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Quantum propagation: Squeezing via modulational polarization instabilities
in a birefringent nonlinear medium
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We calculate the spectrum of quadrature fluctuations of orthogonal polarizations of light for a
beam propagating along a birefringence axis of a dispersive transparent Kerr medium. Reshaping
and tuning of the spectrum is achievable by variation of the pump power or the linear

birefringence: Wide-band squeezing is predicted, and its relationship to modulational polarization
instabilities discussed.

Squeezed states of light have noise less than the funda-
mental quantum limit in one quadrature, at the expense of
correspondingly larger fluctuations in the complementary
quadrature. ' There has been considerable success in the
generation and detection of squeezed light by a variety of
parametric interactions, once extraneous noise is eliminat-
ed to a large degree. 2 Recently, promising predictions
were made in relation to large wide-band squeezing of
scalar solitons, i.e., when only a single linear polarization
is excited and maintained along an optical fiber. 3

When an intense light beam propagates in a weakly
nonlinear and anisotropic medium, one must include both
field polarizations in the description. The classical wave
polarization dynamics in nonlinear birefringent dispersive
media has recently been discussed, and new modulational
polarization instabilities predicted. Modulational insta-
bilities lead to an exponential growth of sidebands, and
have recently been observed experimentally in optical
fibers operating in the anomalous dispersion regime. s

Here we calculate squeezing spectra for the two propaga-
ting polarization states using a unified quantum theory of
nonlinear birefringent dispersive media, characterized by
the nonlinear electric displacement4
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where Z=3X„„,„,and the value of 8=1,yy„/X„,„,which
lies between 0 and 1, depends on the nonlinearity mecha-
nism ( —,

' for a glass fiber, 4 for liquid CS2). Equation (1)
implies that the isotropy condition Xxxxx Xxyyx+2~xyxy
holds between the components of the nonlinear suscepti-
bility tensor Z. The complex electric field E is written
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where k„yare the wave vectors for the components polar-
ized along the x and y axes, respectively, and too is the
mean frequency.

After quantization of the classical field theory, includ-

ing group-velocity dispersion, we use coherent-state
phase-space methods3 to derive stochastic equations for
the scaled field envelopes pl(z, () (j x,y labels the polar-
ization state). For ease of comparison, we adopt the same
scaling and coordinates as Ref. 3, in which r and g are di-
mensionless local time and propagation distance, respec-
tively. We find
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where 2a=(k, —kz)zo is the birefringence parameter,
and zp and po are the characteristic distance scale (in-
versely proportional to input intensity) and photon num-

ber defined in Ref. 3. Upper and lower signs hold for nor-
mal and anomalous group-velocity dispersion 8 k„/pro
=- Bzk~/arroz, respectively. The AJ are found from AJ, by
interchange of pJ and yjl, and i and i. -The zero-mean,
real Gaussian noise vector ri(t, () has the correlation

(g(t, g)q'(t', g')& =Is(t —t')b(g —g'),
where I is the identity matrix. Equation (6) indicates that
the components of the noise vector are independent, and
consequently p, and &J are only complex conjugate in the
mean. Ignoring the noise term in Eq. (3), gives the classi-
cal deterministic equations. Note that, unlike the scalar
case, modulational instability of sidebands with polariza-
tion orthogonal to the pump is possible also in the
normal-dispersion regime. Inclusion of the noise term
gives a complete quantum-mechanical description in
terms of a stochastic process defined on a phase space
twice as large as the classical phase space. To study the
quantum fluctuations we linearize Eq. (3) about the clas-
sical continuous wave solution po I/J2(1, 1,0,0), repre-
senting an input polarized along the x axis (the "slow"
axis if a.)0, or the "fast" axis if x & 0). The linearized
equations for the fluctuation vector Bp =p —

po, correct to
l

first order in Fourier space, are given by

b4J(ro, () A~byj(ro, g)+ JDJr)J(rn, g), j~x,y,
(7)

where
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and as in Ref. 4, the Fourier transform is defined as
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with T the total observation time, and to a characteristic
time scale for a given input power. We note that for such
inputs, the quantum fluctuations of the x and y polariza-
tions are independent to first order.

The spectrum of quadrature fluctuations of polarization

j, at detuning ro, position (, and angle 8 (defined by the lo-
cal oscillator phase) is

defined

SJ(ro, (,8) = Re[e' '(bp, (ro, ()by~( rn, (—)&+(by, (ro, ()by)~( —ro, ()&] .
T

(10)

Since the equations of motion for bp„are precisely those derived from the scalar stochastic nonlinear Schrodinger equa-
tion, the squeezing spectrum also coincides with that found previously. 3 The spectrum associated with the orthogonal
polarization y at the phase angle for maximum reduction of the fluctuations is

Sy,„(ro,()-8 2
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where

X = [(28 T- rn '+ 4a )(+' co —4x-) ] ' (12)

u=—+~2 —4~ —& .

In Figs. 1-3 we display squeezing spectra for the polar-
ization orthogonal to the pump, in a fiber (8 —,

' ). In
Fig. 1 (x 0, normal dispersion) exponential squeezing
occurs at c02 8, the phase matching condition for peak
gain of the instability (this may be deduced from the ei-
genvalues of A~). Note that in the scalar case, modula-
tional instability and associated large squeezing occurs
only in the anomalous dispersion regime. Birefringence
alters the phase-matching condition for peak gain of the
instability: this occurs for roz 8+4m. in Fig. 2. The ex-
ponential squeezing at the pump frequency ro 0 [Fig.
2(b)], is a particularly interesting special case. Moreover,
nearly 100% squeezing is achievable well within a one
beat length (=n/a) long sample. Figure 3 illustrates that
birefringence is essential in order to induce complete
squeezing orthogonal to the pump in the anomalous
dispersion regime.

The conditions necessary to attain
~

x
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8/4 are as fol-
lows. The liquid CSz (nz=3.0X10 ' cm /W) with a
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FIG. 1. Maximum squeezing vs normalized frequency offset
and propagation distance for sideband fluctuations orthogonally
polarized with respect to a linearly polarized carrier propagating
in an isotropic (i.e., x 0) Kerr medium (with B —, ) and in

the normal-dispersion regime. Contour plot shown below.
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