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Dye-laser fluctuations: Comparison of colored loss-noise and white gain-noise models
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A single-mode dye-laser model incorporating pump white noise through gain-parameter fluctua-
tions is analyzed. It includes a fluctuating saturation term. Intensity fluctuations, a first-order-like
transition, and intensity correlation functions are calculated and discussed. It is found that effects
previously claimed to be a consequence of the presence of colored noise in the context of loss-noise
models can be also explained by white gain noise, except for the existence of two time regimes in the
early decay of intensity correlation functions.

I. INTRODUCTION

Dye-laser light exhibits anomalous statistical proper-
ties. These properties cannot be described by convention-
al laser theory based on the Langevin equation obtained
in the good-cavity limit for the amplitude of the electrical
field. This equation incorporates spontaneous-emission
noise. Experimental work on dye-laser fluctuations has
been recently reviewed by Roy, Yu, and Zhu. ' Theoreti-
cal studies on this problem have also been reviewed.
Following the suggestions of Kaminishi et al. "and of
Short, Mandel, and Roy, 3' ' the current theoretical model
of a dye 'laser includes pump fluctuations with a finite
correlation time (colored noise). Pump noise seems to be
responsible for the observed anomalous statistical proper-
ties. At a formal level the current model can be obtained
replacing the loss parameter by a stochastic quantity. In
fact, experimental results on a He:Ne laser in which
noise is added in a controllable fashion to the loss param-
eter seem to mimic some of the statistical properties of a
dye laser. There are two basic qualitative facts that were
reported to support the need of introducing colored noise
as opposed to white pump-noise modeling. One is the ex-
istence of a first-order-like transition in the most probable
intensity value. ' A second one is a very slow initial de-
cay of the intensity correlation function. ' ' Colored
noise effects in the normalized intensity fluctuations'
and transient statistics' ' have also been investigated.
More recently, experimental evidence has been reported
which identifies the pump laser as the source of noise. "
This result indicates that a source of colored gain noise is
the appropriate one in dye-laser modeling. Still, the
theoretical model' ' ' used in Ref. 11 is the one which
can be formally obtained replacing the loss parameter by
a colored Gaussian noise.

A natural alternative to the current model used in
theoretical studies is the explicit consideration of fluctua-
tions in the gain parameter. ' This leads to fluctuations
in the nonlinear saturation term of the equation for the
amplitude of the electrical field. ' In this paper we study
in detail such a model with gain-noise fluctuations. We
restrict ourselves to white gain noise. We find that this
model describes correctly the anomalous intensity fluc-
tuations. More important is that we find that a white

II. GAIN-NOISE MODEL

Starting from the semiclassical Maxwell-Bloch equa-
tions for single-mode operation and after adiabatic elim-
ination, in the good-cavity limit, of polarization and pop-
ulation inversion variables one arrives at the laser equa-
tion for the amplitude of dimensionless electric field
E=E, +iE2. ' For the case on resonance,

(2.1)

~ is the loss parameter or decay constant for the electric
field and I the gain parameter,

2
g o

y
(2.2)

where g is the matter-radiation coupling constant, y the
decay rate for the polarization, and o. the equilibrium in-
version. The standard Langevin equation for the laser
follows from (2.1) expanding the nonlinear term and add-

gain-noise model also predicts a first-order-like transition
for the most probable intensity value. In addition, it in-
cludes parameter ranges for which the intensity correla-
tion function has an initial slow decay. It is therefore
shown that effects previously claimed to be due to
colored pump noise can be described by a white gain-
noise model. However, the initial decay of the intensity
correlation function does not show two separated time
scales as typically appear for colored noise models. As a
consequence, the experimental evidence of noise with a
finite correlation time is only of qualitative significance in
the modeling of dye-laser fluctuations when considering
the initial decay of the intensity correlation function.
More detailed experiments on the early time decay of the
intensity correlation function would be desirable to
discriminate between white and colored gain-noise mod-
els.

The paper is organized as follows. The gain-noise
model and its relation with more standard models is dis-
cussed in Sec. II. Sections III-V contain, respectively,
the predictions of the model for the intensity fluctuations,
a phase-transition analogy for the most probable intensi-
ty, and intensity correlation functions.

38 5670 1988 The American Physical Society



38 DYE-LASER FLUCTUATIONS: COMPARISON OF COLORED. . . 5671

B-,E=(I —a}E—I'
~

E
~

E+q(t),

(q,.(t)q (t ))=D5(t t )—5J, i j =R,I .

(2.3)

(2.4)

ing a Gaussian white noise q(t)=qR(t)+iqt(t) which
models spontaneous-emission noise:

of the intensity I=
~

E
~

and phase variables. With the
same procedure as for the ordinary laser equation' and
for the loss-noise model, it is possible to obtain a sto-
chastically equivalent model to (2.7) in which the intensi-
ty is decoupled from the phase variable:

The model commonly used' ' to study dye-laser fluctua-
tions includes a multiplicative noise term in {2.3):

Q,E=(I —s)E —I
~

E
~

E+p(t)E+q{t) . (2.5)

It is typically assumed that p(t } is an Ornstein-
Uhlenbeck noise, that is, a Gaussian noise with zero
mean and correlation

1+I 1+I
+D+(DI )'"q„(t),

' 1/2

1+I I
where, for i,j=R,I,

(2.9)

(2.10)

(p, (t)p, (t ))= S,,e I
— ', i,j =R,I {2.6}

where Q is the noise intensity and r its correlation time.
From a completely phenomenological point of view the
fluctuating term p(t )E in (2.5) can be understood as aris-
ing from fluctuations of the lass parameter ~. In this
sense we will refer to (2.5) as the loss-noise model. Equa-
tion (2.5) has also been used to describe experiments on
gas lasers with a fluctuating loss parameter. A different
justification of (2.5) can be given: analyzing the adiabatic
elimination procedure from Maxwell-Bloch equations
with fluctuating forces for the electric field, polarization,
and population inversion one arrives at'

d,E= ~E+I'-, +g(t), +q{t),E — E
1+ IE I

' 1+ IE I'
(2.7)

q(t ) is the spontaneous-emission noise in (2.4), and it ap-
pears as a combination of the original fluctuating forces
associated with the electric field and polarization in the
Maxwell-Bloch equations. The random force ((t ) is pro-
portional to the noise term associated with the popula-
tion inversion. Its physical meaning is pump noise, and it
models in (2.7) fluctuations of the gain parameter I ori-
ginated in cr fluctuations [see (2.2)]. If the nonlinear
tertns containing E/(1+

~
E

~
) in (2.7) are expanded to

third order in E, an equation of the form (2.5) is formally
recovered when the fluctuating saturation term
g(t)

~

E
~

Eis neglected.
In this paper we analyze the gain-noise model (2.7)

where g(t)=pa(t)+inst(t) is taken to be a Gaussian
white noise with correlaton

(g;(t)g, (& )) =&(t —t )&;, ,

(q, (t)q (t ))=~(t-t )8,— .

(2.11)

(2.12)

In the following we will only consider the relevant inten-
sity variable. Redefining the intensity variable, time
scale, and introducing new parameters a, a&, a2,

I=(I'/Q)I, t =2Qt,
1 aa2=, a=a) —ap,1 Qi P Qi

we obtain

{2.13}

a& I
d I=I —a, + + (R(t)1+I a) 1+I/a)

1/2
a)D a)D

+ + I q (t),

(hatt(t)ga(t')) =(q&(t)q&(t')) =2&(t t') . —

(2.14)

(2.15)

a a'
v (I)P(I, t)+ 2

D (I)P(I,t),
M

(2.16)

v(I) = Da) a) I
(1+I /a) )

(2.17)

The Fokker-Planck equation for the intensity probability
distribution associated with (2.14) and (2.15) is given in
the Stratonovich interpretation by

a,P(I, t )=IP(I, t )

Da) I2I+
Q (1+I /a, )

(g, (t)g, (t ) ) =Q5,,5(t t ), i,j =R,I—. (2.8) D(I) (2.18)

As mentioned in the Introduction we will see that (2.7)
can describe correctly important experimental features
which have been attributed to colored-noise effects in the
context of the loss-noise model (2.5). We further note
that an expansion of the fluctuating nonlinear term in
(2.7) introduces a fictitious boundary in the problem
which would restrict the possible values of the intensity.
As a consequence, the effects of fluctuations in the satura-
tion cannot be consistently studied when using that ex-
pansion. '

Equation (2.7) is better analyzed when written in terms

The stationary solution of (2.16)—(2.18) is explicity given
in the Appendix. In the remainder of this paper we will
mostly consider situations above threshold where
spontaneous-emission noise is known to have a very small
influence. ' We will therefore take the limit D~O in
(2.16)-(2.18). In this limit the model has two indepen-
dent parameters (a„a2}while the corresponding white-
noise version of the loss-noise model has only one in-
dependent parameter. The latter is obtained from (2.14)
taking the limit a, ~DO with a=a, —a2 fixed. ' It is
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only in this limit that effects of saturation fluctuations
can be neglected. We will see below that situations in
which (2.15) cannot be reduced to the loss-noise model in-
clude cases of small laser intensity with relatively impor-
tant losses.

' —a/2a, —a
I (a)exp

A')

a, —a

where the normalization constant N is

III. INTENSITY FLUCTUATIGNS

The stationary solution of (2.16)—(2.1S) for D=O is
given by

Ia
Pst(I)=N I

X D [(a,—a)' ]

D )[(a,—a}'~ ](a, —a)'" (3.2)

2(a& —a) a& —a
)& exp 1— I— I2

a& 2a&
2

a & 0, (3.1)

I'(x} is a gamma function and D„[x] is a parabolic
cylinder function. ' No stationary solution exists for
a & 0 in the limit D =0 that we consider here.

The moments of the stationary distribution calculated
from (3.1) are

a"
1 I (a+n )

(a& —a)" I (a) D [(a,—a)'~ ]+,&2D t[(at —a)' ](a a)t/2

(3.3)

In particular,

(3.4)

We note that this value of (I ) coincides with the one
which follows from a deterministic analysis [Q =D =0 in
(2.14)], but this is not the case if we expand the fluctuat-
ing nonlinear term in (2.14).' From (3.4) we see that the
limit a,~ ao, with a fixed, in which (2.14) reduces to the
loss-noise model can be understood as a limit of small
laser intensity [I~a and I in (2.13) going to zero]. How-
ever, small laser intensity also corresponds to the limit
a~0, with a, fixed, in which the loss-noise and gain-
noise models are significantly different. They are also ob-
viously different for parameters for which saturation
effects are important and the laser intensity is large, as,
for example, a~a& with at fixed. Lines of constant (I )
in the plane a, a& are shown in Fig. 2.

Intensity fluctuations

so that the exact result (I)=In is obviously reobtained
and A,(0)= ( a

&

—a ) /aa
&

——(I ) '. This inverse-mean-
intensity law is known to be in good agreement with ex-
periments above threshold. ' Our results in Fig. 1 indi-
cate that in this regime A(0} is rather insensitive to the
value of a& and that both gain-noise and loss-noise mod-
els give a good description. The divergence of A,(0) as
(I )—+0 is a consequence of having neglected
spontaneous-emission noise, which becomes important
when going below threshold. This is seen in Fig. 1 where
we also show A,(0}, computed taking into account

A(o)

a& —a
B,(5I)=—a 5I+agit (t),

a&
(3.6)

(3.5)

computed from (3.3) are shown in Fig. 1. For compar-
ison we have also included the law A,(0)= (I ) ' which
follows from the loss-noise model in the white-noise limit.
It is important to note that to obtain this law it is enough
to use a linearization approximation to (2.14). Lineariz-
ing around the deterministic steady state
Io a/[1 —(a/a, )], th——e Langevin equation for 5I=I
—Io becomes

0
0

FIG. 1. Dashed line a corresponds to k(0) = (I} '. Curve b
is for a, =8, D =0 and curve c for ul ——0.4, D=O. Curve d,
a& ——8 and (D /Q) =0.02.
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spontaneous-emission noise as obtained from the station-
ary solution of (2.16) given in the Appendix.

IV. FIRST-ORDER-LIKE TRANSITION
300

The stationary intensity distribution (3.1) diverges at
I=0 when a & 1, while P„(I=0)=0 for a & 1. When
a & 1, P„has a well-developed maximum at I,„&0. The
important point is that the emergence of the maximum at
a nonzero value does not occur continuously. Rather, a
relative maximum occurs when increasing (I ) while still
P„(I=0)= Do: The extrema of P„(I)obey a cubic equa-
tion whose numerical solution indicates the existence of
three different regions in the parameter space according
to the number of positive real roots (see Fig. 2). In region
I (a & 1) a single maximum at I+0 exists. In region II,
P„(I=0)~a! and a relative maximum and minimum
exist. In region III, P„(I) decreases monotonically with
the intensity. The mean intensity grows when decreasing
a, at a fixed or when increasing a at a, fixed. In the first
case and for a & 1 a relative maximum appears but the
divergence at I =0 always dominates. Figure 3(a) shows
the changes in P„(I) for this case. Points 8 and 9 are
close to the limit in which gain-noise and loss-noise mod-
els coincide. Figure 3(b) shows the changes in P„(I)
when increasing (I ) at a, fixed. The most probable in-

tensity IMP changes discontinuously at a =1 (point 4) re-
gardless of the value of a, if 2.53&a»1. This change
becomes continuous at the same point a = 1 for a, & 2. 53.
Beyond this value of a& the qualitative behavior is the
same than in the white noise limit of the loss-noise model.
In the context of a loss-noise model the analogy of the
discontinuous change of IMP with a first-order transition
has been pointed out. In the loss-noise model the
discontinuity only occurs for colored noise [~+0 in (2.6)].
The experimental finding of this discontinuity and of the
presence of relative extrema in P„(I) was interpreted as
evidence of the existence of colored noise fluctuations.
We see here that both effects can be consistently de-
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FIG. 3. Stationary intensity distributions corresponding to
points 1-7 in Fig. 2. Distributions 8 and 9 are for values of
a& ——10,10, respectively, not included in Fig. 2. Distributions 1,
2, 6, 8, and 9 are for a=0.66 fixed and (I ) =3.77, 1.94, 1.31,
0.71, and 0.66, respectively. Distributions 3, 4, 5, 6, and 7 are
for a, = 1.33 fixed and (I ) =8.50, 4.03, 2.78, 1.31, and 0.57.
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scribed within a gain-noise model which only includes
white noise.

V. INTENSI I'Y CORRELATION FUNCTIONS

In this section we consider the behavior of the normal-
ized steady-state intensity correlation function A,(s)
defined as

CC

(I(t+s)I(r) ) —&I )'
(5 1)

FIG. 2. Parameter plane a, a, . Unphysical domain, a&al.
Dashed lines are constant-(I) lines with (I)~a as a, ~DO.
Regions I, II, and III, correspond to different shapes of P„(I),
as explained in the text. Intensity probability distributions cor-
responding to points 1 —7 are shown in Fig. 3.

The simplest approxitnation to calculate A,(s) is to use the
linearization (3.6). This gives for A,(s) a single decaying
exponential with time constant a, la(a, —a). Generally
speaking A,(s) will be a superposition of decaying ex-
ponentials. A systematic calculation of such exponentials
can be carried out, for example, through a continued
fraction expansion. ' ' ' To lowest order in that expan-
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sion, &(,(s) is still given by a single exponential whose de-

cay rate includes static nonlinear effects: '

A, (s) =A.(0)e (5.2)

where

((Lt5I )5I )
fi ( )((»)') (5.3)

and L is the adjoint of the Fokker-Planck operator in

(2.16). It is known that the approximation (5.2) is reliable
for small time intervals s, and it is equivalent to a decou-
pling ansatz in the hierarchy of equations for A,(s). ' A
description of the early time decay of the correlation
function in terms of an effective eigenvalue A,,ff propor-
tional to the initial slope of A(s) has recently been pro-
posed:

1

A,(0) ds , 0+
(5.4)

The general result that A,,&r=yo indicates that the ap-
proximation (5.2) gives the exact results for the initial
slope. In our case the explicit form for A,,&r

is FIG. 4. Effective eigenvalue A,,z as a function of the parame-
ters a and a, . The thick line corresponds to the white loss-noise
model (a&~ 00 ).'2

)
«r'& —&r»'.

1+I/ai
(5.5)

Formulas (5.2} and (5.3) apply for Markov processes
obeying a Fokker-Planck equation. When a colored noise
is present the process becomes non-Markovian. It has
been proved that when only colored noise is present A,,ff

defined by (5.4) is strictly zero. This is the case of the
colored loss-noise model when spontaneous noise is
neglected. As a consequence a small initial slope of the
correlation function has been interpreted as a signature of
colored noise. To check this idea we have calculated

ff as given in (5.5) using the stationary distribution (3.1 )
of the white gain-noise model. Results are shown in Fig.
4. We find that for a close to a& and both not too large,
Ar ff takes very small values, much smaller than the ones
for the ~hite noise limit of the loss-noise model. This im-
plies that the effect attributed to colored noise within the
loss-noise model can also be satisfactorily explained in
the context of a white gain-noise model. It is also in-
teresting to note that the domain of parameters in which
A,,&r

is very small includes the domain in which P„(I)has
a relative maximum, which has also been explained as a
colored noise effect in the loss-noise model.

A different question is the time interval s for which the
early time approximation (5.2) remains meaningful. In
such time domain A,(s) is well characterized by its initial
slope. Information on this point is contained in Fig. 5
where the correlation function obtained by linearization
and from (5.2) is compared with a direct simulation for

different values of the parameter a, a, . Figure 5(a} corre-
sponds to a situation with a large value of the mean in-
tensity (I ). In this situation the correlation function has
a rather fast decay which is well approximated even by
linear theory. In Fig. 5(b) we show three cases with inter-
mediate values of (I ). Each of these cases belongs to
one of the three regions of parameter space in Fig. 2. We
find that with similar values of (I ) and A,(0), the correla-
tion function can decay rather differently. In the three
cases linearization is not a good approximation because
of important nonlinear effects. For the large-gain param-
eter (case 1) the decay is rather fast, and the approxima-
tion in terms of the effective eigenvalue gives good results
in a rather short time interval. Decreasing the gain pa-
rameter with (I ) essentially fixed, the correlation func-
tion decays more and more slowly, giving a large time in-
terval in which (5.2) is a good approximation. Finally
Fig. 5(c) corresponds to a situation with a smaller value
of (I) in which we find an even slower decay of the
correlation function with a large time interval of validity
of (5.2). In summary, it is seen that whenever A,,&r

is
small, the single-exponential approximation (5.2) gives
for this model a good characterization of A,(s) for a very
large time interval.

Still, the question remains of how similar are the corre-
lation functions of our white gain-noise model and the
colored loss-noise model when both have very small
values of A,,ff. An answer to this point is given in Fig. 6,
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spontaneous-emission noise. For 8&0, P„(I=O) is always
finite. For sumciently small D, essential changes in the dia-

gram in Fig. 2 and in the values of the normalized intensity
distributions are not expected. Changes in P„(I) are only
significant for small (I ) values.
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Phys. Rev. A 29, 3388 (1984).
The numerical simulation has been carried out following the

algorithm explained by J. M. Sancho, M. San Miguel, S.
Katz, and J. D. Gunton, Phys. Rev. A 26, 1589 (1982). Initial
conditions for the process have been given by sampling the
known stationary distribution so that we do not need to wait
to reach steady-state behavior. The step of integration used is
5=0.005. Averages were taken over 1200 realizations and
15000 points in each realization. The error found in A,(0)
compared with the results in Fig. 1 is less than 1%.


