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Time evolution in a driven quantum system: Excitation through bands of states
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Time-evolution patterns for energy absorption in a driven Hénon-Heiles Hamiltonian with and
without extra off-diagonal random-coupling terms are reported. The time dependence of the aver-
age number of photons absorbed is quite different for these two systems, being fluence dependent for
the latter. Similarities are found between the dynamics of the driven system with random coupling
and a four-mode molecular model which interacts with a quantum monochromatic field. Compar-
ison is made between the presently found mechanism of excitation and the diffusive energy growth
due to externally induced chaos found in the kicked-rotor or in microwave ionization of the hydro-

gen atom.

1. INTRODUCTION

Recently, there has been renewed interest in the details
of the dynamics of multiphoton excitation (MPE) of
molecular vibrational modes by an intense laser."? Ear-
lier experimental studies revealed most cases that the en-
ergy absorbed by the molecule depended strongly on the
fluence of the applied field (i.e., the total energy in the
laser pulse) rather than on the laser intensity.> Such sys-
tem behavior may be simulated by the rate equations ap-
proach, valid in the limit of a very high density of states
(quasicontinuum approximation). The classical studies of
Ackerhalt, Milonni, and Galbraith! showed that even for
systems for which the rate equations approach breaks
down, the dynamics of the driven system may become
chaotic. One then observes the diffusive, linear-in-time
(for fixed intensity) growth of the absorbed energy pro-
ducing the fluence-type absorption.! Similar diffusive en-
ergy growth has been extensively discussed in studies of
the kicked-rotator* or microwave ionization of the hydro-
gen atom.’

The molecular model treated by Ackerhalt et al. con-
sisted of an anharmonic oscillator coupled linearly to a
set of harmonic oscillators (so-called background modes)
and driven by the laser field. This classical model
neglects possible quantum correlations. Their influence
has been investigated in detail by Brunet et al.,® who
considered a fully quantized version of the above-
described model. The authors have found that quantum
correlations tend to prevent unlimited excitation of the
system and did not observe the diffusive energy growth in
the quantum model with two background modes. In-
terestingly, for a similar quantum model with large num-
ber of background modes, the linear (on average) ab-
sorbed energy growth has been observed by the same
group.? The dynamics of the system remained however,
regular, the origin of the linear growth being due to the
complex sharing of the absorbed energy between the
pump and background modes.
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Although the physical nature of the linear energy ab-
sorption growth in both classical' and quantum® versions
of the model is quite different, both versions lead to a
strong redistribution of the absorbed energy between
different modes. In the extreme excitation process when
the molecule becomes photodissociated, this redistribu-
tion of energy would lead to products that would have
mixed-mode character.

The other possibility, i.e., mode-selective excitation,
has also been frequently suggested.” In this picture, the
laser excites the molecule through the ladder of states be-
longing to one vibrational mode; in photodissociation the
molecule would fragment into a pattern of vibrational
states being the natural extension of the mode sequence
appropriate to the climbed ladder. This picture runs into
difficulties when one considers that anharmonicities in
the molecular potential will detune the ladder from the
laser frequency for higher excitations. Moreover, non-
linear coupling in the molecular potential will normally
produce strong mixing of different modes, which could
destroy the ladder.

These difficulties may be overcome by using for excita-
tion the special ladders of “extreme motion” states as
suggested by Hose and Taylor® for a model two-
dimensional system. These states are only weakly cou-
pled to other modes; as such they persist into high-energy
regions and are only slightly perturbed. Indeed, using the
Floquet approach, Wyatt et al.® have verified that highly
selective excitation along the ladder of so-called QI
states in the model Hénon-Heiles system may be ob-
tained. Later, Hose and Taylor argued!® that in polya-
tomic molecules the extreme motion states lead to highly
nonuniform distribution of oscillator strengths in the
high-density-of-states region in a similar way to reso-
nances in the scattering continua.

The aim of the present paper is to show that mode-
selective photoexcitation and the fluence dependence of
the absorption are not mutually exclusive as it may seem
at first. To this end, we discuss the dynamics of the

5602 © 1988 The American Physical Society



38 TIME EVOLUTION IN A DRIVEN QUANTUM SYSTEM: ...

driven Hénon-Heiles-like potential. The advantage of
this model lies in the fact that the Hénon-Heiles potential
has been extensively studied in the past and therefore an
almost complete understanding of the “molecular” dy-
namics is at hand. This provides us with an additional
insight, absent in the earlier studies of Ackerhalt et al.’
That in turn will allow us to shed some light onto the role
played by the driving field and the origin of the linear en-
ergy growth.

In Sec. II, we define and discuss the molecular model
(modified Hénon-Heiles potential) and study the proper-
ties of the energy levels. The dynamical studies, i.e., the
time dependence of the MPE process, are reported in Sec.
III. Finally, in Sec. IV the discussion of the results and
conclusions is presented.

II. HAMILTONIAN AND EIGENSPECTRUM
ANALYSIS

The quantum-mechanical Hénon-Heiles Hamiltonian
in dimensionless units (Aiw=1) is
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where A=0.08. The dissociation energy,

D=1/6\*=26.04, is much higher than in the former
study’ where A=0.118 and D=13.33. Neither in Carte-
sian (1) nor in polar (2) coordinates is this Hamiltonian
separable. According to Hose and Taylor,”® the quan-
tum condition for a state to be regular (localized) is that
the square of its overlap (the weight) with an eigenstate of
any two-dimensional separable Hamiltonian H° is larger
than 0.5. A regular state is labeled Q I (Q II) according
to the polar (Cartesian) nature of the separable Hamil-
tonian H° that meets the above condition.!° Delocalized,
chaotic states are labeled N. At low energy all of the
states of this Hamiltonian are regular (Q I, Q II, or both),
while at high energies most of them are not. In the
present case,'! there are 374 quasibound states and 250
energy levels below the dissociation energy. Of these
states, 45 are of type Q I, 28 are of type Q II, and 188 are
of type N. Eleven states are simultaneously Q I and Q II.
The classical critical energy, which marks the onset for
chaotic motion at higher energies, is E.=17.15.% Both
the quantum Hose and Taylor (HT) criterion and the
semiclassical quantization techniques'? lead to the same
conclusions as to the nature of states. In fact, the HT cri-
terion has been thought of as a quantum equivalent to the
classical Kol’ogorov-Arnold-Moser theorem.!®

An efficient means to determine the nature of quantum
states is the natural expansion analysis. Among all prod-
ucts of one-particle basis functions f(u)g(v), the so-
called natural orbitals provide the most localized repre-
sentation of a nonseparable two-dimension wave function
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in the u,v coordinates. Coordinates u,v are arbitrary and
in our case may refer to either Cartesian or polar coordi-
nates. If the variational eigenfunctions are given by

N
Y(u,v)= 3 C;fi(u)g;v), 3)

ij=1

then the natural expansion proceeds by diagonalizing the
matrices A and B

N N
Anm = 2 C:;'Cmi’ Bnm = 2 Ci:Cim . (4)

i=1 i=1

The natural orbitals for the two modes are then given by

N N
m1(u)=2fi(u)P”, n[(v)=2g,’(v)Q,’[ ’ (5)

i=1 i=1

where P and Q are the eigenvector matrices of A and B
respectively. Finally, the natural expansion of this eigen-
function is

N
Y(u,v)=3 dym(u)n;(v) . (6)
I=1

If for instance no natural weight (d,)? is larger than 0.5 in
polar coordinates, then the state can be said not to be
Q 1, irrespective of the initial f(r)g(0) basis chosen for
the analysis. For a similar analysis, we refer to a previous
study of the two-dimensional Cartesian or polar Pullen-
Edmonds Hamiltonian.!?

The square of the largest natural expansion coefficients
(referred to as weights) of the Hénon-Heiles (HH) bound
states in polar coordinates is plotted in Fig. 1(a) in the en-
ergy interval which is to be considered in the dynamical
calculation below. According to the HT criterion, only
those states whose weight exceeds 0.5 are regular Q1
states. The energy separation between successive Q1
states is nearly constant and therefore the resulting QI
ladder is a favorable route to initiate a multiphoton ab-
sorption process.>® However, although the energy spac-
ing increases, the ladder structure persists up to the dis-
sociation limit and the maximum weight gradually be-
comes smaller than 0.5. This means that along this
ladder the discrimination between regular and chaotic
states, as would result from the strict application of the
HT criterion, is somewhat arbitrary.

It is physically more realistic for polyatomic molecules
that the regular ladder merges into a quasicontinuum of
highly mode-mixed states (i.e., with small natural
coefficients in either the Cartesian or polar basis) before
dissociation occurs. In order to simulate such a
configuration we added off-diagonal random-coupling
terms to the original HH Hamiltonian. For simplicity (if
not for concreteness) we have chosen a uniform coupling
scheme €;;=€(1—3§;;), where € is a random number in
the interval [0,0.2]. Results of the natural expansion
analysis in polar coordinates are shown in Fig. 1(b). The
ladder structure is partially destroyed although some
pseudoregular states (i.e., with a weight of ~0.2 for in-
stance) project above the mode-mixed background.

We now turn to the dynamics of these two quantum
models in the presence of an external fied. The time-
dependent Hamiltonian describing the interaction with a
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monochromatic field in the semiclassical dipole approxi-
mation is

H(t)=H —uE,cos(wt) , )

where H is the HH quantum Hamiltonian in Egs. (1) and
(2), including eventually the random-coupling terms, u is
the dipole function, E, and w are laser parameters. In
this study u=x, so that only even states in y are retained.
With this restriction, there are 195 energy levels below
the dissociation energy. The first 115 energy levels are
kept for the dynamical calculation, to a maximum energy
of E=20. It is thus a pure bound-state problem since the
dissociation channel is artificially closed. As such, the re-
bound of amplitude will cause artifical interferences with
the still-climbing part of the wave packet. However, this
artifact does not affect the early time dynamics, our main
matter of concern in this study.
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FIG. 1. Natural expansion analysis: the largest natural

weight inm polar coordinates is plotted vs the eigenvalue of each
state. (a) HH Hamiltonian; (b) random off-diagonal coupling
terms added.
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Periodicity of the total Hamiltonian in Eq. (7) with
respect to time calls for use of Floquet methods to com-
pute the quantum propagator. Development and applica-
tions of Floquet theory for quantum molecular systems in
an oscillating field have been described already in much
detail (Ref. 14 and references therein) and we refer to
these earlier works instead of again presenting the
relevant equations.

III. DYNAMICAL STUDIES

A. Hénon-Heiles system

In the following dynamical studies the laser parameters
are E;=0.1 and w=1, so that the laser is nearly resonant
with the low-energy Q I ladder spacing. In Fig. 2(a) the
number of photons absorbed versus time for the driven
regular HH Hamiltonian is shown. The initial condition
is that the wave function at time zero is the molecular
ground state. About ten photons are absorbed smoothly
during the first 30 optical cycles before recurrences occur
due to the spurious interference effects mentioned above.
Indeed, the build-up of probability in level 115 reaches a
maximum after 30 optical cycles. Larger calculations in-
cluding as many as 200 and 250 levels have also been per-
formed. With 200 levels (all even y states up to the disso-
ciation limit), 13 photons are absorbed after 35 optical
cycles, while 15 photons are absorbed after 40 cycles if 50
additional states are included. These states form a discre-
tized approximation to the continuum since they lie
above the dissociation energy.

In order to understand the underlying dynamics, we
computed instantaneous transition probabilities from the
ground state to all of the molecular excited states. The
results are displayed as stick diagrams showing the tran-
sition probabilities versus the eigenvalue of the state at
various times after turning on the laser field. At time
zero, the probability for the system to be in the first (ini-
tial) state is one and zero elsewhere. For the regular HH
quantum system, two such diagrams are shown after 10
and 19 optical cycles in Fig. 3(a) and 3(b), respectively.
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)
1
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FIG. 2. Number of photons absorbed vs time. (a) HH Ham-
iltonian; (b) random off-diagonal coupling terms added.
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FIG. 3. Instantaneous transition probability stick spectra for
the driven HH Hamiltonian at two times. (a) Ten optical cycles;
(b) 19 cycles.

The wave packet quickly expands through the high-
energy region and reaches the top states after about 20
optical cycles. A close inspection shows that the larger
the natural weight of a state (i.e., the more localized the
wave function), the higher the transition probability. Im-
plications of results such as this for mode-selective
multiple-photon absorption in real systems have been de-
scribed elsewhere.”®

As noticed before and depicted in Fig. 1(a), as the ener-
gy increases there is no sudden interruption in the Q1
ladder but rather a smooth decay of the maximum
weights. It has been suggested previously in many-mode
molecules that the destruction of Q I is gradual and does
not lead immediately to NN states that are completely delo-
calized.” For systems with many degrees of freedom, the
Q states might progressively transform into Q bands as
the energy increases. These bands are groups of nonuni-
form N states that fulfill the HT criterion as a whole. As
suggested in Ref. 7, these bands would then form a ladder
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with thick rungs for multiphoton absorption. Our
analysis of the excitation process somewhat supports this
picture for the two-coupled mode HH system. However,
rather than a clustering of states projecting above the
uniform background of fully mixed-mode states, we find a
superposition of two distinct ladders that constitute two
routes concurrently followed during the excitation pro-
cess. The coupling with additional modes, if present in
more complex systems, would lead to additional ladders
whose rungs would cluster to form Q bands.

A close inspection of Fig. 1(a) shows that each of the
highest peaks is preceded by a growing number of smaller
peaks as the energy increases. The highest of these

‘secondary peaks can be viewed as forming the rungs of a

second ladder. Although states of both ladders are Q I at
low energy, the weight of the smaller peaks decay rapidly
and above E=12, they form an N ladder that coexists
with the original QI ladder. The original Q1 states
themselves fall into the N class above E=17; this is
where their largest weight becomes less than 0.5. It is
perhaps surprising that the energy spacing between the N
ladder runs is more regular than between the Q I’'s. Asa
result, the Q I ladder rungs are progressively shifted for-
ward in energy from their N ladder-rung parents as the
total energy of the system increases [see Fig. 1(a)].

A close inspection of state-to-state probabilities shows
that the initial wave packet splits while climbing the Q I
ladder so that two routes are concurrently followed in the
multiple-photon excitation process. However, because
the eigenfunctions of the N state ladder are less localized
than the original Q I states, the flow of probability along
this second path is less important. This scenario is illus-
trated in Fig. 3(b), where the largest transition probability
peaks, carried by states of the Q I ladder [compare with
Fig. 1(a)], are paired with a secondary peak carried by
neighboring states of the N ladder. Note also that a few
smaller peaks are grouped around each pair (this is par-
ticularly noticeable near E=8, 10, and 12). These are
due to surrounding N states that have a non-negligible
natural weight. As a result, there is a clustering of
several transition probability peaks close to the energy of
a dominant mode-localized state. This occurrence illus-
trates the concept of Q bands that form thick ladder
rungs for multiple-photon excitation.’

B. Random-coupling system

Adding random-coupling terms to the molecular-
Hamiltonian does not affect the absorption process dur-
ing the very first cycles, as seen in Fig. 2(b). Later, the
molecular system starts absorbing energy while still
Rabi-oscillating until saturation occurs after 300 optical
cycles. With random-coupling terms included in the
Hamiltonian, the molecular energy shows linear (on the
average) diffusive-type growth. By comparison with the
regular case, not as many photons are absorbed but more
importantly the time evolution patterns are markedly
different.

Stick spectra of time-dependent transition probabilities
are shown in Fig. 4 for optical cycles 20, 30, 157, and
168. Cycles 20 and 157 (30 and 168) correspond to local
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FIG. 4. Instantaneous transition probability stick spectra for the driven HH Hamiltonian with random-coupling terms at four
times. (a) Twenty optical cycles; (b) 30 cycles; (c) 157 cycles; (d) 168 cycles.

minima (local maxima) of the Rabi oscillations at two
different stages of the absorption process. The origin of
Rabi oscillations is clearly depicted in Figs. 4(a) and 4(b):
a large fraction of the wave packet oscillates between
states 1 and 4. These two states alternately carry most of
the probability at minima (state 1) and maxima (state 4)
of the oscillations. The wave packet remains very narrow
(in energy space) and does not expand over many excited
states as with the regular HH Hamiltonian. This breath-
ing process between state 1 and state 4 is still dominant
(yet somewhat attenuated) after 157 and 168 optical cy-
cles, as see in Figs. 4(c) and 4(d). Non-negligible transi-
tion probability is now carried by excited states and this
“leaking” of transition probability is responsible for the
gradual absorption of photons shown in Fig. 2(b). Never-
theless, the excitation of the wave packet only
significantly involves the first 60 molecular states. The
highest excited states are not reached before cycle 250
and therefore the artificial truncation of the basis set is
not felt by the system before that time. By comparing
Figs. 4(c) and 4(d) with Fig. 1(b), it is clear that states car-

rying the highest probability are the ones with the largest
natural weight. Therefore, the absorption is selective, as
in the nonrandom case.

In conclusion, the addition of random couplings to the
original HH Hamiltonian has a strong localizing effect on
the ascending wave packet that entails a delayed
multiple-photon absorption mechanism. The dynamics
can be compared to that of the rising tide; the influx and
ebb of the wave are superimposed on a much slower pro-
gressive motion that results in the gradual rise of long
ocean waves.

IV. DISCUSSION

We wish to relate this study to a former one on a
laser-driven multimode quantum model.2 In that model,
a quantum monochromatic laser field interacts with an
anharmonic molecular pump mode, which in turn is
linearly coupled to a harmonic background mode. This
background mode it itself the extremity of a chain of
three linearly coupled harmonic oscillators. The Hamil-
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FIG. 5. Total number of photons absorbed, N(¢), in a four-
degree-of-freedom molecular-quantum model and the average
degree of excitation in all molecular modes (from Ref. 2).

tonian for this four-molecular-mode system interacting
with the one-mode laser field is

3
H=moaTa —y(ata)+ S w;b]b; -i-B(a’rbl +abI)

i=1

3
+B83 (blb; 1 +b;b )

i=1

+Qcfe+e(@a+atie+ch, (8)

where aT(a), b,-T(bi ), and c¥(c) are the creation (annihila-
tion) operators for the pump, background, and field
modes, respectively. The mode frequencies are equal,
wo=0; =0=1000 cm !, the pump-mode anharmonicity
is y=1 cm™!, the molecular intermode coupling strength
is 8=0.3 cm ™!, and the laser-molecule coupling strength
is €=1.646 cm~!. The fourth and fifth terms in the
Hamiltonian are intramolecular one-quantum exchange
terms while the last term describes the interaction of the
pump mode with the quantum field. The basis set con-
sists of products of five harmonic-oscillator functions for
each of the four molecular models dressed by three field
states (5*X 3=1875 states). The total number of photons
absorbed versus time N (¢) and the average degree of exci-
tation in all molecular modes are shown in Fig. 5: N,(¢)
refers to the pump mode; N,(¢), N3(t), and N,(¢) refer to
the three background modes.

The similarity between curve N(¢) in Fig. 5 and Fig.
2(b) is striking. In both cases, N(z) executes a few Rabi
oscillations and then shows average linear energy absorp-
tion with superimposed Rabi oscillations. In the four-
model molecular case, the growth-saturation curves of
the four molecular modes yield, when added together, the
linear (on the average) total excitation curve, N(¢). The
present study shows that a similar effect (linear average
energy growth) is obtained by adding random-coupling
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terms to a two-dimensional Hamiltonian.

Perhaps more importantly, we are able to trace the na-
ture of the linear energy growth to the character of the
molecular Hamiltonian. When the important states,
along which the excitation process occurs, are dominant-
ly regular (and highly localized) the absorption process is
coherent and the excitation proceeds along a highly selec-
tive ladder, as already found earlier.’ The addition of
random-coupling terms does not increase the average
density of states but leads to a more highly mode-mixed
Hamiltonian with a much less pronounced and more
delocalized ladder. According to the HT (Ref. 10) cri-
terion, the states of this Hamiltonian are mostly of the N
type (chaotic) in the high-energy region. In this case a
linear absorbed energy growth is observed. We have thus
traced the liner, seemingly diffusive, energy growth to the
chaotic nature of the molecular system alone. The exter-
nal laser field, although strong, probes only this molecu-
lar chaos, indicating it by means of the linear energy
growth.

This conclusion was reached due to our detailed
analysis of the molecular part of the Hamiltonian. It
would be interesting to see whether a similar analysis per-
formed for the other common model of multiphoton exci-
tation"2® leads to a similar conclusion.

Lastly, let us correlate this work with other studies of
similar linear energy growth, such as investigations of the
dynamics of the kicked rotor* or the microwave ioniza-
tion of the hydrogen atom.® The latter systems are pro-
foundly different from the one discussed here, since the
molecular (atomic), time-independent part of the Hamil-
tonian is integrable and fully regular in the quantum case.
The origin of the classical chaotic behavior is in these
systems entirely due to the coupling with the external
driving field. Quantum mechanically, the kicked rotor
behaves in the regular way; the diffusive energy growth is
suppressed due to the analog of Anderson localiza-
tion.'>!¢ In our study, the laser frequency is rather high
(it is resonant with the first allowed transition in the low-
density-of-states region) and indeed the wave packet in
the “random-coupling case” remains localized. The
packet stays mostly on a few Q states and leaks amplitude
up the energy ladder. One would have imagined from the
analogy to classical diffusive energy growth that the
center of the packet, which spreads in time over more
and more states, moves itself up in energy. In this sense
we observe a “quantum limitation.” In the pure Hénon-
Heiles potential, the partial delocalization of the
wavepacket is perfectly regular and is related to a typical
ladder climbing pattern and not related to chaotic behav-
ior.
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