5.5) can be decomposed into a set of two coupled
equations: DIo

The parameters Ip and D are defined by

Io e)
I;=e2~ A;+

~

= 1+ —1+
l E)E' )

2

(5.19)

Gg
dz

kpe2
A

2+7',
(5.8)

Io e2AO, D=f—/—(P i
P

i
) . (5.20}

In what follows, we calculate R numerically using Eq.
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(5.18) with Eq. (5.20) for the following set of parameter
values: eo=E; =1, f =0.1,0.08,0.06. We normalize all
intensities in terms of e2, i.e., we set e2 ——1. We investi-
gate the reflection characteristics in the wavelength range
from 3450 to 3700 A.

We study the wavelength dependence of the normal in-
cident reflection coefficient for a linear (E2 ——0)
semiinfinite heterogeneous medium. The results are
shown in Fig. 3, where we have plotted R as a function of
wavelength A, for three different values of volume frac-
tion, namely, f=0.1,0.08,0.06. It is clear from Fig. 3
that the shift in the resonance in R is analogous to that
for F and X' '. Note further that the maxima of R corre-
spond to the region where F

&
is minimum.

Next, we study the power dependence of the reflection
produced by a nonlinear heterogeneous medium. Using
Eqs. (5.18) and (5.19) we calculate R as a function of I;
treating Io as the parameter. We have varied the param-
eter Io in a range so that

[see Fig. 2(b}] is increased and this leads to an increase in
the value of the reflection coeScient.

VI. NONDEGENERATE FOUR-WAVE MIXING
IN A HETEROGENEOUS MEDIUM

(E,(01, )) =(E~)+(E," ), j=1,2,s (6.1)

where ( E ) and ( E ) for j= 1,2,s are given by [see
Eq. (2.16)]

In this section we develop the theory for the effective
third-order susceptibility X' '(co„co),—F2) for nondegen-
erate four-wave mixing involving light fields at the fre-
quencies ro, , F02, and c0, ( =2r0, —ro2). The average electric
field amplitudes at the frequencies co&, co&, and co, can be
written as

(E )=Eo(1+(GT'")), j=1,2,s (6.2)

(5.21)

The inequality reflects the validity of the slowly varying
envelope approximation. In the range of intensities given
by Eq. (5.21) the numerical results show that the system
exhibits only power saturation. Moreover, this power
saturation is different for different wavelengths. For ex-
ample, for f =0.1 and for wavelengths greater that 3603
A R increases as the input power is increased, whereas,
for lower wavelengths the behavior is just the opposite.
For k & 3603 A total absorption in the nonlinear medium

&=4~(&GTPi') & I Eiol E10+&GT122& I E201 Eio

+&GT",,.) & IE..I'E,.
+&GT21&E 0 20 10) (6.3)

+ ( G T2ss &
I E.o I E2o

+ & GT)'1' &EioEioE:o» (6.4)

&E, &=4m((GT222 &
I E201 E20+(GT211& I Eiol E20

0,3

r
/ 3

r
r

1

0.1 .

(E, ")=4rr((GT,'„))
I E,o I E,o+(GT,')I )

I E,i) I E,o

+ & GT,'22 &
I E20 I

'E.o

+ (GT112 &EloEioE2o) . (6.5)

T()) T(1)(~ )J J (6.6)

In Eqs. (6.2)—(6.5), Ejo is the macroscopic field with fre-
quency co -, T'" is the linear T matrix at frequency co.:

0.36

T.k' are the third-order T matrices which have been in-
troduced in a manner analogous to the one in Eq. (2.9),

T,,"~'=T"'( , ,01,,rory„), i,j—, k =1,2,s . (6.7)

FIG. 3. Normal incidence reflection coeScient R as a func-
tion of the wavelength 1, (pm) for E'p= 1 =e;. Curves 1, 2, and 3
correspond to f =0.1, 0 08, and 0.06., respectively.

It is obvious from Eqs. (6.1)—(6.5) that (EJ ) ((EJ ))
represents the linear (nonlinear} part of (E, ), i.e., it
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(D, ) =&D'&+&D '), (6.8)

arises from the linear (nonlinear) susceptibility of the
medium.

The average value of the electric displacement vector
D, at frequency co, can also be decomposed into the
linear and nonlinear parts and can be written as.

(D, ) =4m[(eo(GT,'„')+(T,'„'))
I E,11I E,ll

+(~0& GT,'lI &+ & T,'1'1 &)
I Elo I

'E,o

+ ( eo( GTs22 & + & Ts22 & )
I E2o I Eso

+ ( Ep( GT'112 ) + ( T'112 ) )ElpE, pE20]

(6.10)
with [see Eq. (2.19)]

&D,') =[& T,"'&+ eo(1+&GT,'"&)]E,o

and

(6.9)

In deriving Eqs. (6.9) and (6.10), Eqs. (6.1)—(6.5) were
used. Introducing the e6'ective linear dielectric function
e, and effective nonlinear susceptibilities X',Jk, (D, ), and
( D, ) can be written as [see Eq. (2.20)].

(D, ) =r, (1+(GT,'") )E,

&D, "&=4~I[~,(GT,",,'&+X,",,'I 1+&GT),"'& I'(1+&GT,"'&)]
I
E,0I E,o

+[& & GT'll' &+&sll I
1+&GT'1" &

I
(1+& GTs

"&}]I Elo I Eso

+ [e & GTs22 & +& s22 I
1+ & GT2" &

I
( 1+ & GT' "& }l I E2o I Eso

+[Ps(GT112)+X112(1+(GT1 )) (1+(GT2 )) ]EloEloE20I

(6.11)

(6.12)

(1+«T,"'))
I
1+(GT,"') I' '

( T,",,') —(.—,—..) & GT,",,'&

y (3)

(1+(GT,"') )
I
1+(GTJ'")

I

(6.13)

Comparing Eq. (6.9) with Eq. (6.11), we obtain the ex-
pression for linear effective dielectric function at frequen-
cy F„which coincides with Eq. (2.21}. A comparison of
Eqs. (6.10) and (6.12) yields the following:

36'pX)=, J =1,2,$ (6.18)
e(plj )+2@0

'

It should be kept in mind that P "as given by Eq. (6.17)
is uniform but it need not have same components in all
the directions. The electric field inside the spherical
grain can be calculated by solving the Laplace equation
with proper boundary conditions incorporating the
effects of the nonlinear polarization given by Eq. (6.17).
The calculations show that

j=1,2, j =1,2 (6.14)

& T112 & (e eo)( GT112 &

(1+( GT',") )'(1+ ( GT',") )'

These susceptibilities X,'„' and P,(JJ' describe, respectively,
the nonlinear absorption of the wave at co, in presence of
the field at co, or the field ~J. The susceptibility X'&,z de-
scribes the nondegenerate four-wave mixing. In the limit
of degenerate four-wave mixing the result (6.15} reduces
to the result (2.22).

In what follows, we present the explicit results, for ex-
ample, for 7', &z for spherical grains embedded in a linear
dielectric. For a single sphere the nonlinear polarization
at frequency co, ( =2', —co2) can be expressed as

4m.
E, PNLE+2E'p

Substitution of Eq. (6.17) in Eq. (6.19) yields

NL 4~ (3) 2Es =
3

+f )2XsX ]X 2 E~PE]PE2P3'
Comparing Eq. (6.20) with Eq. (6.5), we obtain

(3) 1 (3) 2( GT'„2 ) = — X'1 1'2XsX,X 2
36p

The electric displacement at ~, can be written as

D, =ep(Es )+477( T112)ElpElpE2p .

Substituting Eq. (6.20) in Eq. (6.22) we obtain

(6.19)

(6.20}

(6.21)

(6.22)

P =7))2E)E,E2 . (6.16}

Substituting the expressions for E, and E2 of the type
given by Eq. (3.4) and retaining terms up to third order,
Eq. (6.16}can be rewritten as

Ds "——4~ eo
3

X112XsX IX2 + ( T112 ) EloEloE2o .
3E'p

(6.23)

where

+112X 1X 2 Elo 10E20
NL (3) 2 (6.17} D, can also be expressed as

DNL &ENL+ 4~PNL (6.24)
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Eqs. (6.17) and (6.20}, when substituted in Eq. (6.24},
yield

D, =4m.X»zx tx z 1 — E,pE]pE2p .NL (3) 2 e

e(~, )+2ep
(6.25)

A comparison of Eqs. (6.23) and (6.25) yields the explicit
expression for ( T'„2 }

( T t t2 }=g) t2x, x tx 2
(3) (3) 2 (6.26)

For a heterogeneous medium with volume fraction f of
the spherical grains the averaged T matrices in the
Maxwell-Garnett approximation can be written as fol-
lows:

(T'"}=f(e(to ) —ep)x

(GTi"}=f (x —1),
( TP(2 }=XI)2fx~x fx2

&GT„,&= — fx,x,x, .1 2

3'

(6.27)

(6.28)

(6.29}

(6.30}

2 2

I
1+f( —}

I

'[ +f — ]' (6.32)

It is clear from Eq. (6.31) that the resonances in X Pl2 are
given by the zeros of [D +f (N DJ )] (j =1,2,—s) [see
Eq. (4.1) and subsequent discussions in Sec. IV]. More-
over, the zeros of [D +f (N D)] for j =—2, s are sim-

ple, whereas that for j=1 is of multiplicity 2. This im-

Note that in case of degenerate four-wave mixing
(to, =to2 ——co, ) the expressions for (TItz } and (GTItz)
reduce to the form given by Eqs. (3.11) and (3.7) since
ez ——4srX'3'. Substituting Eqs. (6.27)-(6.30) in Eq. (6.15),
we obtain the expression for the effective nonlinear sus-
ceptibility X",,z

~ 112=~112f(3) (3)

+sX 1+ 2
2

[1+f (x, —1 )][1+f (x )
—1)] [1+f (x2 —1)]'

(6.31)

A similar calculation shows that P 2, ', can be expressed by
the relation

plies that the resonances given by the zeros of
[D&+f (N& —Dt)] will be stronger compared to the other
two. Note further that in a real experimental situation
when, for example, co& is Sxed and co2 is scanned X»z,
shows a double hump due to the zeros of
DI+f(NJ. DI—),j =2,s. Besides, the number of reso-
nance peaks will depend also on the number of zeros of
[D +f (N —D.)] for fixed j when e(to) has several poles.
This is the case in certain semiconductors. The phase
conjugate signals generated by such a medium can be ob-
tained using the usual propagation equations and the
expressions like (6.31) and (6.32) for X I,z, X z, 't.

Thus, to summarize, we have presented a T-matrix ap-
proach for calculating the effective medium parameters
(linear dielectric function, third- and higher-order non-
linear susceptibilities) for a nonlinear heterogeneous
medium in the quasistatic approximation. We have ap-
plied the theory to obtain the explicit expressions for the
effective dielectric function and third- and higher-order
nonlinear susceptibilities for a colloidal medium consist-
ing of nonlinear spherical grains embedded in a linear
dielectric. We have shown the existence of strong new
resonances in the nonlinear susceptibilities. We found
that a third-order nonlinearity in the bulk constituent
medium can lead to higher-order nonlinear susceptibili-
ties in the effective medium. In the small volume fraction
limit our theory leads to the phenomenological result of
Flytzanis et al. We discussed the resonances in the non-
linear signals generated by such media. As an application
of the theory we obtained the power dependence of the
reflection coefficient in the range of powers where the
slowly varying envelope approximation holds good. We
obtained different power saturation of the reflection
coefBcient depending on the incident light wavelength.
We further developed the T-matrix expressions for vari-
ous nonlinear susceptibilities for a nondegenerate four-
eave-mixing process. We obtained the effective four-
wave-mixing susceptibility 1'„2 for a heterogeneous
medium consisting of nonlinear spherical grains embed-
ded in a linear dielectric.

ACKNOWLEDGMENTS

The authors would like to thank C. M. Bowden and R.
Inguva for useful discussions on the effective-medium
theories.

See, for example, R. Landauer, in Electrical Transport and Op-
tical Properties of Inhomogeneotts Media (Ohio State Universi

ty, 1977), Proceedings of the First Conference on the Electri-
cal Transport and Optical Properties of Inhomogeneous
Media, AIP Conf. Proc. No. 40, edited by J. C. Garland and
D. B.Tanner (AIP, New York, 1978), p. 2.

2E. Gubernatis, in Ref. 1, p. 84.
I. Webman, J. Jortner, and M. H. Cohen, Phys. Rev. B 15,

5712 (1977).
4W. Lamb, D. M. Wood, and N. W. Ashcroft, Phys. Rev. B 21,

2248 (1980).

5G. S. Agarwal and R. Inguva, Phys. Rev. B 30, 6108 (1984).
K. C. Rustagi and C. Flytzanis, Opt. Lett. 9, 344 (1984).

7D. Ricard, P. Roussignol, and C. Flytzanis, Opt. Lett. 10, 511
(1985).

P. Roussignol, D. Ricard, J. Lukasik, and C. Flytzanis, J. Opt.
Soc. Am. B 4, 5 (1987).

K. M. Leung, Phys. Rev. A 33, 2461 (1986).
t M. C. Buncick, R. J. Warmack, and T. L. Ferrell, J. Opt. Soc.

Am. B 4, 927 (1987).
"D.S. Chemla and D. A. B.Miller, Opt. Lett. 11,522 (1986).
' E. Hanamura, Phys. Rev. B 37, 1273 (1988).



38 T-MATRIX APPROACH TO THE NONLINEAR. . . 5687

' J. Yumoto, S. Fukushima, and K. Kubodera, Opt. Lett. 12,
832 (1987).
P. Rouard and A. Meesen, in Progress in Optics, edited by E.
Wolf (North-Holland, Amsterdam, 1977), Vol. XV, p. 77.

'5J. H. Haus, N. Kalyaniwalla, R. Inguva, and C. M. Bowden
(unpublished); C. M. Bowden, R. Inguva, J. H. Haus, and N.
Kalyaniwalla, Opt. News 13, 116 (1987).

~sC. C. Sung, Y. Q. Li, and R. Inguva iunpublished).
P. Sheng, Phys. Rev. B 22, 6364 (1980).

'sC. J. F. Bottcher and P. Bordewijk, Theory of Electric Polar-
ization (Elsevier, Amsterdam, 1978), Vol. II, p. 476.

' %.R. Holland and D. G. Hall, Phys. Rev. B 27, 7765 (1983).
G. S. Agarwal and S. Dutta Gupta, Phys. Rev. B 32, 3607
(1985).
P. B.Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).

Because of the limitation (5.21), we cannot reach the bistable

region for such systems. The behavior in the bistable region
has been studied using numerical simulations (Refs. 15 and
16).

See, for example, D. M. Pepper and A. Yariv, in Optical Phase
Conjugation, edited by R. A. Fisher (Academic, New York,
1983),p. 41.

In the present work we have evaluated effective susceptibili-
ties by ignoring retardation effects. The retardation effects
can be included in the framework of, say, Refs. 3 and 4. Such
effects would enable one to understand the dependence of 7's
on the size of the grains. It may also be noted that the spatial
dispersion (Ref. 5) of the grains also makes susceptibilites de-
pend on the size.


