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Laser-noise-induced population fluctuations in two- and three-level systems
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Significant fluctuations, above the shot-noise limit, have been observed in the intensity of fluores-
cent light scattered from atoms excited by an intense noisy laser, where a central role is played by
the nonlinearity of the atom-field interaction. By considering the variance of the atomic popula-
tions, we show that "noise spectroscopy" is sensitive to the field statistics of the laser. We
specifically consider the cases of resonance fluorescence (analogous in the weak-field limit to
analysis by a Fabry-Perot interferometer), two-photon excitation, and double optical resonance for
variable laser intensity and bandwidth. We show that large differences in the "noise" spectra can
occur between lasers characterized by a phase-diffusion or a phase-jump model, although these
models would give the same values for the mean atomic populations. We believe that observation of
population fluctuations can become a useful method for characterizing laser noise.

I. INTRODUCTION

During the last decade we have gained considerable
understanding of the effect of laser-light fluctuations in
nonlinear optical processes. ' On the theoretical side
methods have been developed to describe the dynamics of
atoms in stochastic laser fields with amplitude and phase
fluctuations. ' ' Recent experiments have provided
quantitative tests of these theoretical predictions. ' With
few exceptions, ' however, this theoretical work has been
confined to the calculation of expectation values of the
physical observables, such as mean values of atomic pop-
ulations. In the present paper we will be concerned with
noise-induced variances (errors) of the stochastic observ-
ables around their mean values.

Our work is motivated by recent experiments with
diode laser, " where fluctuations in the fluorescence of
laser-excited atoms have been observed which can be at-
tributed to noise in the laser field. Here again a key role
is played by the nonlinearity of the atom-field interaction.
To aid in the understanding and interpretation of these
experimental results, we study in this paper laser-noise-
induced variances of the fluorescence signal. According
to the theory of a single-mode diode laser, operated not
too far above threshold, the laser fluctuations can be
modeled by a rotating-wave Van der Pol oscillator which
predicts a slow diffusion of the laser phase and rapid
(small) fluctuations of the laser amplitude around a mean
value. ' ' In the following we assume a laser with con-
stant amplitude and fluctuating phase. We adopt two
models of phase noise, a phase-diffusion model (PDM)
(Refs. 1, 5, and 9) and a phase-jump model (PJM},'
which assumes uncorrelated random jumps of the laser
phase (see also Refs. 3 and 4). According to laser
theory, "one expects the PDM to correspond more close-
ly to the physical situation. We include a comparison
with the PJM, however, because it predicts the same
averaged populations (mean fluorescence) as the PDM in
a one-photon transition, while —as we will see below—

the fluctuation properties of the signal are qualitatively
different.

The paper is organized as follows. In Sec. II we intro-
duce the stochastic model of the laser phase noise and
derive general equations for atomic averages and the vari-
ances of the atomic populations. Section III discusses
fluctuations in fluorescence from a two-level system
(2LS). In Sec. IV we present results for three-level sys-
tems (3LS};in particular, we study fluctuations of atomic
populations in double-optical-resonance (DOR) situa-
tion, where a lower strong noisy laser induces ac Stark
splitting of an atomic transition, which can be probed by
a second weak laser.

II. MODEL OF PEfASE
FLUCTUATIONS

The electric field of the lasers at the position of the
atom has the form E(t)=8(t)ee '"'+c.c. with
8(t)=Co

' '" where 8o is a constant amplitude, e is a po-
larization vector, and co is the mean frequency of the
light. We assume that the laser phase 4(t) follows a
Markov process. Its probability density P(4, t) obeys a
master equation

(2.1)

with P(4, t)=P(4+2m, t) a periodic function of the
phase. Equation (2.1}describes a stochastic evolution of
the laser phase, with a jump rate b and f(4—@') the
probability for the transition 4~4'. The stationary
solution of Eq. (2.1) is a uniform distribution of the
phase, Ps(4) = 1/2'. To be consistent, we require

f(a ) /2m to be normalized to one on the interval
0(@&2m. In the present model, two-time electric-field
correlation functions have the form
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( [@'(t)]"[C(t')]"& =4,'"e

with

(2.2) guments given in Ref. 2 (see also Appendix A), averaging
of Eq. (2.7) over the phase fluctuations leads to

b„=b 1 —(1/2n }f dae'" f(a) {2.3)

With the assumption that f(a} is symmetric (i.e.,
jumps 4~4kh4 occur with equal probability), b„ is
real and we have b„=b „. The parameter b i may be
identified with the bandwidth of the Lorentzian light
spectrum. Note that b0=0. When f(a) is strongly
peaked in the forward direction (a=0), the master equa-
tion (2.1} reduces to a Fokker-Planck equation for a
phase-diffusion model (PDM), '

2—P(4, t) =b, P(@,t),
84

(2.&)

and 4(t) becomes a Wiener process obeying the Langevin
equation d@(t)=(2b, )'~ dW(t) with dW(t) a white-
noise increment. In this limit the damping terms in Eq.
(2.2}are

b„=n b, (PDM) . {2.5)

b„=bi[1—5„0] (PJM) . (2.6)

In the following sections we shall study the dynamics
of an atom driven by the phase-fluctuating field described
above; in particular wc: shall be concerned with calculat-
ing the averages and variances of atomic populations to
which the observables are related. This will require us to
solve multiplicative stochastic differential equations'3'4
of the form

The other limit is one of uncorrelated jumps (phase
jump model, PJM), where f(a)= 1, and Eq. (2.3) reduces
to

—(u„(t)&= g (&„„b„—5„„)(u„(t)&,
v=o

(2.8)

+(b„+b„b„—~„)
X (u„(t)&(u~(t) &, {2.9)

where the inhomogeneous terms are known from a solu-
tion of (2.8). Equation (2.9) is obtained by averaging of
the stochastic equation for u„(t)u (t) similar to Eq. (2.8)
and subtracting the equation for (u„(t)&(u&(t)&. De-
tails of these derivations are briefly summarized in Ap-
pendix A; Eqs. (2.8) and (2.9) agree with the results of
Fox' when our equations are specialized to a %iener
process for 4(t)

III. POPULATION FLUCTUATIONS
IN A TWO-LEVEL SYSTEM

The rate of fluorescence of a two-level system

I ~
0&,

~
1&I driven by a classical field with stochastic

amplitude is

with b„defined in Eq. (2.3). In a similar way we can
derive an equation for the variances
(u„(t),u&(t) & = (u„(t)u (t) &

—(u„(t) &(u&(t) &,

N N—(u„(t),u„(t) & = g g ( A„„5 „+5„„A„„
v=o y=o

b„+—n 5„„5„„)

X(u„(t),u„(t) &

d N

u„(t)= g [A„„+4(t)B&„]u„(t),dt v=o
(2.7) I(t)=apii(t), (3.1)

where u„(t) (@=0,1, . . . , N) is a vector of atomic
density-matrix elements. A and B are matrices; in the
case of interest below, B has the special form
B =i diag(n„n2, . . . , ) with n„ integers. Following ar-

with p»(t} the population of the upper state and n the
spontaneous decay rate. (In Appendix C we show that in
the weak-field limit analogous expressions result for light
analyzed by a Fabry-Perot interferometer. ) Here pii(t) is
obtained from the optical Bloch equations,

—i 5+ -'a.
2 2'

i a+ -'x —-'inc'~
2 2

Pio

P01 (3.2)

with ut (t) =p»(t) —poo(t} the population difference, 6=co—t0,0 the detuning for resonance, and Q the Rabi frequency.
Due to fluctuations of the phase, p»(t} and I(t) are stochastic functions of time. Below we are interested in the vari-
ance of the intensity fluctuations,

[BI(t)]'—:(I(t),I(t}& =~'(p»(t), p»(t) &, (3.3)

around the mean value (I(t) & =x(p»(t) &. (See Appendix A. ) We emphasize that Eq. (3.3) explicitly excludes quantum
(shot) noise associated with emission (detection} of individual resonance fluorescence photons; instead we view I(t) in
Eq. (3.1}as a stochastic variable which is a functional of the laser phase. This picture is appropriate when fluorescence
from a large number of atoms is considered.
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The transformations p&o(t)=p&o(t)e' '" and po&(t)=po&(t)e '" in the Bloch equations (3.2) result in a stochastic
differential equation of the form (2.7). Averaging over the phase fluctuations thus given

+ 0

iQ —iQ

i—,'Q

—i—,'Q
&pro&

&poi& =
(w)

0
0 (3.4)

with z =i6+—,'K+ b, . The corresponding equations for the variances are

2 0 0

Z2

0

dt iQ —iQ

0 —iQ iQ

0 0 0

iQ
—iQ

——,'iQ —,'iQ

i—,'Q

—i—'Q2

2iQ —2iQ 2K

&Pio Pio&

& po&Po& &

&pro poi&

(pro w)

&Po& w&

&w, w&

b2) &Plo & & plo &

(2bl —b2)&Pol & &Pol &

2bi &P&o& &Poi &

0
0
0

(3.5)

with z, =i A+3m/2+b, and zz 2ib, +~—+b2. The first three equations in (3.5) couple to the average atomic polariza-
tion and determine the time evolution of the polarization noise, which in term drives the atomic population fluctua-
tions. Note that the source terms are proportional to the bandwidth of the light.

In the long-time limit the differential equations (3.4) and (3.5) reduce to systems of linear equations with the solutions

and

0 (a/2+bi).
K[8 +(a/2+b~ ) ]+0 (a/2+b~ )

(3.6)

ap„—=—&w, w&=
8K

Q
Re z(+

Z2

2bi —bq 2b)
+ 2z' z2 ~

I
z

Q Q Q
2

' '2

Z)+ +
Zp K K

(3.7)

In contrast to the upper-state population (3.6) which
depends only on the bandwidth b&, the variance hp» is
both a function of b& and b2, i.e., for a given bandwidth
the PDM and the PJM predict the same population aver-
ages, ' but the fluctuation properties are different. Since
b2 occurs, we see that the variance depends on the
fourth-order field correlation function.

Figures 1 and 2 are plots of (p») (dotted line) and

hp» for the PDM (dashed line) and the PJM (solid line)
as a function of detuning 6 for different Rabi frequencies
and bandwidths. Figures 1(a)—1(c) show (p») and bp»
for a small bandwidth b

&

——0.25K and increasing Rabi fre-
quencies (a) 0=0.25m. , (b) 0=1.5', and (c) 0=3~. In
the plots of the population averages this increase of the
intensity is reflected in a power broadening of the atomic
resonance line. For weak fields [Fig. 1(a)] bp» shows a
distinctly different behavior in the PDM and PJM. For
the phase diffusing light hp» is a two-peaked curve with
maxima at values of the detuning where the slope of
(p&&) has its largest value, while for a jumping laser
phase the maximum fluctuations occur at line center.
With increasing intensity the fluctuations in the PJM de-
velop a three-peaked structure [Fig. 1(b)]. For large satu-

ration parameters the fluctuations are suppressed at d!=0
for the PDM and PJM, and both models show a qualita-
tively similar behavior for the noise [Fig. 1(c)]. For band-
widths larger than the spontaneous decay rate (b, =3m)
and weak fields (0= l.5~), on the other hand, both mod-
els predict maximum fluctuations at the center of the
atomic line (Fig. 2), and the complicated pattern of Figs.
1(a) and 1(b) disappear. For large bandwidths and strong
saturation of the atom, we again find a double-peaked
noise spectrum similar to the one shown in Fig. 1(c).

To understand the qualitative features in Figs. 1 and 2
we consider various limiting cases of Eq. (3.7). First we
note that for weak fields hp&& scales proportional to Q,
so that the relative error bp»/(p») becomes indepen-
dent of the light intensity. On resonance, 6=0, Eq. (3.7)
reduces to

QK 1

8 [0 +(a/2+b, )~]

(4b ) bz )a+2b, b q— .

[0 (3x+2b2)+~(3a/2+b( )(a+b~)]

(3.8)
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From Eq. (3.8) we see that for large Rabi frequencies
the fluctuations tend to zero as bp» ~1/Q. Physically,
this corresponds to the fact that for strong saturation the
upper and lower atomic state population become approxi-
mately equal, p»(t) =p~(t) = —,', an equilibrium which is
only weakly perturbed by external field fluctuations. For
large bandwidths (b(»"), Eq. (3.8) is independent ofbz

and bp)) becomes the same in both models (compare Fig.
2}. For the PDM the first term in the denominator of Eq.
(3.8) becomes zero, 4b, b—z ——0. Thus for small band-
widths b, «~ and b, =O we have (hp«)pDM/
(6p) ~)pJM

——8b, /3a «1. This explains the dip in hp» in
Fig. 1(a) for the PDM at line center [which should not be
confused with the saturation dip in Fig. 1(c). Far off res-
onance the relative error in the population fluctuations is

0.04 hP))/(Pt t) =[(b t(2a+b)) ,'x'b—z—)/(Ta+bt ) ]'
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(3.9}

which for large bandwidths (b, »a) is independent of bz
(compare Fig. 2), while for small bandwidths the ratio of
the relative error of the PJM and PDM approaches ( —,

')'~
[Fig 1(c)]

The above discussion assumes a detector with a
response time much faster than all time scales of field
fluctuations and the atomic dynamics. In Appendix B we
show how to generalize these results to include a finite in-
tegration time of the detection device. Physically, a finite
response time of the detector tends to reduce the fluctua-
tions; as shown by numerical calculations (see Appendix
B), the qualitative features of the population fluctuations
on detuning, Rabi frequency, and bandwidth as given in
Figs. 1 and 2 remain essentially unchanged.

Equations (3.4) and (3.5} are easily generalized to two-
photon absorption from the ground state to the upper
state of 2LS which is depleted by spontaneous decay to a
third level (from which the electron returns to the ground
state). Essentially this amounts to the replacements
b„-bz„ in Eqs. (3.4) and (3.5), and reinterpretation of 0
and b as the two-photon Rabi frequency and detuning,
respectively. For the PDM this substitution is equivalent
to increasing the bandwidth by a factor of 4 when com-
pared with one-photon absorption, while the fluctuations
in the PJM are the same in both cases. Thus, in two-
photon absorption population fluctuations tend to be
larger for the PDM than for the PJM with the same
bandwidth.

0.3-
0.20

0.2-
0.16-

0.12-

0.0 1 1 I I I

—80 —60 —40 —20 00 20 40 60 80
0.08-

0.04-

FIG. 1. Mean population (p») of the upper level of the 2LS
(dotted line) and corresponding fluctuations hp» for the PDM
(dashed hne) and PJM (solid line) as a function of the detuning
6 in units of ~ [Eqs. (3.6) and (3.7)]. The parameters are (a)
b~ ——0.25m and 0=0.25(c, (b) 0=1.5K, (c) A=3K.
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FIG. 2. Same as in Fig. 1, with b& ——3~ and 0=1.5K.
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IV. POPULATION FLUCTUATIONS
IN DOUBLE OPTICAL RESONANCE

Bandwidth and laser line-shape effects in averaged
atomic populations of three-level systems have been dis-
cussed extensively in the literature. Below we give a
brief summary of the basic equations and physical ideas
of double optical resonance DOR to the extent that they
provide the background of our present discussion of laser
noise-induced population fluctuations.

We consider an atom with a ground state ~0) and ex-
cited states ~1) and ~2). The excited states ~1) and

~
2) have natural decay widths a, and ~2. We assume

that the first transition
~

0) —+ ~1) is strongly driven by
the phase-fluctuating laser field described in Sec. II. ac
Stark splitting can be observed by monitoring the popula-
tion induced in level ~2) (which is coupled via a dipole
transition to ~1)) by a second laser as a function of de-
tuning of the probe frequency. In order not to perturb
the ac Stark splitting of the two-level system I ~0), ~1)),
we adopt a weak probe approximation, i.e., we neglect
the depopulation of the first excited state. For the slowly
varying density-matrix elements we then find the follow-
ing equations:

d
+K2 P22 ——,'t0 P12+c.c. ,

dt

d + ~2+2 12 p12 2 ~p11

+ ] .ge —i4(t) (4.1)

+~~1+~~2+2 02 P02 T~P01

+—,'&Qe' '"p

with K j K +Kj 61 CO N10 and b2 ——co' —co21 are the
detunings of the first and second transition, respectively;
Q' is the Rabi frequency of the probe laser. The density
matrix elements p»(t) and p&o(t) are given as solutions of
the two-level density-matrix equation (3.4). The probe
laser is assumed to be monochromatic.

The transformation p20 ——p20e' reduces the density-
matrix equation (4.1) to a multiplicative stochastic
differential equation of the form (2.7). The atomic popu-
lation averages are obtained from Eq. (2.8) with the re-
sult'

'2-, ~R ~'l(R+R')+Q'

T+R z2/(R+R*)
X +c.c.

ST+—,
'0' (4.2)

where R =—K01+b1+i6,, S=—,'K»+i52, and T=—Kp2

+b, +ih, +i~2 Note that . (pz2) is independent of b2,
so that the PDM and PJM again predict identical aver-
ages. For a Rabi frequency 0 much larger than the
atomic decay constants K j and bandwidth b1, the popula-
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I
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0.0—!.. .
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—3.0 —2.0
~ T

—1.0 0.0 1,0 2.0
t i

3 ' 0 4.0

FIG. 3. Mean population (p2z) of the uppermost level in
DOR (dotted line) and corresponding fluctuations Apz2 for the
PDM (dashed line) and PJM (solid line) as a function of the de-
tuning 52 of the probe laser, in units of 0' /~&~2(K& ——~,=K).
The parameters are 6& ——0, Q, =0.3a, and 0.3». (pz2) and bp»
are multiplied by a scale factor 10 .

tion (p2z) as a function of b, , shows two peaks which are
separated approximately by (0+6,, )''. For non-
resonant excitation the doublet spectrum is asymmetric.
If the detuning 6, is larger than both the atomic natural
linewidths a,.", the laser bandwidth b„and the Rabi fre-

quency 0, one of the absorption peaks occurs at a probe
frequency offset 52 = —6, corresponding to coherent
two-photon absorption; the other peak at 61=0 is associ-
ated with a two-step process whereby the probe laser ex-
cites atoms from the intermediate ~1) state. While for
small bandwidth the two-photon peak dominates the
spectrum (what is referred to as the normal peak asym-
metry), in a spectrally broad laser the intermediate state
can become populated directly through the absorption of
a photon from the wing of the laser spectrum. Thus the
two-step process can dominate two-photon absorption
and the peak height asymmetry is reversed, an interpreta-
tion which was substantiated by recent experiments.

Equations for the population fluctuations in p22 corre-
sponding to the density-matrix equations (4.1) and (3.2)
can be obtained from Eq. (2.9). In view of the large num-
ber of the density-matrix elements and the associated loss
of immediate physical insight we refrain from reproduc-
ing these equations in detail. Below we discuss results ob-
tained by numerical solution of these equations. '

Figures 3—5 show plots of the mean population (pzz)
(dotted line) and the variances bpz2 for a PDM (dashed
lines) and PJM (solid lines) as a function of detuning bz
of the probe laser for various Rabi frequencies 0 and
bandwidths b1. In these figures we have chosen equal de-
cay rates K, =K2 ——K. 16

Figures 3 and 4 show the spectrum when the first
strong laser is tuned on resonance (6,=0). In fig. 3 the
lower (pump) laser is assumed to be weak (0,=0.3~) and
to have a small bandwidth (bt ——0.3a), so that (pzz)
shows a single resonance line with width dominated by
spontaneous decay. For both models the population fluc-
tuations are maximum at resonance which is in contrast
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to the situation in the 2LS [compare Fig. 1(a)]; however,
further calculations reveal that a double-peaked fluctua-
tion spectrum reminiscent of the results of the 2LS is ob-
tained for the PDM at considerably smaller pump band-
width b].

Increasing the intensity of the first laser, the spectrum
exhibits ac Stark splitting. In Fig. 4(a) we have chosen
b& ——0.3z and 0&——3a. For the PJM the fluctuations are
three peaked with maxima at the positions of ac-Stark-
split states 52=+—,'0 and at hz ——0. By contrast, in the
PDM the variances show four peaks: for each of the dou-
blet lines of (p22) we find two maxima at detunings
where the slope of (pz2) is largest with a deep minimum
at h2 ——0; the two middle peaks (closer to 52——0) become
more pronounced as the bandwidth b, decreases. Addi-
tional calculations have shown that for large Rabi fre-
quencies the central peak (lL2 ——0) for the PJM disap-
pears. Increasing the bandwidth b, [Fig. 4(b) with

b, =3m and 0, =3m] washes out the ac Stark splitting
while the fluctuations show a doublet structure with vir-
tually no differences between the predictions of both the
PJM and the PDM; in a field with a still larger band-
width this double hump disappears and we find a single-
peaked fluctuation spectrum.

In Fig. 5 we plot the off-resonance spectrum for a de-
tuning 5& ——7~, a Rabi frequency 0& ——3a, and bandwidth

3.0

2.5-

2.0-

1.0-
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FIG. 5. Same as in Fig. 3. The parameters are (a) 6& ——7~,
0& ——3~, b

&
——0.2v, and (b) b& ——~. The scale factor is 10 .

b, =0.2~ [Fig. 5(a)] and b, =x [Fig. 5(b)]. The two peaks
in (p» } correspond to two-photon absorption
(5,= —b, z) and the two-step process (b, , =0). For the
small bandwidth [Fig. 5(a)] the peak at bz ———b, , dom-
inates; the fluctuations in the PJM show a maximum at
line center while the PDM again exhibits a asymmetric
doublet structure. Fluctuations at 62 ——0 are surprisingly
large, in particular for the PJM (a property which be-
comes even more pronounced at smaller bandwidth). For
bandwidths b, & —,'~ the peak asymmetry reverses and the
two-step process dominates the two-photon peak [Fig.
5(b) with b, =v]. In this case the fluctuation properties
of both PDM and PJM are similar with maxima at the
line centers of the doublet.

V. CONCLUSIONS

-80 -60 -40 -20 00 20 40 60 80

FIG. 4. Same as in Fig. 3. The parameters are (a) 6& ——0,
QI ——3~, b I

——0.3a, and (b) b
&

——3'. The scale factor is 10 .

%'e have shown that fluctuations in the observed inten-
sity, when light from a noisy laser is scattered by an
atomic system, are sensitive to the field statistics of the
laser. These fluctuations were obtained by considering
the variances of the atomic populations, which depend on
higher-order field correlation functions than the mean
populations. Of particular interest is the difference be-
tween the observed "noise" for the phase-diffusion and
phase-jump models, illustrated in Figs. 1 and 2 for the
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2LS. For small bandwidths and low intensities [Fig. 1(a)],
the PDM shows maxima in the wings at the points where
the slope of the scattered intensity, «(p» &, as a function
of detuning is maximum. This is to be expected, since the
intensity at these point is most sensitive to small changes
in frequency (and hence phase). In contrast, the PJM,
which has the same average population (p» &, shows a
maximum at line center. The reason for this is that the
PJM changes in phase, when they occur, are large (being
random modulo 2n), so that jumps to all points in the
profile occur, in contrast to the continuous small phase
excursions of the PDM which are sensitive to the region
of maximum slope. For broad-band radiation, as shown
in Fig. 2, large changes in frequency (phase) also occur
for the PDM and then the maximum "noise" also occurs
at line center.

The results presented for fluorescence (in the weak-field
limit equivalent to transmission through a Fabry-Perot
interferometer), two-photon excitation, and DOR as a
function of bandwidth and laser intensity for the PDM
and PJM (Figs. 1 —5} indicate a wealth of interesting
features, which are not revealed by just examining the
average populations. In fact, the two-photon excitation,
since it is characterized by higher-order field correlation
functions, is even more sensitive than the one-photon
Auorescence for the PDM. We therefore believe that
"noise spectroscopy" provides an excellent method for
characterizing laser-field statistics. The feasibility of
such noise spectroscopy has, of course, been shown by
the experiments of Wieman and Tanner and Holberg, "
although for precise measurements it will be necessary
for the frequency response of the detection system to
exceed the bandwidth and relaxation rates.
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APPENDIX A

N N—P(u„,@,t)= —g g A„„(4)u„+L(4)
Bf p=O v=o up

XP(u„,&,t), (A 1)

The theory developed in Sec. III assumes that the
response time of the detector is much faster than the time
scale of fluctuations. A phenomenological model for a
detector with a finite integration time is readily con-
structed by writing for the measured intensity

I,(t)=r I' dt'e-"' "I(t ), -
(B1)

with 1/I the response time and I(t) given by Eq. (3.1).
From Eq. (B 1 } we have in the stationary limit
(Itp(t) & =(I(t) & for the mean value of the fluorescence
with (I(t) & =«(p„(t) &. According to Eq. (Bl), the vari-
ance can be calculated from the atomic correlation func-
tion (p»(t), p»(t') &. Alternatively, an equation for the
variance is readily obtained by augmenting the stochastic
Bloch equations (3.2) by

d—I,(t) = —rI, (t)+ rI(t) (B2}
dt

and deriving an equation for (It,(t),Ir, (t) & according to
(2.9). In the long-time limit we find

with L(4) the master operator of the phase [defined by
the right-hand side of Eq. (2.1)].—tn

Multiplying Eq. (Al) by e " u„and integrating over
the u s and the phase 4, we derive Eq. (2.8) for the aver-
ages (u„(t)&. In a similar way, Eq. (2.9) for the vari-
ances by obtained by multiplying Eq. (A 1) by—i(n +n„)4
e " " u„u v and again integrating over the whole
phase space.

In the long-time limit the atomic mean values and vari-
ances settle down to a stationary state. In view of the
normalization gj pJJ(t)=1 of the density-matrix ele-
ments, we can define the first component of the u vector
as uo(t) = g,p "(t), so that uo(t)=1 for all times, and we
have (uo, u„&=0(@=0,1, . . . , N}. This results in a sys-
tem of linear equations for the N(N+1)/2 variances
(u, u„&(m, n =1,2, . . . , N) Note .that ((u, u„&) is a
(symmetric semipositive) covariance matrix. For the 2LS
we have to solve a 6X6 [see Eq. (3.5)], for the 3LS a
36X 36 system of linear equations.

APPENDIX B: DETECTOR
WITH FINITE INTEGRATION TIME

—in 4(t)
With the definitions u„(t)=e " u„(t) and

—in in„4A„„(4)=e " A„„e ",Eq. (2.7) is equivalent to the
stochastic equation

d u„(t)=—g A„„(4(t))u„(t),
dt v=0

which, together with the phase 4(t}, defines a Markov
process I u„(t),4(t)] with probability density P(u„,@,t ).
This probability density is a solution of the master equa-
tion

with

(I~(t},In(t) & =-,'«(I~(t), w(t) &,

4 Pio&

(,,p„& =,'«r r+ 0

0 —iQ

&p&o w &

X &po„w &

(w, w&

(B3)

(B4)
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The right-hand side of Eq. (B4) is known from (3.5) of
Sec. III; in particular we note that the matrix in Eq. (B4)
is identical to the matrix in Eq. (3.4) which governs the
time evolution of the averaged stochastic density matrix.
According to Eqs. (B3) and (B4), the fluctuations in the
fluorescence are reduced when I becomes comparable or
smaller than b, ~, or O. Numerical calculations based on
Eqs. (B3) and (B4) show for finite I that the figures in
Sec. III remain essentially unchanged, apart from an
overall reduction factor in the fluctuation.

The above discussion can be adapted to more compli-
cated models of the detector response, e.g., filtering by a
Fabry-Perot interferometer.

APPENDIX C: COMPARISON
WITH A FABRY-PEROT

(2I 8 )

8(2I )

2b) —
2

&(Re z)
2

2bi
(C2)

with 6;„(t)=Joe ' '" the complex incoming field ampli-
tude, 6 the detuning of the mean frequency of the incom-
ing laser field from the resonance frequency of the
Fabry-Perot, and I the damping coefficient of the cavity.
The variances in the output intensity I,„,(t)= ~

6 „,(t) ~

are easily calculated in analogy to our treatment of the
2LS in Sec. III. With the definitions z=lh+I +b&,
z&

——i6+3I"+b&, and z2 ——2i 6+2I +b2 the intensity
fluctuations of a Fabry-Perot interferometer are deter-
mined by the formula

In this appendix we compare our results for the vari-
ance of fluorescence from a 2LS (Sec. III) with the fluc-

tuations in the output from a Fabry-Perot interferometer,
driven by the same noisy laser. The output amplitude

8,„,(t) from a Lorentzian through pass filter obeys the

equation

(Cl)

This agrees with the weak-field limit of Eq. (3.7) for the
2LS, i.e., when we take the limit of small Rabi frequen-
cies Q~O, and when we make the identifications a~2I
and 0-+28&I . We emphasize, however, that a Lorentzi-
an through pass filter and a 2LS in a weak light field give
identical results only when the spontaneous decay width
of the atom is identical to the damping constant of the
Fabry-Perot interferometer.
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