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Simple expressions are derived for all multipole, nonadiabatic, and finite-nuclear-mass corrections
to the long-range effective potential due to two —Coulomb-photon exchange at threshold energy and
also first order in energy correction for the scattering between a spinless point charged particle and
a spinless Coulombic complex and between two spinless Coulombic complexes. All these correc-
tions are treated on equal footing and the results are expressed, respectively, in terms of single-
center and London-analog two-center atomic multipole spectral sums. An isomorphism between
the point-particle —complex interaction and the complex-complex interaction is derived. All
Hughes-Eckert-type type mass-polarization terms are avoided by suitable choice of Jacobi coordi-
nates.

I. INTRODUCTION

There has long been an interest in the study of long-
range forces in Coulombic systems. These include, but
are not limited to, interaction between a pair of
atoms, ' between a charged particle and an atom or an
ion, and between the outer electron and the core ion in
high Rydberg states. ' This interest has recently
intensified, especially in the high-l helium Rydberg state
system where comparison between theory' ' and exper-
iment ' seems to verify the Casimir correction.

Recently Drake has developed a variational tech-
nique to calculate high-precision nonrelativistic eigenval-
ues for helium. In Drake's work, transverse-photon ex-
change between the electrons is incorporated through the
Pauli form of the Breit interaction as given by Bethe and
Salpeter and the Araki- Sucher potential is used for
two-electron correction of order a Ry. Drake's calcula-
tion for the states he has considered is in good agreement
with experiments. However, as pointed out by Au,
the preceding method of including transverse-photon-
exchange effects needs to be modified for high Rydberg
states where the moderate to large-distance behavior of
the Casimir correction becomes important. Au shows
that this correction can be given in the form of a poten-
tial V" that behaves as a aiR at small distances and
hence yields a finite-energy correction of order a Ryd-
berg even for low-l Rydberg states. The readers must be
cautioned that for low-I Rydberg states, the correction
potential V" does not account for all the corrections at
this level. Two-electron-contact —type and other short-
ranged terms, spin-dependent terms, and exchange
effects, which hitherto have not been included, may lead
to corrections of similar magnitudes for the low-l Ryd-
berg states and hence must be carefully examined in any
precise calculations of this magnitude.

Following a suggestion of Feinberg, Au pointed out

that ( V" ) would be finite for the p e a+ (muonic heli-
um) system. This would provide another challenge to ex-
perimentalists if Drake could extend his calculation to
lowest-lying states in the p e a+ system. In the

p e a+ system, the muon mass is no longer negligible

compared to the nuclear mass and the p a+ core exci-
tation energy becomes much larger compared to the elec-
tronic excitation energy. This has the interesting conse-
quence of raising the importance of the mass-polarization
effect and decreasing that of the nonadiabatic correc-
tions.

The mass-polarization effect can be calculated either
perturbatively or by including the mass-polarization
operator in the Hamiltonian. An example of the latter is
the variational-type calculation such as the one by
Drake where the mass-polarization operator is part of
the Hamiltonian from which the variation wave function
is obtained. In this case, the extent to which the mass-
polarization effect is accounted for depends on the accu-
racy of the variational wave function. An example of the
former where the mass-polarization effect is included per-
turbatively is the calculation by Drachrnan' where the
mass-polarization (nuclear recoil) and nonadiabatic (outer
electron recoil) corrections are added on piecewise. With
suitable use of Jacobi coordinates, Drachman has shown
that the nuclear recoil correction leads to a partial
suppression of the multipole interactions and he
displayed such effect on the adiabatic dipole and quadru-
pole polarization potentials in his calculation on helium
Rydberg states. ' The present paper examines the effects
of mass polarization on a11 the nonadiabatic corrections.

In recent years, advances in modern experimental tech-
nique involving positroniurn atoms have also brought
much attention to the finite-mass corrections in the polar-
ization forces in Coulombic systems involving positroni-
um. ' In the extreme case of two positronium atoms,
the "atomic, " "nuclear, " and "electronic" masses are all
of the same order. Thus "nuclear" recoil corrections and
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"atomic" recoil (nonadiabatic) corrections seem equally
important. Earlier, Au has pointed out that in a self-
conjugate system such as positronium, all electric even
multipole interactions vanish. We shall see that this is
a case of maximal multipole suppression due to finite
"nuclear" mass effects.

The present paper treats on equal footing and in a
unified manner multipole, nonadiabatic, and mass-
polarization (all finite-mass) corrections in the long-range
interaction between Coulombic systems in the two-
Coulomb-photon exchange channel. I first consider the
case of three charged, spinless particles of masses m &,

m2, and m 3 and charges Z, e, Z2e, and Z3e. Particles 1

and 2 are assumed to form a bound system and, to simpli-
fy the discussion, in a state of zero angular momentum.
This covers the case of the interaction between a charged
particle and a neutral atom or an ion, with the latter
applicable to the study of Rydberg states. Then I shall
consider the case of four charged, spinless particles of
masses m1, m2, m3, and m4 and charges Z1e, Z2e, Z3e,
and Z4e such that particles 1 and 2 and particles 3 and 4
form bound complexes A ag.d B, each in a state of zero
angular momentum. When Z, +Z2 =0 and Z3+Z4=0,
this reduces to the case of the interaction between two
neutral atoms (the van der Waals case). When either
(Zl+Z2} or (Zi+Z4) or both are nonzero, regular
Coulombic (Coulombic monopole) interactions must be
included. This Coulombic interaction between bare
charges can be included in the unperturbed Hamiltonian
and hence has its effect iterated. Therefore I shall ex-
clude from my consideration the graph corresponding to
the exchange of two-monopole-Coulomb photons. Angu-
lar momentum conservation requires that the two pho-
tons interacting with the same atom be of the same mul-
tipolarity. However, this multipolarity does not have to
be the same at complex A as it is at complex B. Thus
complex A may exchange two-Coulomb photons of rnul-

tipolarity L„which turn into photons of multipolarity
Lz at complex B. In particular Lz can be zero if com-
plex 8 shows a net charge, i.e., when Zi+Z4+0. How-
ever, this case is identical to that in the three-body situa-
tion and hence will not be considered. Therefore I only
limit the discussion to L„+0and Lz+0.

As we shall see, finite "nuclear" mass within the
Coulombic complex (atom) leads to the multipole
suppression factor and finite reduced mass between the
Coulombic systems leads to the nonadiabatic corrections.
The results are expressed in terms of single-center atomic
multipole spectral sums for the particle-complex case and
two center atomic multipole spectral sums in the
complex-complex case. Remarkably, there is an isomor-
phism between the L„—L~ multipole interaction corn-
ponent in the complex-complex case and the
(L =L z +Ls ) multipole interaction component in the
particle-complex case. The similarity between the
dipole-dipole van der Waals interaction for a pair of
atoms and the quadrupole interaction in electron-atom
scattering has been noted earlier. The present result
generalizes this similarity. I use the Jacobi coordinates
and A is set equal to unity. Transverse-photon exchange
effect (Casimir correction) is not considered.

II. CHARGED-PARTICLE-COULOMBIC-COMPLEX
INTERACTION

Let r1, r2, and r3 be the coordinate vectors of particles
1, 2 and 3 with masses m &, m2, and m 3 and charges Z, e,
Z2e, and Z3e. I define the following:

a—:m2/(m]+m2),

m—:m1+m2+m3

m;
y;:— , i =1,2, 3,

m
'

(2.1)

(2.2)

(2.3)

X=r1 12,

X=(1—a)r|+ar2,
R—:ri —X,
S=—r, r, +~2r2+~3r3

m':—m1+m2,

p =Jim =(pi+f2)mi

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)

In terms of these coordinates and variables, the Hamil-
tonian of the three-body Coulombic system is

p2
H, =—

2am1 2p

vs
2m

Z1Z2 Z1Z3 Z2Z3+e + +
Ix I I

R—axl I R+(1—a)xl

V e Z1Z2+
2am,

(2.11)

and
2p

Z1Z3 Z2Z3

IR —axl IR+(1—a}xl

. (2.12)

(2.13}

eZ3 p
2m- k

e 1e 2eP ik.R(Z —iak.x+Z i(1—a)k x)

(2.14)
Z eZ3e d k '1 -R

—ik.x ~

L=0
(2.15):—g h

L=0
(2.16)

(2.10)

We notice that in terms of the set of Jacobi coordinates
(x, R, and S), all Hughes-Eckert —type mass-polarization
terms disappear. ' Moreover, the total Hamiltonian is
cyclic in S and so the center-of-mass energy term can
drop out. Hence one can replace H, by
H =Hp+H1 =Ap+ T +H1 where
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At this point I would like to make the following observa-
tions. (i) The eigenvalues of ho are scaled to the hydro-
genic eigenvalues by the factor ( —Z&Zzam &

/m, ), where

m, is the electron mass. (ii) For a neutral complex,
Z

&
+Z2 =0 and the L =0 term inside the square brackets

in Eq. (2.15} vanishes, corresponding to the absence of
Coulombic monopole interaction. (iii) For a neutral com-
plex, the L = 1 term in Eq. (2.15) is independent of a indi-
cating that finite "nuclear" mass does not affect the
Coulombic dipole interaction. This is not the case if the
complex has a net charge. (iv) In the special case when

Z, = —Z2 and a= —,
' such as a self-conjugate system like

positronium or true-muonium (p+p ) or p-p systems, all
terms with even L vanish. This corresponds to the total
suppression of even electric multipole interactions in such
self-conjugate systems. (v) For a=1 corresponding to
infinite nuclear mass, Eqs. (2.15) and (2.16) reduce to the
regular multipole expansion. (vi) For a charged complex,
the monopole term (L =0) can be grouped with T to
form a Coulornbic-type Hamiltonian for particle 3 in the
Coulomb field of the charged complex in the Jacobi coor-
dinate R.

With the preceding observation in mind, one is ready
to derive the effective multipole polarization potentials
plus their nonadiabatic corrections. For simplicity, I as-
sume a neutral complex, i.e., Z, +Z2 =0. The
modifications due to Z, +Zz+0 will be discussed in Sec.
IV. I shall follow a procedure I have used previously to
obtain the multipole and nonadiabatic corrections to the
two —Coulomb-photon exchange effective potential for
electron-atom scattering. Briefly stated, this method
goes as follows. Let

~ p ) and
~

p' ) denote the incident and
emergent momentum eigenstates of T in Eq. (2.12). Then

I

one computes the second-order scattering T-matrix am-
plitude due to the interaction 0& of the charged particle
with the target complex. Let Q:—p' —p be the momen-
tum transfer. Then the effective potential is obtained as
the Fourier transform of the T-matrix amplitude in Q
with respect to R with the energy-shell constraint

p =(P') . For computational convenience, an exchange
of the order of integration may result in a mathematical
artifact, giving rise to a momentum-dependent effective
potential. When the on-shell constraint is duly imposed,
the pathology disappears resulting in an energy-
dependent potential. In scattering processes, energy is
conserved and so this is only a parametric dependence.
The mathematical procedure of implementing this pro-
cess has been given in detail elsewhere.

Let ~0) be the initial zero angular momentum state of
the neutral complex and E„bethe energy eigenvalue of
the state ~n ). I define

b„=2p(E„—Eo) . (2.17)

Then the effective potential in momentum-dependent
form corresponding to the Fourier transform of the
second-order T matrix due to the interaction H& is

where

2pZ 3e
V(R, p Rp )=

4~'

X f e'"' f e'q' I(, (p k q)
d k . d

q

(2.18)

K(p, k, q) = [Z&a '+Zz(1 —a) '][Z&a '+Z2(1 —a) '] (0~( —ik x) '~n)(n~( —iq x) '~0)
(2.19)

I define the following single center Lth rnultipole atomic spectral sum:

/(0/xLP~/n )['
ilM+1 =2pe [ZllX +Z2( ~) ]' &

n
gM+1 (2.20)

Here PL is the Legendre polynomial of order L. Then following a procedure I have developed recently, Eq. (2.18) can
be expressed in terms of these sum rules,

(2') 'i''' 'L P i
'' x 1

N, L
(2.21)

VMi(R)( i p R)Mp2—J .
L =1 M=O J=0

(2.22}

On directly comparing Eq. (2.22) with Eq. (2.21), I get

Zee
VL (g) gL g —2(L ™i+l)g(LM J)

(2.23)

where

g (L M J)—2M +2JCM +2i (
2J

y i tCMCLCL —k J .
( 1)j+k

k k 21 2J.
k,j J.

X (2L +2M +2J 2j —2k —1)!!,—

(2.24)
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and C„=N!/[n!(N—n)!] is the usual combinatoric fac-
tor and the double factorial (2J+1)! is defined by the
product gj. 0(2i+1). I am able to carry out the sum in
k and j in Eq. (2.24) for L = 1 and 2 and for all values of
M and J. Then by going back to Eq. (2.21) from which
the coefficient 8 (L,M, J) defined in Eq. (2.24} arises, I am
able to prove by mathematical induction that

(M +2J +L)!(2M+2J)!
M!J!(M+J}! (2.25)

For the particular case that J=0, this reduces to the
combinatoric identity that I conjectured and subsequent-
ly verified on the computer before. On substituting Eq.
(2.25) into Eq. (2.23), I have

VL (R)= Z2e2AL R
—2(L+M+J+I)

MJ 3e M+2J+ 1

Then on using Eqs. (2.26) and (2.32},I find

( —1) +'Zie AM+i (2M)l(2M+2L)!
R 2(M +L + i) 22M(M!)2(2L)!

( 1)M+!Z2 2A L

R 2(M+L+1)

(2M +2L —1)!!(2M—1 )!!(M+L)!
(2L —1 }!!L!M!

and on using Eqs. (2.26) and (2.33), I find

( —1)M+!Z2e2A L

VML! (R)=
2{M+L+2)R

(2M+2L +1)!!(2M+1)!!(M+L +1)!
(2L —1)!!L!M!

(2.34)

(M +2J +L)!(2M+2J)!
L!M!J!(M+J)! (2.26)

L =1M,J=O
(2.27)

Here M is the nonadiabatic index and J is the energy
dependence index. The potentials VMJ are related to VMJ
in Eq. (2.22) via

L V
M

VMJ
L

2 FMJ ~ (2.28)

FMJ =I VMJ
L M L

Equation (2.26), when substituted into Eq. (2.22), pro-
vides a very convenient form to convert the momentum-
dependent effective potential into a truly local form ac-
cording to a prescription obtained previously. Upon
expanding the energy-dependent but otherwise local
effective potential in powers ofp, we have

( —1 } +'Zie AM+2 (2M + 1 )l

R 2(M+L+2) 2(2M+1)

(2M +2L +2)!
(M!) (2L)}!

(2.36)

(2.37}

III. COMPLEX-COMPLEX LONG-RANGE
COULOMBIC INTERACTION

Let r1, r2, r3, and r4 be the coordinate vectors of parti-
cles 1, 2, 3 and 4, with masses m „m2, m 3, and m4, and
charges Z, e, Z2e, Z3e, and Z4e, such that particles 1 and
2 form a spinless complex A and particles 3 and 4 form
another spinless complex 8. I define the following:

Equation (2.34} agrees with the results obtained earlier
after noting the definition of AM used in the present pa-
per. In Eq. (2.35), (2M —1)!!is taken tobe 1 for M =0.

J
g C + (2m —1)!!( i) D F—

m=1

where the operators D and I are defined by

1D—:

and

(2.29)

(2.30)

m g =m1+m2

m& =m3+m4,
a—:m2/mg

p= rn4/ma, —

m =my+my

y; = rn; /m, i = 1,2, 3,4,

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)
I=D (2.31)

Using Eqs. (2.28) to (2.31), one can easily obtain the truly
local effective potential at threshold energy and its
lowest-order energy correction,

'M

VM()(R) = I VM()(R),
2

(2.32)

and
M

VL (R)= [IMV (R)+CM+2IM+!VL (R)]
and

y=r3 —r4,

X= (1—a )r!+ar2,

Y = (1—P)r&+Pr4,

R=Y —X,
S—= gy, r, ,

)M—:m„mzlm .

(3 8)

(3.9)

(3.10)

(3.11)

(3.12}

(3.13)

(2.33) Then, in terms of the Jacobi coordinates x, y, R, and S,
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the total Hamiltonian is cyclic in S and the kinetic energy
of the center of mass of the entire system is a conserved
quantity and can be dropped. The Hamiltonian can thus
be expressed in the form

V„ZiZ2e
2 m

V ZZe

(3.15)

(3.16)

H =h0~ +hOB + T +H)

where

(3.14)

and

V„
2p

(3.17)

0 =e21=
ZJZ3 Z2Z4 Z2Z3 Z]Z4+ + +

IR+py —axl IR+(1—a)x(l —p}yl IR+(1—a)x+pyl IR—ax —(1—p)yl

d k=e 2e
'

[ ie
'

ze '][ 3e
'

4e'&'«z '«*+z )~) —~))»~z )A) +z —~~) —P)) r]

(3.18}

(3.19)

where

LA, LB =0
I,

L~~a (3.20)

d3 LA L)""'= 'J [z(— ) "+z(1— ) "], [zp'+z(p —1)'] '
k2 B'

(3.21}

As observed in Sec. II, the quantities in the square brackets in Eq. (3.21) act as multipole suppression factors. Again,
note that for a neutral complex, the monopole term disappears and also that for the dipole term the finite nuclear
mass has no effect for a neutral complex. In accordance with the discussion in the Introduction, I discard the
monopole-multipole and the monopole-monopole interaction terms. The former reduces to the case of Sec. II and the
latter corresponds to the Coulombic interaction between two charges. Let Io„)and Ioa ) be the initial zero angular
momentum states of the complexes A and B and E„andE„bethe energy eigenvalues of the states

I
n„)and In+ ). I

A 8
define

2p[E„Eo+—E„—Eo ], — (3.22)

and the two-center correlated multipole spectral sum

Dsr"+) —=2)ue [Z, (
—a) "+Zz(1—a) "] [Z3P +Z~(P —1) ]

nB

l&o„lx "PI. In„&l I

&oddly

PI. Ina &I

gM+1
nAnB

(3.23)

As before, the effective potential between the complexes
is defined by the Fourier transform in the momentum
transfer of the second-order T-matrix element due to the
interaction H, in Eq. (3.20). Once again, I ignore all

short-ranged terms and following the same procedure
used in Sec. II. in terms of the two-center spectral sum
defined in Eq. (3.23), I find the momentum-dependent
effective potential to be

and

L~L)) —
2 L~LJ) 2(L~+Lg+M+I+—1)

B((L„+L~),M, J) (2Lq+2La)!
X (L„+La)! (2Lq )!(2Ls)!

(3.25)

I'(&,p.R,p')=— g g V„," '(Z)( —ip.R) p",
LA, LB =1 M, J=0

(M+2J +L„+Le)!(2M+2J)!
M!J!(M+J)!B L„+L~,M, J =

(3.26)

where

(3.24)
is the same function defined in Eq. (2.25) with L„+Le
replacing L. On comparing Eq. (3.25) with Eq. (2.26), the
isomorphism between the L„—LB multipole interaction
in the complex-complex case and the (L„+Le)thmul-
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and then let L be replaced by (L„+L~ ) in the rest of the
expression. The similarity in the dipole-dipole van der
Waals interaction between a pair of atoms and the quad-
rupole interaction in the two-Coulomb-photon exchange
effective potential in electron-atom interaction has been
noted before. The present analysis gives a generaliza-
tion of this isomorphism.

The energy-dependent but otherwise local effective po-
tential for the complex-complex long-range Coulombic
interaction can be readily written down from Eqs.
(2.34)—(2.37) and the isomorphism just identified. I write

y(g +2) y y y A 8(g)p2J
LA, LB 1M J=O

(3.27)

Then the Mth-order nonadiabatic correction to the L ~ Lz
multipole contribution to the effective potential at thresh-
old energy is

y & 8(g)—
( )1M +1 2eDA Bg A B

(2M)!(2M +2L„+2Ltt )!
X

2 ~(M) } (2Lg )!(2Ls)!
(3.28)

For M=0, a=P=1, Z, = —Z2, and Z3= —Z4, this
reduces to the well-known L„—Lz multipole analog of
the London-van der Waals potential. ' s'3 The Mth or-
der nonadiabatic correction to the L„L~multipole con-
tribution to the effective potential first order in energy
correction is

y A B(g) ( 1)M+le2D A Bg A B

tipole interaction in the charged-particle-complex case is
obvious. One simply replaces the factor —Z3e Axt+2J+,
by

(2L „+2Ls)!
M+2J+1 (2L )((2L )(

IV. FURTHER DISCUSSIONS AND SUMMARY

In this paper, corrections to the two-dipole —Coulomb-
photon exchange effective potential due to multipole in-
teractions, finite-mass effects between the interacting par-
ticles, and (nuclear) finite-mass effects within the complex
have been considered in a unified manner. Finite nuclear
mass leads to an effective damping of the multipole in-
teraction. Finite projectile and/or target masses lead to
the nonadiabatic corrections. There is also an isomor-
phism between the L„—L~ multipole interaction involv-
ing two complexes and the (L„+Ltd )th order multipole
interaction involving a point charge and a complex.

When both interacting particles have a net charge,
there is a monopole interaction. This monopole interac-
tion is the ordinary Coulomb interaction and ca~ be in-
cluded either in the unperturbed Hamiltonian or as part
of the perturbation. In the former case, the relative
motion between the interacting particles can no longer be
described by plane waves as the unperturbed states. This
has an effect on the calculation of the nonadiabatic
corrections at second order and beyond. In the latter
case, angular momentum conservation prevents the com-
plex from participating in any two-photon process involv-
ing one-monopole and one-multipole photons. The two-
monopole-Coulomb-photon exchange effective potential
is divergent and in fact must be excluded because it dupli-
cates the iteration of the one-monopole —Coulomb-photon
exchange effective potential. For this case, the unper-
turbed states of the relative motion between the interact-
ing particles are still plane waves. However, the
three —Coulomb-photon exchange effective potential in-
volving a monopole photon in between two multipole
photon of the same multipolarity cannot be generated by
iterating the Coulomb potential and the two-
multipole —Coulomb-photon exchange potential and in
fact this type of process generates part of the difference
between the second nonadiabatic corrections calculated
for the two cases. Therefore one must decide which case
to follow depending on what best describes the initial
conditions. Consistency is the key.

( 2M + 1 )! ( 2M +2L„+2Ltt +2 )!
X

2 +' (M)) (2L„)!(2L~)!

(3.29)

For L„=L&=1,a=P=1, Z, = —Z2= —1, and Z3
= —Z4= —1, this reduces to the result derived by the
author recently.
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