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Photodetachment of H in an electric field
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A simple analytic formula for the photodetachment cross section of H in an electric field is de-
rived. The formula becomes identical to a formula derived many years ago in the vanishing-field
limit. Three special features appear in the cross section in the presence of an electric field: a quan-
tum tunneling effect, a new threshold law, and oscillations. These appear when the photon energy
is, respectively, less than, equal to, or greater than the binding energy of H . Enough information
is provided in this paper so that one can calculate the cross section quickly.

I. INTRODUCTION

Very recently, experimental measurements were made
of the cross section for photodetachment from H
hv+H ~H+e, in static external electric fields of a
few hundred kV/cm. ' Near the detachment threshold
(hv=0. 7542 eV) a "ripple" structure was found in the
cross section as a function of energy. This is quite
different from the smooth photodetachment cross section
that occurs in the absence of any field.

Our aim in this paper is to explain and interpret these
observations. We will derive a simple formula for the
photodetachment cross section of H in an electric field.
The formula is found to be quite accurate, and very easy
to use.

The photodetachment cross section is related to a di-
pole matrix element, which we write in "velocity form. "
In the initial bound state, H is regarded as effectively a
one-electron system, with the electron loosely bound by a
short-range potential. The effect of the electric field on
the initial state can be ignored, since in the initial bound
state the external field strength is very small compared to
the atomic field strength. The wave functions for the
motion of the electron after detachment are the wave
functions of an electron in an electric field only, and the
effect of the short-range potential of the atomic core is ig-
nored after the electron is detached. This is appropriate
since (in the absence of the electric field} photoabsorption
causes a transition from an S to a P state; in the final
state the electron stays well away from the atomic core,
outside of the P-wave centrifugal barrier (i.e., the radial
wave function associated with a P state goes to zero at
the origin). Therefore the contribution of the atomic core
region to the dipole matrix element is small. It also fol-
lows from this argument that our approximation to the
initial state only needs to be accurate outside of the atom-
ic core.

These approximations turn out to be suprisingly accu-
rate. Similar approximations were used long ago to cal-
culate photodetachment cross sections in the absence of
external fields, and the agreement with experiment

turned out to be very good —even better than that ob-
tained from a 20-parameter variational calculation.
(Similar approximations have also been used to study
above-threshold detachment in intense laser fields. }

In Sec. II the photodetachment cross section is derived
from the wave functions in momentum space. Then in
Sec. III a function D (x } appearing in the formula is stud-
ied in greater detail. Information is provided to evaluate
the function D (x) and the cross section quickly. Discus-
sion of the features in the cross section is given in Sec.
IV, and comparison with experiment in Sec. V. Atomic
units are used throughout this paper unless otherwise
noted.

After this work was essentially complete, we learned
that Rau and Wong obtained one of the formulas from
"frame-transformation theory. " Our derivation is
simpler and more direct; we reduce the formula to one
suitable for a pocket calculator, we give more detail
about the cross sections, and we give a correct value for a
rather confusing constant that appears in the theory.

II. DERIVATION

Let the energy of the escaping electron be denoted by
E =tri k /2m„ the binding energy of the electron to the
negative ion by Eb =0.754 eV, and the photon energy by
E~ =E+Eb. The photodetachment cross section in the
presence of electric field F, cr(E,F), is related to an
oscillator-strength density Df (E,F) by

o (E,F)=(2meA/m, c)Df (E. ,F),
where

Df(E,F)=f (2m, E~/R )[(fez~i)[ 5(E(f)—E)df (2a)

=f l&flp. lt) I'~(E(f)—E)df . (2»
m, E

Here (f ~
represents any final state, normalized such that

(f ~f') =5(f f'). The total p—hotodetachment cross
section is an incoherent sum of cross sections to each dis-
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—k rb

1t, (q) =8 (3)

where kb is related to the binding energy E& of H by

kb'

2
(4)

The best value extracted from a variational calculation is

tinct final state. In Eq. (2) it is assumed that the electric
field of the laser is polarized along the z axis (c is the
speed of light, equal to 137 a.u.).

%e take the initial wave function in configuration
space to be

If the static electric field also points in the z direction,
then the wave functions in momentum space for an elec-
tron moving in this field satisfy

p . 8
2 Bp

+iF Pf =Elf .

Any particular one of these final states, gf, , can be la-
beled by three conserved quantities —the energy E,' asso-
ciated with z motion and the momentum (p„',p~ ) associat-
ed with x andy motion:

f' (J.' I„' E,'»

ff (p) = 5(p„—p„')5(p, —p,')(2~F)
Ic& =0.235 5883 .

The constant B needs to be determined with care: in the
Appendix we explain why its value should be taken to be

l
X exp F

3
PZ —Ep (9)

B =0.315 52 .

The corresponding wave function g; in momentum space
1s

These wave functions are normalized according to

f Pf.(p)ttif-(p)dp=5(p„' —p„")5(py' —py")5(E,' —E,") .
' 1/2

2
7r

1

(kl, +P )
(7)

Therefore the dipole matrix element (2b) is

(10)

(1(i, Ip, Iff. ) =f dp 5(p„—p„')5(p —p')(2nF) ' exp
1

F

3 1/2
pz 2—E'p, p, B

1

kl2+P2

B 1

F1/2 (k2+ 2+ ~2+ 2) F
3

PZ El

The major contributions to the above integral come from the stationary phase points p, satisfying

2
PZ —E'=0 .
2

(12)

Because the initial wave function 1(;(p) is slowly varying around the stationary phase points, we evaluate it at the sta-

tionary phase points and take it outside the integral. Thus we obtain

3
] 1 F 8

d
& P E,

~ 4i IJz I 4f' ~ gF k2+ 2 ~

~
P2exp F 6 ZP2

=iB2 F Ai
a

(k2+p2) aE,'

' 1/3
2 E /

Z
(13)

and

&2 &2

Df(E,F)= f I&@;IP,I1( &I'5 E— " — '
(E+E) '' f 2 2

—E,' dp„'dp„'dE, '

64mB F 2' E
D

(k2+ 2)& F2&&
(14)
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where D (x) is a function defined by
'2

D(x}—=f Ai( —z) dz .cf

co Cfz

Ai(z) is the standard Airy function.
Hence the photodetachment cross-section is

128m B F
cr(E F)= D(2' E/F )

c (k&+p }

(15)

=0.3604 D(2' E/F ~ )a (16)
(Eb +E)

where, again, F is the electric field in atomic units (1 a.u.
electric field =5.14X10 V/cm), E is the energy of the
detached electron, and Eb is the binding energy of the ini-
tial state.

du (z)/dz =v (z},
dv (z)/dz =zu (z),
dw (z)/dz =—v (z)

with initial conditions at large z

(22a}

(22b)

(22c)

1u(z)=
2

z ' exp( ——', z ), (23a)

v (z) = — z' exp( —
—,'z ),1

2~m.
w(z)= exp( ——'z ~

) .1

Sm

(23b)

(23c}

Integration is performed from large positive to large neg-
ative z.

Finally, for large positive x (x ~4.0), the oscillatory
asymptotic approximation

III. THE FUNCTION D(x) Ai( —z)-n ' z ' sin('z +ir/4)3
(24a)

D(x):—f — Ai( —z) dz= f Ai(z) dz .

(17)

D(x) is positive everywhere. The Airy function satisfies
the difFerential equation

Ai(z) —z Ai(z) =0,
dz2

with asymptotic condition at large positive z,

(18)

In this section we discuss the function D(x) appearing
in the cross-section formula (16). As we shall see, the
structure of the observed cross section is contained al-
most entirely in this function D (x).

The function D(x} is defined in (15}. For convenience,
we rewrite the definition in the form

2

can be used, from which we obtain

d Ai( —z)
dz

1 z' 1+cos —'z +—2' 3 2
(24b)

After integration we find

D (x)= [ 'x +cos( 'x )]=1
4m 3

(25)

plus an undetermined constant of integration. By com-
parison of this formula with the results of numerical in-

tegration, we find that the constant should be taken to be
zero.

This approximation becomes better for large positive x.
Actually it is a surprisingly good approximation for all
positive x; for example, at x =4.0, the error in the ap-
proximation is only 0.2%%uo.

Ai(z)- z '~ exp( —
—,'z ~ ), z~~ .

2 7r
(19)

4.0—
Consider first the region where x is very negative. Then
the asymptotic approximation (19) to the Airy function
can be used, and after integration, one easily obtains 3.0

D(x)= exp[ ——', ( —x) ~ ], x ~ —4.75 .1

8m
(20)

This approximation is found to have an error of 2' at
x = —4.75, and the error becomes smaller for more nega-
tive x.

To evaluate the function D (x) numerically, one can in-
tegrate three coupled first-order differential equations.
Defining

2.0

I.O

u (z) =Ai(z),

v (z) =d Ai(z) /dz,

w (z) =D( —z),

(21a)

(21b)

(21c)

O.O
-2 0 2 4 6 8 IO

it is evident that u, u, and m satisfy the difFerential equa-
tions

FIG. 1. The function D(x). Solid line is the numerical re-

sult, from integration. The dots are approximation (25).
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Approximations (19) for negative x and (25) for posi-
tive x do not match at x =0. A table of numerically
determined values of D (x) is provided for this intermedi-
ate region. With this table and the approximations in the
other two regions, the function D (x) is easily evaluated.

A graph of D (x) is shown in Fig. l. Also shown is the
approximation (25). One can see that D(x) increases
from an exponentially small value at negative x to a finite
value of x =0, and it becomes increasingly large and os-
cillatory as x increases.

From these properties of the function D(x), we shall
obtain the characteristics of the photodetachment cross
section for H in an electric field in the next section.

IV. THE CROSS SECTION

zero-field threshold, the electron can tunnel out through
a potential-energy barrier, and go to the downhill side of
the potential energy. From (16) and (20) we obtain the

l.5—

N 0
O

b l0
C
O

& 05

0(E (O,F—+0)~0. (26)

On the other hand, if the photon energy is greater than
the binding energy, so E is positive, then as F~0, the ar-
gument of function D(x) in Eq. (16) goes to positive
infinity. Then approximation (25) can be used. Now
since x goes to infinity the second term in Eq. (25) is very
small compared with the first term (and rapidly oscillato-
ry as well), so it can be dropped. We then obtain

16''2g 277
o(E &O,F~O)~ 300

(Ei, +E)
E3/2

~0.05408 ao . (27)
(Eb+E)

Three special phenomena exist in the cross section
when an electric field is present. Below the (zero-field)
detachment threshold, detachment occurs by tunneling.
At the threshold, the photodetachment cross section has
a finite value which is proportional to the electric field
strength. Above threshold, this cross section is oscillato-
ry. All these phenomena are described quantitatively by
the formula (16).

First let us verify that Eq. (16) approaches the correct
limit as the electric field strength F goes to zero. For
photon energy smaller than the binding energy, that is,
for E less than zero, as F~O, the argument of function
D(x} in (16) goes to minus infinity. Therefore approxi-
mation (20}can always be used. Clearly we obtain

0.0

N 00
b l0
0

o 0.5

0.0

l.5—

5 lO l5

wavelength (IOOOA)

5 IO I5

wavelength (lOOOA j

20

20

This is identical to the formula given by Ohmura and
Ohmura, except that we are using atomic units here.
This formula contains within it the Wigner threshold law,
o ~E, appropriate for p-wave electrons.

Now turning on the electric field, we compute photode-
tachment cross sections from Eq. (16). The results are
shown in Fig. 2 for three different values of the electric
field strength F. Special features appearing in the cross
sections are discussed now in order.

For photon energy smaller than the binding energy of
H, in the absence of the electric field, the photodetach-
ment cross section is zero. As soon as the field is present,
the cross section becomes nonzero, but still it is exponen-
tially small. This small cross section may be regarded as
a quantum tunneling effect: even for energies below the

N
O

D

lO

O
C3

(/)
O
o 05

0.0
5 IQ l5

wavelength (IOOOA)

20

FIG. 2. Photodetachrnent cross sections as a function of pho-
ton wavelength (a) for electric field F=O, (b) for F=100
kV/cm, and (c) for F =500 kV/cm.
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cross section in the tunneling region,

o(E,F)= F 4&2
( —E)3/2 a2

(Ei, +E) 3F

TABLE I. Function D(x). The number in square brackets is
the power of ten to which the number is raised
(4.12[—8]=4. 12 X 10 ').

=0.014 34 exp — ( E)— ao .F 4 2 3/2 2

(Eb+E) 3F

(28)

Exactly at threshold, in the absence of an external field,
the photodetachment cross section is again zero. In the
presence of a field, however, from Table I we find
D(x =0)=0.061 17, and therefore we find that the de-
tachment cross section is proportional to the electric-

field-strength,

cr(E =O, F)=1.032X10 F ao . (29)

Usually this gives a small cross section. For example,
for a field as strong as 10 V/cm, the cross section is only
0.2a o.

The most interesting region of the cross section is
where the photon energy is greater than the binding ener-
gy. In this region, oscillations appear in the cross sec-
tion. To see these explicitly, let us use approximation
(25) for the function D (x). The cross section, Eq. (16), is
then a sum of two terms,

g 3/2
o (E,F)= 0.05408

(Es+E)

4 2E'"
+0.02868 cos aii . (30)

(E, +E)' 3F

—4.75
—4.50
—4.25
—4.00
—3.75
—3.50
—3.25
—3.00
—2.75
—2.50
—2.25
—2.00
—1.80
—1.60
—1.40
—1.20
—1.00
—0.80
—0.60
—0.40
—0.20

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80
2.00
2.20
2.40
2.60
2.80
3.00
3.20
3.40
3.60
3.80
4.00

D(x)

4.12 [—8]
1.21 [—7]
3.45 [—7]
9.55 [—7]
2.56 [—6]
6.66 [—6]
1.67 [—5]
4.07 [—5]
9.55 [—5]
2.16 [—4]
4.70 [—4]
9.82 [—4]
1.72 [—3]
.92 [—3]
.83 [—3]

7.74 [—3]
1.20 [—2]
1.80 [—2]
2.60 [—2]
3.60 [—2]
4.80 [—2]
6.12 [—2]
7.43 [—2]
8.58 [—2]
9.41 [—2]
9.83 [—2]
9.91 [—2]
9.98 [—2]
1.06 [—1]
1.25 [—1]
1.65 [—1]
2.30 [—1]
3.16 [—1]
4.13 [—1]
5.04 [—1]
5.72 [—1]
6.08 [—1]
6.17 [—1]
6.19 [—1]
6.43 [—1]
7.1 1 [—1]
8.22 [—1]

The first term in Eq. (30) is independent of the field
strength [in fact, it is Eq. (27) for the cross section when
there is no field]. The second term is an oscillatory term.
The amplitude of the oscillations is proportional to the
electric field strength, and it decreases as the photon en-

ergy increases. The wavelength of the oscillations is in-
versely proportional to the electric field strength so as the
field increases, the peaks of the oscillations become more
clearly visible.

One sees from the formula (30) that the net contribu-
tion of the electric field to the photodetachrnent cross-
section is small. The oscillations are substantial only
close to the threshold. Above threshold, if we average
over the oscillations, the zero-field result is obtained.

Positions of maxima and minima are trivially predict-
ed. The energy of the nth maximum or minimum in the
cross section above threshold is approximately given by
the energy of the corresponding maximum or rninirnum
of the cosine term in Eq. (30):

En —1 [3~F(& 1 )]2/3

E n —& [3~F( n ]
) ]2/3

(31a)

(31b)

Comparing with the numerically determined cross sec-
tions, these positions are accurate, except for the first
peak, just above threshold.

V. COMPARISON WITH EXPERIMENTS

Experimental measurements have recently been made
of the relative photodetachment cross section for H in
an electric field. ' More precisely, an 800-MeV beam of
H was passed through a magnetic field, and in the rest
frame of the H, that magnetic field is equivalent to an
electric field. An yttrium aluminum garnet (YAG). laser
beam (E =1.1648 eV in the laboratory) intersected the
H beam at a variable angle, so that the Doppler effect
allowed variation of the photon energy in the H rest
frame. In the particular experimental configuration that
was used, the laser beam was collinear with the magnetic
field. Therefore as this axis was rotated, holding the
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F=yPcB sine

and the photon energy in the rest frame of H is

E~ =E~~y(1 —P cos8) .

(32)

(33)

Photodetachment cross sections with m polarization at
two difFerent magnetic fields are shown in Fig. 3. The
dots represent the experimental data' and the solid lines
are from the present theory. Since experimental data
were not absolute, they were normalized to theoretical

I.O— (a) B= 180 G

o 0.8—
b
Co Qg
G

I

U)

o 0.4—
O

0.2—

0.0
0.7 0.8 0.9 I.O

photon energy (eV)

1.2

I.O— (b) B= 56OG

N 0

b

o
(D

(f)
O

0.8—

0.4—

magnetic field strength fixed, the effective photon energy
and the effective electric field strength varied simultane-
ously.

If 8 is the angle between the beam direction and the
laser-and-magnetic-field direction, then the electric field
in the rest-frame of H is

values at one point. The theoretical predictions are com-
puted from Eq. (16), where D is computed by combining
Table I, and Eqs. (20) and (25). Actually the predictions
from the much simpler Eq. (30) are indistinguishable
from the solid lines in Fig. 3 for photon energy exceeding
0.75 eV. The agreement between this theory and the ex-
perimental results is very good.

VI. RELATIONSHIP TO OTHER PHENOMENA

Oscillations are also seen in photoionization of atoms
in external magnetic fields, and in ather papers we have
given a quantitative theory of those oscillations. The
present theory of photodetachment from negative ions in
electric fields is very similar to the theory developed in
Ref. 9.

In bath cases, the final states can be described using a
semiclassical approximation, which is accurate every-
where outside the vicinity of the nucleus. Final-state
wave functions are therefore correlated with classical tra-
jectories. In both cases, there are trajectories, and associ-
ated waves, which propagate out from the vicinity of the
initial state, and then are turned back by the external
field to return to the vicinity of the initial state (Fig. 4).
The superposition of outgoing and returning waves leads
to interference, and the resulting oscillations are visible in
the absorption spectrum.

In the case of photoionization in a magnetic field, the
returning waves were originally thought to be correlated
with periodic orbits in the system. We claimed that
closed orbits (of which periodic orbits are a subset) lead to
measurable oscillations, and this claim has led to much
discussion. The present case illustrates this point more
clearly. As shown in Fig. 4, none of the orbits associated
with the final state are periodic. However, there is one
closed orbit in which the electron travels up the
potential-energy hill on the z axis, then comes back down
to pass through the atomic core again before propagating
away downhill. It is that closed but nonperiodic orbit
that is responsible for the oscillations shown in Figs. 2
and 3.

Photoionization in electric fields also leads to oscillato-
ry cross sections. The observed phenomena have been
successfully described by frame-transformation theory. 'o

In future work we plan to examine this phenomenon us-

ing the type of semiclassical closed-orbit theory that is
used in this paper and in Ref. 9. The primary technical

0.2—

0.0
0.7 0.8 0.9

photon energy (eV)

I.O

FIG. 3. Near-threshold photodetachment cross section com-
pared with experimental results. (a) I close to 56 kV/cm, (b) I'
close to 164 keV/cm. Dots are experiment (Ref. 1); solid line is
theory.

FIG. 4. Trajectories of the outgoing electron in a constant
electric field directed along the vertical axis.



38 PHOTODETACHMENT OF H IN AN ELECTRIC FIELD 5615

difference between the two approaches is that frame-
transformation theory [as applied in Ref. 10(a)] uses sepa-
ration of variables in parabolic coordinates, where
closed-orbit theory uses a multidimensional semiclassical
approximation. Also the two theories describe modula-
tions in cross sections in very different terms. In Ref. 10
modulations are described as a sequence of quasi-bound
resonance states, whereas in Ref. 9, we speak of interfer-
ence among returning waves leading to sinusoidal oscilla-
tions in the cross sections. Thus the language and the
physical pictures are somewhat different. Nevertheless, it
seems likely that the two theories will lead to similar re-
sults.

VII. SUMMARY

A formula [Eq. (16)] was derived for photodetachment
from H in a static electric field. The formula contains a
function D (x), which can be evaluated using Eq. (20) for
x + —4.75, Eq. (25) for x +4.0, and Table I for inter-
mediate values of x. The formula provides a quantitative
description of tunneling, threshold, and oscillatory effects
that have been observed in experiments. The much
simpler formula (30}gives a good description of the cross
section above threshold.
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APPENDIX: THE "NORMALIZATION" CONSTANT

1. Confusion

Fano and Rau, " following Ohmura and Ohmura,
used the wave function (3) to discuss the photodetach-
ment cross section for H with no electric field present.
The free states are then Bessel functions, and the result-
ing integral [our Eq. (2a)] is a standard one. However,
they seem to have miscopied it, and an additional factor
of &2 should appear on the right-hand side of their Eq.
(7.12). Hence their Eq. (7.13) should be (in their notation)

64m k
3(137) (kg +k')' (Al)

(they give 32 instead of 64). They said, "The normaliza-
tion constant C can be taken from a very accurate calcu-
lation of the complete wave function, or it can be adjust-
ed by fitting the scale of the cross-section spectrum, "and
they cited Ohmura and Ohmura, but they did not actual-
ly give the value. (Their "C"is what we call "B."}

The appropriate value was given by Ohmura and
Ohmura. The quantity they call "C" differs from our
quantity "B"by a factor of (2n. )'~, but the value they
give is correct, and consistent with our Eq. (6). On their
graph of the photodetachment cross section versus wave-

length, the vertical axis is mislabeled as E X 10' cm; it
should be E X10' cm . By such relabeling, the graph
will agree with their formula, and with independent cal-
culations by Geltman. ' The graph was reprinted in Ref.
11 without correction.

In evaluating the photodetachment cross-section in the
presence of an external electric field, Rau and Wong car-
ried the factor of 2 error into their Eq. (2). They also
evaluated the constant C incorrectly. Their value of C is
smaller than the appropriate value by a factor of 2.65.
When this is combined with the missing factor of 2 from
the evaluation of the dipole integral, their formula pre-
dicts cross sections that are too small by a factor of 5.3.

Surprisingly, however, their graph of the cross section
is correct. Apparently, Rau and Wong used in their cal-
culations the formula of Ohmura and Ohmura instead of
their own formula for the free-field cross section.

2. Evaluation of the constant B

In fact, this is not appropriate. Bethe and Longmire
gave a better method for the evaluation of B.

They noted that Eq. (3) is an approximation that holds
only outside of the effective range of the potential energy,
and that

1=f 10;"-'I'd

—f ~@appA»(2d f ( @approx~2 (/exact(2)d

The last integral is proportional to Schwinger's definition
of the effective range, r,ff.

B2)—1 f ( ~yapprox~2 ~yexact~2)d

Therefore

1=2mB Ikb 2mBr, tr— .

or

kb

2~ (1—kbr tr)
(A3)

Ohmura and Ohmura found r,ff to be 2.646ao, and this
leads to B =0.315 52. The last factor in (A3),
(1 kbr, z)', in—creases . the calculated value of B by a
factor of 2.655. Without it, Ohmura and Ohmura would
not have obtained an accurate photodetachment cross
section. This factor was also incorporated correctly in a
paper by Reiss" on above-threshold detachment.

Rau and Wong make a very confusing statement that
"only one constant is needed to calculate the photode-
tachment cross-section. " They refer to kb. Actually
both kb and the effective range r,ff are needed, as the fac-
tor of 2.65 is a nontrivial correction.

One is tempted to say that B should be chosen such
that the wave function tj'j; is normalized:

1=f ~g;~ dr=2mB Ikb,
(A2)

B =kb/2m .
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