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Nonlinear variations affecting the widths and positions of laser-induced resonances in the
molecular-dissociation process are discussed as a function of the electromagnetic field intensity. It
is shown how the close-coupled equations of quantum scattering theory, taking into account multi-
photon absorption and emission processes through the time-independent Floquet Hamiltonian, go
beyond the widely used weak-field Fermi golden rule approximation. For the intermediate-field re-
gime adiabatic electron-field channels can, in some cases, serve as a guide for the interpretation of
nonlinearities, while for higher laser intensities very large field-induced mixings between molecular
states predominate, requiring the introduction of an increasing number of Floquet blocks for con-
verged calculations. The formalism is applied to the photodissociation of H,*(1sg,, v=0,
J=1-2po,). Nonlinear effects appear for intensities larger than 10'"' W/cm?, for which experi-
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ments begin to be available.

I. INTRODUCTION

Nonlinear effects predominate in atomic and molecular
systems subjected to strong radiation fields.! Essential al-
terations in configurational and dynamical properties
affecting optical spectra are expected for field intensities
above 10'' W/cm?. These intensities are nowadays
achievable with the advent of powerful lasers and lead to
an increasing interest, both experimental and theoretical,
in problems of photodissociation.

For low fields, perturbative treatments involve applica-
tion of Fermi’s golden rule to a bound-to-continuum
transition for the photon absorption which is described
by the traditional Franck-Condon principle.” At higher
intensities a proper theoretical description should, how-
ever, be of nonperturbative nature with respect to the ra-
diative interaction. A model which is widely used is that
of the dressed molecule or electronic field surfaces® analo-
gous to that of dressed atomic states.*

A direct consequence of such an approach is the pre-
diction of laser-induced resonances which, of course, can-
not be described by usual perturbation techniques.’ The
concept of resonance arises either when direct photodis-
sociation is visualized as the analogue of predissociation
as is emphasized by Bandrauk® or when the formalism of
complex quasivibrational energy is used, based on the
generalization of Floquet theory’ to include the complete
set of continuum as well as bound vibronic states as dis-
cussed by Chu.! These multiphoton situations involve
discrete states embedded in continua. A convenient way
to treat such problems is to solve the coupled equations
of quantum scattering theory based on molecule-plus-
field channels involving different photon numbers. They
have recently been used within a time-dependent version
of the artificial channel technique for calculating multi-
photon dissociation cross sections including intense field
situations.’®>® In the present work, it is a time-
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independent framework which is retained and we study
the gradual changes occurring in the field-induced widths
and shifts of the vibronic levels when the light intensity
increases.

In Sec. II, different theoretical approaches are re-
viewed, bridging the weak- to strong-intensity limits. A
detailed description of the close-coupled-equation ap-
proach is given using the analytically continuated
molecule-plus-field Hamiltonian. A simple case, namely,
the photodissociation of H, ", serves as an illustration in
Sec. III. Nonlinear field-induced effects are discussed
over a range of wavelengths for which dissociation cross
sections take important values. Finally, Sec. IV suggests
an interpretation of some recent experiments on H,"
(Ref. 10) showing large nonlinear effects in the wings of
the dissociation line shapes. Experimental studies of mul-
tiphoton processes in H,, leading both to photoionization
and photodissociation, are actively pursued in several
groups'®!! and have been our main motivation. With
respect to the pioneer calculation of Chu,® the present
work is a systematic study of nonlinear intensity depen-
dence of the photodissociation lifetimes, within an
efficient and flexible formalism which allows the use of
numerical as well as analytical potential surfaces and
coupling terms. Relation with similar studies of strong-
field photoionization is outlined.

II. THEORY

Let us first recall the usual perturbative expression for
the weak-field photodissociation cross sections. We con-
sider a molecule (diatomic in this paper) undergoing
direct photodissociation and assume that only two elec-
tronic states are involved in the process: a bound initial
electronic state g and an electronically excited dissocia-
tive state d. In addition, we neglect any change in the ro-
tation quantum number due to the interaction with ‘the
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field (J-conserving approximation).

In the zeroth order Born-Oppenheimer approximation,
the wave functions for the “bare” molecule (without
external field) can be written

VO(r, R)=¢,(r,R)X?(R), a=g ord (1)

i.e., as products of an electronic part ¥, and a nuclear
part x¥'%, r and R being the electronic and nuclear radial
coordinates, respectively. The y'°”s are solutions of the
field-free nuclear Schrodinger equations

[T+ VL (R)—EQ, ¥, (R)=0 (2)

where Ty and V, (a=g or d) are the nuclear kinetic en-
ergy operator and the adiabatic potential energies. For
the initial state (a=g), V,(R) has an attractive bound
part [see Fig. 1(a)] and )(“”(R) is square integrable,
whereas for the excited state (a=d), V;(R) is repulsive
and Y% (R) is a continuum wave function which is taken
to be energy normalized,

(XPER)IXPEAR)) g =8(E—E") . A3)

An external electromagnetic field couples the two states g
and d via the interaction V;,(R) which, in the dipolar
approximation, is ug,(R)-6 with & the electric field am-
plitude and pg;(R) the electronic transition dipole mo-
ment

Bea(R)= {1 (r,R)|u(r,R)|¢,(r,R)), , )

u(r,R) being the dipole moment operator. The total
Hamiltonian for the molecule-plus-radiation field is taken
in the following as

H=HQ+H_ 4+V,, . (5)

H_,, is the free-radiation field part and H is an approx-
imate molecular Hamiltonian having as exact eigenfunc-
tions the Born-Oppenheimer products listed in Eq. (1).
The intramolecular coupling (nonadiabatic interactions)
independent of the field strength thus irrelevant for our
dlscusswn, is omitted. To specify the basis set associated
with H§o+ H,,4 we need to consider the relevant photon
elgenstates In the usual situation of weak photon fields
only the zero-photon state |vac) and one-photon states
|k,e), where k is the wave number associated with a pho-
ton of energy fikc and e its polarization vector are con-
sidered. The eigenstates of H{Q)+H ,, involved in the
description of photodissociation are then ¢,(r,
R )X(O’(R)Ik e) with energy EJ)+#ikc and 4,(r,
R)YP%(R)|vac) with energy E.

The photodissociation cross section from the initial
Xy) to the final Y state due to the absorption of one
photon (k,e) of frequency  is proportional to'?

0 (E) o [{X O (R);k,e| T(E) X PE(R))?, 6)
where T (E) is the transition operator
T(E)=V,+ Vi, GJ (E)Vp,
+ VG (EW G (EVW i+ -+ (7
and G (E) the resolvent operator: G (E)=lim,  E
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—H—H,_,+ie)"'. In Egs. (6) and (7) E corresponds
to the total energy which, by energy conservation, is
E=E{%)+#o. The formal expression (6) is mainly used
in the so-called first-order Born approximation where
only the first term in Eq. (7) is retained leading to

)=(4770 /¢)| X Q) (R) | pgg (R X (R |2, EO 40
(8)
which is known as the Fermi golden rule expression. A
further approximation results from neglecting the (usual-
ly) slow dependence of u,; on R over the spatial exten-
sion of X(O)(R) This leads to the Condon approximation
in which the dissociation cross section is proportional to
the square of the overlap integral between the initial and
final states and gives a convenient way for the practical
calculation of cross sections. It is important to note that
the first-order expression (8) is independent of the field in-
tensity I =(eqc /2)| 62, since both the first-order dissocia-
tion rate and the photon flux are proportional to I. We
will see below that the cross section becomes intensity
dependent at stronger field strengths due to the nonlinear
behavior of the dissociation rate.

Questions which are now addressed are the following.

(i) At which field strengths are the previous first-order
perturbation model in breakdown?

(ii) How can we go beyond the golden rule expression
[Eq. (8)] for describing photodissociation probabilities in
intense radiation fields?

We distinguish below two different ranges of field in-
tensities: at intermediate values, only one photon pro-
cesses have still to be considered, but beyond the first-
order perturbation framework [Fig. 1(b)]. At higher in-
tensities multiphoton processes become important [Fig.

1(0)].

N
V4 )
hv V. §|g n-I>
; .
Nd.n-2>
(a) (b) (c)
FIG. 1. Schematic representation of the photodissociation

process involving a bound (g) and a dissociative (d) electronic
state. The arrows represent the radiative couplings. (a) Usual
weak-field representation (solid curves). The dashed curve
represents the dressed potential curve of the g state. (b) Two-
channel representation of the process, adequate for the
intermediate-field case (region II of Fig. 2). (c) Multichannel
representation for the strong-field case (region III of Fig. 2).
Each’ pair of crossing curves represents one Floquet block, radi-
atively coupled to the two adjacent ones.
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A rough estimation of field strengths inducing notice-
able nonlinear effects prior to the introduction of multi-
photon processes can be obtained by considering higher-
order terms in the Born expansion of the transition
operator [Eq. (7)]. The second term V,,,G¢ (E)V;,, does
not contribute to the dissociation cross section (it rather
represents the leading term for the resonant Raman pho-
ton scattering from the continuum). The ratio between
the matrix elements of the third and the first terms can be
given a simple approximate expression,'2

(0). + 140 .
_ <Xg,v’k’e|VimGo VintGo int|Xd,E’VaC)
(0).

<Xg u’k el th'Xd E’Vac)

k2 A
=3 [dkl(xO)k,el Vi [Xksvac) 2, )

where an average is carried out on all polarizations and k
directions. For typical molecular parameters, taking A of
the order of 1500 A and p,y~1 Dy, we obtain p~10~*
for an electric field intensity of the order of 10'°
W/cm™ 2. The first-order perturbation approximation
seems thus very good up to this intensity in this region of
wavelength. It has already been shown>®»° that above
this limit, the photodissociation probability can not be
discussed in terms of unperturbed (diabatic) Franck-
Condon factors, based on the usual golden rule approxi-
mation.

An alternative and more efficient approach is to treat
the total system (molecule and photons) as a whole,
which leads to the representation

¥,(r,R)=1,(r,R)X,,(R)|k,e)+1,(r,R)x4 g(R)|vac) ,
(10)

where the R-dependent x’s are now unknown functions.
We observe that this gives rise to a mixture of molecular
dressed states'® widely used in the description of molecu-
lar radiative collisions.!*!* Introduction of ¢, into the
Schrodinger equation,

Hy,=E,Y, , (11

premultiplication by all known functions and integration
over the corresponding variables (electronic and field)
lead to the well-known close-coupled equations of which
the yx’s are solutions,

[T+ V,(R)+io—E, W, (R)+ Vi (R)X g o (R)=
(12a)

[Tr+ V4 (R)—E,Ixq p(R)+ Vi (R)Xg ,(R)=0.  (12b)

Note that if the coupling between the molecule and the
field is ignored, the equations are decoupled and the x’s
are nothing but the vibrational functions x'°”’s which are
used in building the Born-Oppenheimer products [Eq.
m].

One has therefore the situation of bound states |g,v )
of V,(R) embedded i in the continuum of V,;(R); the ana-
log of predissociation.® The dressed vibrational levels ac-
quire a field-dependent width in addition to their shift
and may be viewed as field-induced Feshbach resonances.
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A definition of resonances which can unambiguously
be extended to strong-field situations is the one which is
associated to complex energy valued Siegert states.'®
These states are quantized solutions of Egs. (12), regular
at the origin (R =0), and behaving as purely outgoing
waves for large R. This asymptotic behavior can only be
achieved for complex values of energy,

E=E,—i(T'/2), (13)

where E, and T (I" >0) are the resonance position and
width. This definition is equivalent to the search for
complex energy poles of the Green function of the system
or those of the scattering matrix.!” In the case of isolated
resonances (a situation which holds for weak fields) they
are obtained as solutions of the implicit equation

E—(E{Q)+#0)—F(E)+im|{x | Vi IX £ *=0, (14)

where

< (0) Vm (0) )2
F(E)=?de’| Xg. lE_‘IL,X, | (15)

is the energy shift, ? indicating Cauchy’s principal part
integration.

Furthermore, when the implicit energy dependence of
Eq. (14) is neglected, the width, given by twice the imagi-
nary part of its solution

I" ~27‘<X(0)|thlx(0) >|2 (16)

=E{0)+#w ’
is proportional to the photodissociation cross section [Eq.
(8)] at the same order of matter-field interaction.

Let us finally mention a decoupling approximation'® of
the two coupled equations (12), in which the electronic-
plus-field-Hamiltonian is diagonalized, leading to new
laser-induced adiabatic electronic states.>®"!° They ap-
pear as tunneling or shape resonances (rather than as
Feshbach resonances) and their width is calculated via
direct integration of the one-dimensional Schrodinger
equation with appropriate boundary conditions. This ap-
proximation is valid as far as the quasibound levels which
are considered, supported by the lower adiabatic poten-
tial, are far from the ones supported by the higher adia-
batic potential, a situation which occurs for intermedi-
ate-field strengths.

As far as the dressed-molecule picture taking into ac-
count only zero- and one-photon states is valid, the previ-
ous methods appear to be useful tools for investigating
the dissociation probability beyond the golden rule limit
at several levels of sophistication: large energy depen-
dence of the discrete to continuum coupling, nonlinear
effects, overlap between neighboring quasibound states.
In strong photon fields, however, the situation is much
more complicated due to the occurence of cascades of
absorption-emission processes. A set of dressed channels
corresponding to different photon numbers has to be
defined which leads to the time-dependent Floquet Ham-
iltonian. Starting from a semiclassical time-dependent
Hamiltonian in the dipole approximation for the matter-
radiation coupling, a Fourier expansion of the
Schrodinger equation leads to a matrix eigenvalue equa-
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tion for the so-called quasienergy states?’
Hg(R)x(R)=Ex(R) , 1n

where Hp is an infinite matrix with elements identified by
two indices (a,n), the first one for the electronic states
and the second one for the photon states. Its matrix ele-
ments have the form

(HE) gnpm =[Tr +Vo(R)+n#018,48,,,,

+Vint(R)S, py—p +1(1—8,p) (@a=g ord).
(18)

The resulting close-coupled equations, after integration
over field variables, can be given a compact form which is
a generalized version of Egs. (12),

[Tg +V(R)+(n+1Yio—Elx, ,+(R)

V(R Xan (R)+Xa nsa(R)I=0,  (192)
[TR + Vd(R)+nﬁ(L)"E]Xd’,,(R)
+ Vi (R)Xg -1 (R)+Xgm +1(R)I=0,  (19b)

where each electron-field channel function is labeled by a
pair of indices [g or d for the electronic part together
with the specification of the photon number n; see Fig.
1(c)]. Note that the index v specifying the particular
solution of Egs. (12) has been dropped for the sake of sim-
plicity. In contrast with the field-free situation there is
no discrete spectrum on the real energy axis. The com-
plex energy poles of the resolvent operator (z —H )~ !are
related to the positions and widths of the shifted and
broadened quasienergy states. More precisely, Feshbach
resonances arising in two-channel situations when the
photodissociation by moderate fields is pictured as a
predissociation are now replaced by the quasienergy
states of the Floquet theorem.?! The photodissociation
probability is linked to the transition rates from rovibra-
tional bound states (in the absence of the field) in one
electronic state to the dissociation continuum of the oth-
er electronic state. As is pointed out by Chu® the
quasienergy eigenvalues of Hy have an imaginary part
which is directly related to photodissociation rates. They
are obtained by solving the coupled equations (19) for the
multiphoton process, subject to Siegert-type boundary
conditions. A well documented technique in this context
is the analytic continuation of the Hamiltonian by the
complex rotation of the coordinate which will be briefly
described in Sec. III. It has already been shown in vari-
ous situations that this technique allows one to treat the
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wave function of the quasienergy resonance like that of a
bound state with vanishing asymptotic behavior.?> The
number of Floquet blocks to be retained and the way to
select them depend on the field strength, the wavelength,
and on the accuracy which is looked for. Specific exam-
ples are given in Sec. III to illustrate these points.

It is noteworthy to observe that the dressed-channel
approach, leading to a set of time-independent close-
coupled equations, is also used to describe ionization pro-
cesses in strong laser fields.2*~2° These collisional treat-
ments of laser-induced atomic or molecular processes ap-
pear to be most fruitful to go beyond perturbation theory
when continua (electronic or nuclear) are involved.

III. APPLICATION TO H,* PHOTODISSOCIATION

The basic features of the theory developed so far are il-
lustrated in the example case of the photodissociation of
H," submitted to electromagnetic interactions with
strengths bridging the weak- and strong-field limits. The
two electronic states under consideration are the ground
(1so,) 2+ and the excited dissociative (2po, )'Z} states
They w111 be represented by Morse-type potentials,?®

V,(R)=D,{exp[ —2B(R —R,)]
—2t,exp[—B(R—R,)]} (a=g ord)

(20)
where t, and ¢, are, respectively, positive and negative in
Eq. (20) in order to represent bound or repulsive molecu-
lar force fields. As for the transition dipole moment, the
Bunkin-Tugov form is taken?®

ugd(R)=y+}E7{l—exp[—By(R—Re)]} ) 1)

Table I lists all the parameters needed in Egs. (20) and
(21) as extracted from Ref. 8. The resulting form for the
interaction term is then

Vit (R)=1.17X1073VT p 4 (R)

with ¥, incm ™!, I in W/cm?, and Hgq in atomic units.
The calculations are performed using a multichannel
quantization procedure based on the Siegert asymptotic
conditions. When the interfragment coordinate R is ro-
tated in the complex plane (R — Re’%) the wave function
of a resonant state becomes vanishingly small at large R.
Standard techniques used for the calculation of bound
states can thus be used for resonances as they satisfy the
same asymptotic conditions when analytically continued
in the complex R plane. Two independent wave func-
tions are propagated outwards and inwards starting from

TABLE 1. Molecular parameters used for the H," calculations.
Potential Dy (cm™Y) Blag") R.(aqy) t
V,(R) 22522.852 0.72 2.0 1.0
V4(R) 22522.852 0.72 2.0 —1.11
Transition dipole moment puleaqy) u'e) y
Mgy(R) 1.07 0.396 —0.055
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the origin and from large interfragment distance on a
complex integration path. The starting amplitudes of
these solutions are taken to be zero and a comPlex coor-
dinate version of the Fox-Goodwin integrator?’ is used.
The matching of the functions and of their first deriva-
tives at some intermediate point can only be achieved for
complex quantized energies corresponding to the posi-
tions and widths of resonances. The dependence of the
energy versus the rotation angle 0 is (for a wide ampli-
tude of variation for ) only due to possible inaccuracies
in the integration algorithm. In particular there is no
counterpart, in this direct calculation, to the so-called 6
trajectories associated to variational methods which use
square integrable basis set expansions to represent the an-
alytic continuation of resonance wave functions.! An ad-
vantage of the present method is to allow use of numeri-
cal representation of molecular potentials and in-
tramolecular couplings. Analytical forms are adopted
here in order to compare our calculations with the varia-
tional ones,® but the so-called exterior-scaling technique,
initially suggested by Simons,?® allows to use numerical
potentials in the internal region: the complex scaling is
performed only beyond a certain critical radius, leading
to an asymptotically convergent wave function in the
external zone.

The weak-field regime corresponds to a linear behavior
of the linewidth " versus the intensity. Such a behavior
is also to be expected for the field-induced energy shift
AE. Figure 2 displays the values obtained for I' /I and
AE /I as a function of the intensity I over a range of
wavelengths for which absorption is substantial. Lineari-
ty within three figures accuracy is obtained from a calcu-
lation including only one Floquet block (two dressed
channels) as long as the intensity does not exceed =~ 10!
W/cm? to I~10' W/cm? (region I in Fig. 2). This cor-
responds, precisely, to the region where Fermi’s golden
rule is valid and lowest-order perturbative techniques
such as Franck-Condon-type calculations®® can be suc-
cessfully carried out. We have also performed a series of
calculations to reproduce the photodissociation
lineshapes of H," from the (Iso,v=0,J=1) and
(Isog,v=1,J=1) !evels for a laser wavelength varying
from 600 to 2400 A. The results generated by using a
propagation grid of 4000 points and an exterior scaling
rotation angle 8=0.5 rad are shown in Figs. 3 and 4.
Their convergency against 6 and other integration pa-
rameters is checked within five to six figures accuracy.
For the field strength corresponding to Chu’s calcula-
tions,® the agreement between the two sets of results is
very satisfactory. The same type of agreement is ob-
served when comparing to Dunn’s?’ first-order perturba-
tion results, the discrepancies in the long-wavelength part
reflecting the difference of potentials and dipole moment
used, as it has been checked numerically. Some charac-
teristics of the energy shift considered as a function of the
laser wavelength can be explained by referring to the
photodissociation line shape. For wavelengths larger
than the one corresponding to the maximum of the ab-
sorption (A, ~ 1150 A), the negative contribution to the
first-order energy-shift integral [Eq. (15)], calculated at
E=EJ)+%#o, prevails over the positive one and AE is
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FIG. 2. Reduced ac Stark width (I"/I') and shift (AE /I) of
the laser-induced resonance H,* (1so,,v=0,J=1) level, as a
function of the laser intensity and frequency.

negative. The reverse situation is valid for wavelengths
shorter than A, (the dissociation continuum pushes
down the discrete level). The absolute value decreases as
the wavelength deviates from A,,. An exception to this
behavior is observed for A=1200 A, which is very close
to A, This corresponds to a Franck-Condon map
[numerator of Eq. (15)] almost symmetrical with respect
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FIG. 3. Line shape for the photodissociation process of the
(v=0,J=1) level of H," ground state, for different laser inten-
sities.
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FIG. 4. Line shape for the photodissociation process of the

(v=1,J=1) level of H," ground state, for different laser inten-
sities.
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to EJ9) leading to a near cancellation between the positive
and negative contributions to the integral.

The nonlinear behavior of I and AE begins for intensi-
ties of about 10'! W/cm?, as is clear from Fig. 2. There is
an intermediate-field region, roughly extending from
I=10" W/cm? to I ~10" W/cm? (region II in Fig. 2),
where convergency is achieved within a single-photon
description (one Floquet block), i.e., by two-channel non-
perturbative calculations which already contain off-the-
energy-shell contributions as well as neighboring reso-
nance overlaps. Note that this intermediate field regime
corresponds to electronic Rabi frequencies o=#"'V,,, of
the same order of magnitude as the lowest vibrational fre-
quencies of H," (w,~2000 cm ™). Several points may be
noticed.

(i) The range of validity of Fermi’s golden rule is en-
larged at longer wavelengths (i.e., smaller values of k), in
agreement with Eq. (9).

(i) The ratios " /I depart largely from constant values
as the field strength increases. They are either increasing
or decreasing depending on the wavelength. An interpre-
tation of this behavior is presented in the Appendix. The
nonlinearity is discussed both in terms of the energy
dependence of the interstate Franck-Condon couplings
including off-the-energy-shell effects on I'’s and the over-
lapping between neighboring resonances. Another ap-
proach is based on the decoupling approximation of the
adiabatic electronic field channels which leads to the in-
terpretation of enhanced values for I'’s as compared to
the golden rule formula. For intermediate fields, one
adiabatic-channel calculation gives nonlinear effects of
the same order of magnitude as two diabatic-channel cal-
culations, as it is shown on Fig. 5 for two wavelengths.
Better agreement is reached at large wavelengths for
which the adiabatic decoupling approximation is more
valid (crossing beyond the right turning point, leading to
a smooth upper adiabatic curve).

(ii) The ratios AE /I also show large changes as com-
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FIG. 5. Comparison between one-adiabatic-channel (dashed
curves) and two-diabatic-channel (solid curves) calculations of
the ac Stark shift and width of the H," (1so,, v=0, J=1) reso-
nance, for two laser wavelengths. For intensities above 10'*
W/cm? converged calculations would require more than one
Floquet block.

pared to their constant weak-field values. Their interpre-
tation is closely related to the modification of the line
shape which is slightly blue shifted in the intermediate
field region II, such that the maximum of the absorption
is now closer to A=1000 A than to A=1200 A corre-
spondlng to the maximum in the weak-field reglme This
results in |AE|/I decreasing for A =1000 A and increas-
ing for A=1200 A. For all other wavelengths E (2,) is fac-
ing a flattening Franck-Condon map which, according to
(Eq. (15), yields a decreasing behavior of |AE | /1.

At higher-field intensities (1> 10'* W/cm?), several
Floquet blocks must be taken into account in the mul-
tichannel quantization procedure, in order to reach con-
vergency [see Fig. 1(c)]. They describe all the relevant
processes involving different photon numbers, as long as
one restricts the electronic states of H,* to the two first
ones (see the discussion below), and are simulataneously
and self-consistently introduced in Eqgs. (19). A careful
optimization study is carried out for the determination of
the most efficient blocks to fasten convergency. At some
wavelengths, in particular A=1000 A, we find that the in-
clusion of an upper Floquet block, which introduces two
closed channels for the corresponding energy, has a
larger effect than the lower Floquet block which adds two
open channels. For field strengths up to 10'* W/cm? four
Floquet blocks yield converged results within three to
four figure accuracy for I' and AE. The effect of these
additional Floquet blocks is depicted on Fig. 6 for two
wavelengths (1000 and 1600 A) and calls for two com-
ments.

(i) Multiblock effects induce larger changes in the shifts
than in the widths [compare Figs. 6(a) and 6(b)], in accor-
dance with the larger sensitivity of the shift to nonlinear
effects already noted in the intermediate regime.

(ii) Shorter wavelengths, i.e., more energetic photons,
increase the energy gaps between successive Floquet
blocks involved in Eq. (21) and Fig. 1(c), with the conse-
quence that only for larger field strengths the additional
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FIG. 6. Multiblock effects on the ac Stark width and shift at
strong laser intensities. I';, and AE,. correspond to two-
channel calculations, I' and AE to fully converged calculations
(including up to five Floquet blocks), for the case of the H,*
(1s0,,0=0,J=1) level.
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blocks induce non-negligible effects.

A further visualization of strong-field effects is ob-
tained by comparing line shapes from a given H," level
for increasing field strength. Figures 3 and 4 display a
few of them, corresponding to the ( Iso,, v=0,J=1) and
(Isog,v=1,J=1) levels. The bulk of the cross section is
shifted towards shorter wavelengths at higher fields, as
already noted by Chu.® At very large intensities (I > 10
W/cm?), the line shape tends to flatten as it can be de-
duced from the almost common value of I' /I obtained
for different wavelengths in Fig. 2. Actually the accurate
localization of the resonances within a multichannel
quantization procedure involving more and more Floquet
blocks becomes a challenging numerical problem.
Another point to be noted is that higher excited electron-
ic states of H,", in particular the (2s0,) and (3do,)’S/
states which may be reached by one-photon absorption
(with A < 1200 A) from the (2po, )*S] state, could play a
role in the multiphoton prdcesses at strong intensities.
The corresponding dipole moments are smaller than for
the (2po, )«—(1s0,) transition but not negligible.’® In-
clusion of these new channels in our closed-coupled sys-
tem is straightforward but will of course increase the
computational effort. Another possible extension of the
present calculations is to take into account the change of
molecular rotation quantum number due to the radiative
interaction.!> These effects will be discussed in a further

publication in relation with a systematic experimental
study.
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As a conclusion at the present stage of the calculations,
we note that the behavior of the dissociation probability
with increasing field intensity is more diversified than in
the case of atomic photoionization, where the ionization
cross section generally saturates®>*! (except for local
enhancement due to the proximity of intermediate reso-
nances). This results from the Franck-Condon map
which leads to an additional complexity in photodissocia-

tion and molecular photoionization, as compared to the
atomic case.

IV. DISCUSSION OF PRELIMINARY
EXPERIMENTAL DATA

The photodissociation process of H," in a strong laser
field has recently been observed in a multiphoton experi-
ment on the hydrogen molecule:!'® H,™ ground-state ions
are formed by absorption of five photons, enhanced by a
four-photon intermediate resonance on a given level of
the E 'S Rydberg state of H, (see Fig. 7). Absorption
of one more photon (at least) leads to dissociation along
the (2po, ) repulsive state.

Time-of-flight measurements yield the ratio of H* and
H," ions produced, from which the photodissociation
cross sections of H," in the first vibrational levels of the
ground state are deduced (other sources of H" ions, eg.,
two-photon ionization of H atoms resulting from the dis-
sociation of the neutral molecule, are ruled out from the
analysis of simultaneous measurements of the photoelec-
tron spectrum). The values obtained for the laser intensi-
ty I~10'"" W/cm? disagree with the theoretical ones cal-
culated using the golden rule approximation.?’

The preliminary measurements (a by-product of an ex-
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FIG. 7. Schematic energy diagram for H, (dashed lines) and
H,* (solid lines) potential curves involved in the multiphoton
experiment of Ref. 10. Also are shown the two first 2, " excit-
ed states of H,*, not included in the present calculations.
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periment essentially devoted to resonant multiphoton
ionization studies) correspond to the far wings (A > 3800
A) of the absorption bands, way out of the wavelength
scale of Figs. 3 or 4. In this energy range the photodisso-
ciation process is so weak that the absolute cross sections
are extremely difficult to measure, and also to calculate
precisely due to uncertainties in the molecular potentials
and dipole moments at large distances. We have per-
formed a test calculation of the intensity dependence of
the dissociation width of the H,* (v =3,J=1) level, for
the experimental wavelength A=3804 A. For snmp11c1ty
we have used the analytical molecular data presented in
Table I, with up to three Floquet blocks in the coupled-
equation system. Figure 8 shows that the nonlinear be-
havior of the dissociation width begins in the intensity
range of the experiment, and could explain the discrepan-
cy between the experimental values of the cross section
and the values calculated within the golden rule approxi-
mation. This indication has to be confirmed in more
favorable experimental conditions. A two-color experi-
ment on H, is presently in progress using more energetic
photons (shorter wavelength) for the H,* dissociation
step.’? A systematic experimental study of the strong-
field photodissociation of H,* will then be possible and
will allow a significant comparison with theoretical re-
sults.

APPENDIX

This appendix is devoted to a detailed discussion of
field-induced nonlinearities affecting resonance widths in
|

E—E, —F, , (E)+irT, , (E)

det|  —F,,(E)+ial,,(E)  E-E,

The definitions for F and I'’s are the generalization of
Egs. 15 and 16, respectively,

—v, U2

_ , E'VE
F,, (E)=P [dE S5 (A2)
T, (E)=VgVg, (A3)

with ¥ a notation for {xy)|Vin [ x ) and the overbar
designating the complex conjugate.
For A=1200 and 1400 A E, hes in a region very close

to the maximum of the v, —0 absorption line shape
which also corresponds to the minimum of the v, =1 line
shape. V2 is large and V. is approximately zero for
E=E,,l and their energy dependences are symmetrical
with respect to E,. The nondiagonal terms of Eq. (A1)
can thus be neglected and the nonlinear behavior of T /I
is to be discussed only in terms of the energy dependence
of V2 through the first element of the matrix displayed in
Eq. (A1), which is nothing but the implicit equation (14).
The lowest-order imaginary part of this equation has al-
ready been calculated in Eq. (16) and gives the linear con-

5593

N/1(cm/W)

1 1 1
10'° 10" 102

](W/cmz)

FIG. 8. Variation of the reduced width I'/I of the H,*
(Isog, v=3,J —l) level with the laser intensity for the wave-
length A=13804 A used in Ref. 10. The star indicates the experi-
mental value.

the intermediate-intensity region II of Fig. 2. The argu-
ment is based on configuration interaction between neigh-
boring resonances and the adiabatic-decoupling approxi-
mation valid for intermediate field strengths and for some
wavelengths.

The starting point is the generalization of Fano’s impli-
cit equation [Eq. (14)] in a case where only two field-free
vibrational levels v, =0 and v, =1 of the (150, ) state are
retained. Their interference leads to an implicit matrix
equation to be solved with a complex energy as unknown,

~F, , (E)+inT, , (E)
F, ,(E)+ixT, ,
272 272

(E) =0. (A1)

tribution as a function of I. A second-order approxima-
tion proceeds by the evaluation of |V2|? at an energy
E=E,+AE; AE being the energy shift resulting from
the lowest-order calculation. If E; lies on the left (right)
side of the maximum of the v =0 absorption line shape
AE is negative (positive) such that the lowest-order ener-
gy is now pushed down (up) and the absorption cross sec-
tion decreases as is clear from Fig. 2. An additional
second-order effect is obtained when the iterative calcula-
tion of Fy,(E) is performed using the first-order complex
energy of the resonance. This gives rise to a negative
imaginary part,

—?f . VRIPT o Eg)
(Eo+AE *mT3(E,)

which also contributes to the width. The overall result is
a decrease of I' /I as the intensity I increases, at least in
this intermediate regime II, for these wavelengths. Such
a behavior is in conformity with the so-called resonance
narrowing discussed by Mies and Krauss.»

For A>1600 A, E, lies in the wing of the absorption
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line shape where IVEOI is of the same order of magnitude
as |V}|. In addition there is no symmetrical behavior of
Vg and Vg with respect to E=E, . The nondiagonal

terms of Eq. (A1) can not be neglected and the nonlinear
behavior of I results both from the energy dependence of
V2 and V} and the neighboring resonance overlap and
the preceding discussion in terms of Eq. (14) alone is no
more valid. But, as the diabatic dressed curves cross
each other at large energies (several thousands of wave
numbers above v; =0) and on the right of the classical
turning point of v, =0 (analogue to a ¢ * predissociation
case) the decoupling approximation in an adiabatic
(avoided crossing) description of electronic field channels
becomes reasonably valid as I increases. This results
from the fact that the first tunneling resonances support-
ed by the lower adiabatic channel are far from the Fesh-
bach resonances of the higher adiabatic potential. As the
intensity increases the shape of the tunnel is modified: its
length and height are decreased leading to an increasing
nonlinear behavior of I'/I. It is clear that for field
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strengths above some critical value the tunneling reso-
nance will be a real shape resonance located above the
barrier, with a very large width which will not reflect the
linear behavior resulting from the smallness of the
Franczk-Condon factor times a large coupling term
‘Vint| .

Finally, A=1000 A corresponds to a situation where
Vg and V} are not symmetrical with respect to E,, they
have both important amplitudes as the dressed channels
cross on the left of the equilibrium distance resulting into
v;=0 and v, =1 states well embedded in the continuum.
We are, as previously, facing a situation of resonance
overlapping, with a questionable validity of the adiabatic
decoupling approximation in this analogue of a ¢~ case
of predissociation. The preceding interpretation cannot
be referred to, but we just observe an increasing nonlinear
behavior of I" /I as previously. The observed blue shift of
the line shapes when going from weak- to strong-field re-
gimes (Figs. 3 and 4) is just a consequence of the variation
of the resonance widths discussed in this appendix.

IM. H. Mittleman, Introduction to the Theory of Laser-Atom In-
teractions (Plenum, New York, 1982).

2K. E. Holdy, L. C. Klotz, and K. R. Wilson, J. Chem. Phys. 52,
4588 (1970).

3(a) T. F. George, I. H. Zimmerman, J. M. Yuan, J. R. Laing,
and P. L. DeVries, Acc. Chem. Res. 10, 449 (1977); (b) A. M.
Lau and C. K. Rhodes, Phys. Rev. A 16, 2392 (1977).

4C. Cohen-Tannoudji and S. Reynaud, J. Phys. B 10, 345 (1977).

5(a) T. F. George, J. Phys. Chem. 86, 10 (1982); (b) A. D. Ban-
drauk and G. Turcotte, J. Phys. Chem. 87, 5098 (1983); in
Collisions with Lasers, edited by N. R. Rahman and C. Gui-
dotti, (Harwood Academic, Amstedam, 1984), pp. 351-373.

6A. D. Bandrauk and M. L. Sink, J. Chem. Phys. 74, 1110
(1981).

D. R. Dion and J. O. Hirschfelder, Adv. Chem. Phys. 35, 265
(1976).

8S. I. Chu, J. Chem. Phys. 75, 2215 (1981).

9A. D. Bandrauk and O. Atabek, Adv. Chem. Phys. (to be pub-
lished).

10C, Cornaggia, D. Normand, J. Morellec, G. Mainfray, and C.
Manus, Phys. Rev. A 34, 207 (1986).

113, H. M. Bonnie, J. W. J. Verschuur, H. J. Hopman, and H. B.
van Linden van den Heuvel, Chem. Phys. Lett. 130, 43 (1986).

12J. A. Beswick and J. Durup, in Proceedings of the Summer
School on Chemical Photophysics, 1979, edited by P. Glorieux,
D. Leclerc, and R. Vetter (North-Holland, Amsterdam,
1979), pp. 385-457.

13C. Cohen-Tannoudji, in Frontiers in Laser Spectroscopy, edited
by R. Balian, S. Haroche, and S. Liberman (North-Holland,
Amsterdam, 1977), Vol. 1, pp. 3-104.

14J. M. Yuan, J. R. Laing, and T. F. George, J. Chem. Phys. 66,

1107 (1977).

ISP, S. Julienne and F. H. Mies, Phys. Rev. A 25, 3399 (1982); P.
S. Julienne, ibid. 26, 3299 (1982).

16A. F. J. Siegert, Phys. Rev. 56, 750 (1939).

17p. Atabek and R. Lefebvre, Chem. Phys. 55, 395 (1981); H. J.
Korsch, H. Laurent, and R. Méhlenkamp, J. Phys. B 15, 1
(1982).

18R. D. Levine, B. R. Johnson, and R. B. Bernstein, J. Chem.
Phys. 50, 1694 (1969).

M. V. Fedorov, O. Kudrevatova, V. Makarov, and A.
Samokhin, Opt. Commun. 13, 299 (1975); A. M. F. Lau, Phys.
Rev. 13, 139 (1976).

203, H. Shireley, Phys. Rev. B 138, 979 (1965).

21G. Floquet, Ann. Ec. Normale Supér. 12, 47 (1883).

220, Atabek and R. Lefebvre, Phys. Rev. A 22, 1817 (1980).

238, 1. Chu and J. Cooper, Phys. Rev. A 32, 2769 (1985).

24L. Dimou and F. H. M. Faisal, Phys. Rev. Lett. 59, 872 (1987).

25A. Giusti-Suzor and P. Zoller, Phys. Rev. A 36, 5178 (1987).

26F. V. Bunkin and I. I. Tugov, Phys. Rev. A 8, 601 (1973).

27L. Fox, The Numerical Solution of Two-Point Boundary Value
Problems in Ordinary Differential Equations (Oxford Univer-
sity Press, London 1957); D. W. Norcross and M. J. Seaton, J.
Phys. B 6, 614 (1973).

28B, Simons, Phys. Lett. 71A, 211 (1979).

29G. H. Dunn, Phys. Rev. 172, 1 (1968).

30p. E. Ramaker and J. M. Peek, At. Data 5, 167 (1973).

3IM. Crance and J. Sinzelle, in Fundamentals of Laser Interac-
tions, Vol. 229 of Lecture Notes in Physics, edited by F.
Ehlotzky (Springer, Berlin, 1985), p. 290.

325, Morellec and D. Normand (private communication).

33F. H. Mies and M. Krauss, J. Chem. Phys. 45, 4455 (1966).



