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Thermal proyerties of many-electron systems: An integral formulation of density-functional theory
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A new approach for the calculation of thermal properties of many-electron systems is proposed
via an integral formulation of the Mermin-Kohn-Sham Snite-temperature density-functional theory.
The electron density of a thermal-equilibrium state can be determined by solving self-consistently
equations for the electron density without using orbitals. Exchange and correlation effects are in-
corporated. In place of the set of the single-electron equations, the total electron density is explicit-
ly expressed in terms of the Kohn-Sham effective local potential through multidimensional integra-
tions. The development is based on the 6rst-order density matrix as obtained from the one-body
Green's function in polygonal and Fourier path-integral representations. The formulation can also
be applied to general fermions.

I. INTRODUCTION

In place of the full density matrix in Fock space, the
equilibrium state of a many-electron system in a grand-
canonical ensemble at finite temperatures can be uniquely
determined by its total electron density; further, such an
equilibrium electron density minimizes a grand-
canonical-potential density functional. This is the
essence of the Mermin generalization of the Hohenberg-
Kohn density-functional theory (DFT) to finite-
temperature systems. ' It provides the most economi-
cal way to describe a many-electron equilibrium state.
However, the cost is that the universal grand-canonical
potential as functional of electron density is not exactly
known.

For the approximation of the exchange-correlation
contribution to the free energy, the local density approxi-
mation (LDA) and its spin-polarized version local spin
density (LSD) approximation have been suggested. 2*

They became available for a wide range of temperatures
only recently.

There are two classes of approximations to the kinetic
energy and entropy components: the finite-temperature
Thomas-Fermi (TF) and related theories, and the finite-
temperature Kohn-Sham (KS) theory. In TF and related
theories, a direct but crude approach is taken so that ex-
treme simplicity is manifested in the grand-canonical po-
tential as a functional of electron density. Gradient
corrections to finite-temperature TF theory have been re-
cently devised, completing the so-called extended-
Thomas-Fermi (ETF) theory. Applications of the ETF
theory have been made in condensed matter, nuclei, plas-
ma, astronomy, and other fields of physics involving
many fermions [see the references in Refs. 6(c) and 6(d)].

On the other hand, finite-temperature KS theory
rigorously uses a reference system of noninteracting elec-
trons and a corresponding set of single-electron equa-
tions. This reduces the solution of a many-electron
problem to the self-consistent solution of the set of many
one-electron orbital equations.

Although the Mermin-Kohn-Sham (MKS) finite-

temperature density-functional theory was given long
ago, only a few applications have been reported. This is
due partially to the lack of availability until recently of
finite-temperature approximate exchange-correlation
functionals, and partially to the fact that even though the
many-electron problem is reduced, one still has in princi-
ple an infinite number of one-electron equations, includ-
ing the continuum states.

The present work is directed toward the construction
of an integral formulation of the Mermin-Kohn-Sham
density-functional theory, as the generalization of the in-
tegral formulation of Hohenberg-Kohn-Sham (HKS)
theory for ground states, which was developed from the
works of Handler for linear and harmonic potentials,
and in particular from the work of Harris and Pratt for
many-electron ground-state Hartree theory. Only equa-
tions for total electron density are involved, and orbitals
are not needed. The proposed method preserves the sim-
plicity of the finite-temperature TF or ETF theory and
includes exchange and corre1ation effects like the KS
theory.

II. ELECTRON DENSITY AS A FUNCTIONAL
OF THE KOHN-SHAM LOCAL POTENTIAL

Consider a grand-canonical ensemble characterized by
temperature 6I, chemical potential p, and external field
u(r). The grand-canonical potential as functional of the
total electron density p'(r) can be written as '

Q[p'(r)]=6, [p'(r)]+ I [u(r) —p, ]p'(r)dr

where 6, is the Helmholtz free energy of the noninteract-
ing reference system with density p'(r) at temperature 8,

G, [p'(r)]= r, [p'(r)] —&S,[p'(r)],
where T, [p'(r)] and S,[p'(r)] are the corresponding ki-
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netic energy and entropy; F„,[p'(r}] is the exchange-
correlation contribution to the free energy,

+G, [p'(r)]+E„,[p'(r}] . (3)

The total electron density p(r) for the equilibrium state
minimizes the grand-canonical-potential functional, and
therefare can be determined by the Euler equation

~G, [pl
+vlf(r) p' ~

Sp r
(4)

A'g, (r) = — V +v,e(r) f;(r)=s;g, (r), (6)

where f (p s; ) is the Fe—rmi function

f (p s, ) =—
I 1+exp[(s; —p)/8] I

with temperature 8 measured in energy units (Boltzmann
constant ks =1), and v,e(r) given by Eq. (5}. Double oc-
cupancy for each orbital is assumed here; the general case
allowing a different orbital for a different spin is discussed
in Sec. V.

The grand-canonical potential of the equilibrium state
can be calculated from Eq. (1); the entropy is given by

S,= —2 g [f;lnf;+(1 f; )ln(1 f; )],— —

where f; =f (p e; ), and th—e kinetic energy is obtained in

one of the two following ways. The direct way makes use
of

T, [p]=f t(r)dr,
(10)

where p' '(r, r') is the first-order reduced density matrix
for the noninteracting system

where u,s(r), the KS local potential, includes the external
field, electrostatic, and exchange-correlation contribu-
tions,

u,tt(r)=v(r)+e, dr'+p(r'), ~~* [P]
r —r' Sp r

For the description of the equilibrium state, electron
density is all that is needed, but G, [p] and F„,[p] remain
unknown. To resolve the difficulty of G, [p] Kohn and
Shami proposed the following: Eq. (4) has the same form
as the stationary condition for a noninteracting system in
an external field u(r)=u, s(r). Since the solution of the
noninteracting problem is known in terms of the eigen-
functions and eigenvalues of the single-particle Hamil-
tonian, the solution of Eq. (4} can be obtained through
the KS equations

p' '(r, r')=2+ f,i';(r)i'; (r. ')=2{rlf(p 8—)lr'),

where f is the Fermi function, but with an operator argu-
ment. The indirect way makes use of

T,[p)=fdrt(r),
(12}

t(r) =2 g s;f; lg;(r}l —f v,tt(r)p(r)dr,

where the electron density has been determined so as to
satisfy the exact KS equations (6) and (7). In an actual
calculation, the difference between t (r) and t(r), or T, [p]
and T,[p], can be used as a crierian far the accuracy of
the solutian p(r) in satisfying the exact KS equations.

The situation here is in parallel to the ground-state
case. The infinite number of KS equations are intro-
duced only as auxiliaries for facilitating the solution of
Eq. (4}. Through Eq. (4}alone, the electron density is im
plicitly a functional of v,s(r), denoted as

(13)

The present work is devoted to the explicit construction
of the functional relation in Eq. (13). The self-consistent
relations (5) and (13) constitute the essentials of the
present integral formulation of DFT at finite tempera-
ture.

The primitive form of Eq. (13) is the finite-temperature
Thomas-Fermi theory. ~ Even when potential gradients
are included in the extended-Thomas-Fermi theory, 6

there is still no quantum detail in the theory; this is to be
recovered in the present work.

The formulation is based on the relation between the
density matrix (11) and the one-particle Green's func-
tion, namely,

p' '(r, r'}=2 . f dP . e~"G(r, r', P), (14)
27yl y i ao —sill 1T8

where the Green's function is

G(r, r', P) = {rle t' lr'), (15)

and 8 is the one-particle Hamiltonian defined by Eq. (6).
In Eq. (14), the complex integration is the inverse bila-
teral Laplacian transfer of the quantity 2m8G/sin(n. 8P),
and y satisfies 0&y &1/8. Ta prove Eq. (14), one only
needs to verify the corresponding equality for the func-
tion f, namely,

1 1 r+i~ n8 p„P~;—
e "e

2mi y im sin(n—.8P)1+e

(16)

One way to prove Eq. (16} is to do the P integration by
the calculus of residues. The contour can be closed on
the left-hand side of the complex P plane for p —e, )0
and on the right-hand side for p —c.; &0. In both cases,
the sum of contributions from all residues is identical to
the representation of the left-hand side as a convergent
power series of exp[(e; —p}/8].

Based on Eq. (14), all other properties are expressible
in terms of G. The total electron density (13) is given by
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the diagonal part of Eq. (14},and the electron kinetic en-
ergy by the derivative of Eq. (14) according to Eq. (10).
The entropy S, defined by Eq. (9) can be calculated from

A' '(r r')= . f dP . e~~(r~e ~ ~r') .
2@i y —i ~ P sin(m HP)

(18)

Sz= fdrcr(r}, cr(r)=2 A'e'(r, r),

where o (r) is the defined entropy density and

g s;f;g, (r)1i;(r') = (r Sf(8 p) ~—r')

(17) A derivation of Eq. (17) is given in the Appendix A. In
the indirect way of calculating kinetic energy by Eq. (12),
use the identity

1 y+~~dp mH p„B (
~

pp), )
2mi y —i ~ sin(n HP) BP

[f(p )[
t )

1 f y+
dp

(n'8) cos(n'HP} pp(
~

—
pp~ g )

2yti y i m— [sin(g HP}]2

I

(19}

where the second equality follows from Eq. (14},and the
last equality from partial integration. Equation (19) is the
finite temperature extension of Eq. (14) of Ref. 7(b). To
simplify Eq. (19), differentiate Eq. (18),

BA (r~r') 1 (e~(
88 8

If t(r) is used instead,

G, [p(r)]=fdrg, (r),

g, (r) =t(r}—Ho (r)

=[@,—v,ff(r)]p(r) —2A 'e'(r, r) . (24)

f r+~ "d (nH) cos(mHP)

r ~
— [sin(nHP)]2

Xe~"(r~e ~ ~r'),
and substitute Eq. (20) into Eq. (19). One obtains

(20)

(21)

t(r) =t [p v, ff,'r]—

(r~8f(8 —p)~r') =p(r~ f(P —p)~r')

+8 A'e'(r, r') —A' '(r, r') .
aH

Therefore the kinetic energy can be computed indirectly
by5

The foregoing establishes the determination of equilib-
rium properties from the one-particle Green's function,
which is essentially from Ref. 5. In Secs. III and IV, the
approach of the preceding paper ' ' is taken: the func-
tional relation p' '[p —v,ff;r] of Eq. (13) is constructed
from the convergent-sequence representations of the
Green's function in both polygonal and Fourier path in-
tegrals. The path-integral representations of the Green
function are quoted in Secs. III and IV, directly from the
preceding paper, ' ' to which and the references therein
the reader is referred for detailed derivation.

III. POLYGONAL PATH-INTEGRAL REPRESENTATION

=[@—v,ff(r)]p(r)+28 A' '(r, r) —2A'e'(r, r) .

The free energy G, [p] is equal to

G, [p]=fdrg, (r), g, (r)=t(r) —Ho(r),

' 3q/2

(22)

(23)
I

The one-particle Green's function defined in Eq. (15)
can be formulated in terms of path integrals. If the path
integration is explicitly carried out by summing over all
q-segment polygonal paths satisfying the proper bound-
ary conditions, then the Green's function is represented
as [Eq. (37) of Ref. 7(b)]

G,'"'(r, r', P)= mq2mPfi.fdr, f - fdr, exp ——
z l~+ pk» pp, —

X 1+ g (p/q)"Q, '"'(ro, r„.. . , r~)
v=2

(25)

q
—1

i =q g(r+, r}—
j=0

I

q is any positive integer greater than 1, and the functions
Q' ' are determined explicitly in terms of the gradients of
v, ff [Eq. (38) of Ref. 7(b)]. As q~ &m, G'"' converges to
the exact Green's functions as

2m
k =

2 p ——g u(r+„rj}
q

J+&' J

1

u(rj+] rj. ) Ueff{ri+(rj+, —r )y)d T, '

0

6'"'(r, r', P) =G(r, r', P)+ O(P" + '/q" ), (27)

(26)

r0 r rq

where O(x") represents terms of order equal to or higher
than z". For n =1,6"', or simply G, is the usual poly-

gonal path integral using primitive, or the lowest-order,



38 THERMAL PROPERTIES OF MANY-ELECTRON SYSTEMS: AN. . .

short-time approximation. A form similar to 6"' has
been used by Handler for the ground state of many elec-
trons in a linear and harmonic potentials, and by Harris
and Pratt for the ground-state Hartree theory. The in-
clusion of the potential gradients through Q'"' functions

is developed in the preceding paper ' ' based on the
Fujiwara-Osborn-%ilk expansion of the Green's func-
tion' as a short-time approximation.

Now 6'"' is used via Eq. (14) to construct the function-
al relation of Eq. (13); the result found is

3q/2
(e,n)(r r~) —2 m8q ltdr, l) ~ ~ ~

~I dr
&

D 3/3(A k /2me, melq/2R )

+ g (qe) "Q'"&D3/2 „(A2kz/2me, m812/2' ) (28)

where the function D is defined as

1 y'+ I'~ m 1 1D (x,y)= . dP . exp ——y+Px, 0&y'& I
21rl r' —iao sin w p

which can be transformed into a convenient form

(29)

8 D (x,y)= . dP . exp ———+Pex, 0&y& —.1 r+/~ qre 1 1 y 1

2qri r —&'~ sin qre g (30)
4

This function D (x,y) can be expressed in terms of the Fourier transform of the usual Fermi-Dirac function;" the de-
tail is presented in the Appendix A.

From Eq. (28}, the total electron density can also be expressed explicitly in terms of the KS effective potential, name-
ly,

(31)

Unlike the ground-state case, to assess the convergence of pq"' here is not a simple matter. However, the present formu-
lation is supported by the convergence of Gq"' as in Eq. (27), the convergence of the zero-temperature limit of p'"', 7'b'

and the fact that in the lowest order in q, pq, (r) contains essentially the finite-temperature ETF theory.
The self-consistent solution of Eqs. (S}and (31) gives the total electron density as the (q, n)-level approximation to the

Euler equation (4). From this pq"', all the properties of the equilibrium state can be determined. The function A ' '(r, r' }
is now given by inserting Eq. (2S) into Eq. (18), leading to

' 3q/2

A' '"'(r, r')=e m8
2W' f

n

d i f ' ' ' fdrq-i D3 n+i+ g (qe} "Q,'"'D3q/2+i-. (32)
4

where the arguments of D functions, not exphcitly written, are the same as in Eq. (28). The derivative of Aq
'"' is

BA' "'(r r'}
q

ae
m8q
2m%2

' 3q/2 fi kfdr, f fdrq, (3q/2+1)D3q/2+~ —
D3q/2

mel
3q /2+ 2D

~here the following equalities have been used:

aD (xy) =D, (x,y)

n A kq+ P (q8) Qq" (3q/2+ 1 v)D3q/2+1 —v
—

D3q/3
v=2 2mI9

m81

2' 3q /2+ 2 —v (33)

(34)

and

BD (x,y)
D+, (x,y) . —

Bg
(3S)

These preceding formulas can be easily derived from the definition given in Eq. (29). As presented in Sec. II, the entro-

py S„kinetic energy T„and the free energy 6, are all simple functions of p' "', A' "', and (8/Be)A' "', given by Eqs.
(28), (32), and (33},respectively. In the direct way of determining the kinetic energy, one uses Eqs. (10) and (28), leading
to
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r(s, i)(r)— lim [V,.pq "(r,r')]
2m r~r

' 3q/2
mOq

m 2M

'2

3m Oq+ 3q/2+2 i (ri r) D3—q/i+

dr, f . fdrq, D3q/i i — V,u(r„r) D—3q/i i V,u(r„r}
q8 ' ' q q8

'2

m
2D3—q/i i V,u(r„r) (r, —r) (36)

where the identity (proved in the Appendix) is used,

D (x,0)=F (x), (39)

where F (x) is the Fermi-Dirac function following the
convention of Ref. 11;

where the arguments of the D functions are the same as
in Eq. (28) except that r'=r. For n &1, the expression
for the kinetic energy in the direct way, not given here, is
elementary, but cumbersome. This completes the con-
struction of the integral formulation of the MKS density
functional theory via the polygonal path integral.

To simplify the picture, consider the case q =1 and
n =1. Then there is no spatial integration in the formu-
lation; one finds from Eq. (28)

3/2

p'q 'i(r, r') =2
q

D3/i(irik i /2m O, m Ol i /2i}i ),
27rfi2

(37)

and its diagonal part
' 3/2

p'q" i "(r)=2
q F3/i([p —

U,r(r)]/O), (38)
27Tfi2

—1

F (x)= dt
I (a) o 1+e'

(40)

Equation (38} is precisely the finite-temperature TF rela-
tion. The TF density matrix of Eq. (37) does not seem to
have been given before. The present formulation with

q = 1 and n & 1 is essentially equivalent to the finite-
temperature ETF theory. Quantum details of the equi-
librium state, not in ETF theory, can be described by us-

ing the formulation with q & 1.

IV. FOURIER PATH-INTEGRAI REPRESENTATION

2 i'+' sin(kirr)
k

(41}

then the Green's function can be represented as [Eq. (48)
of Ref. 7(b)]

If the path integral representing the Green's function is
carried out by integrating over the Fourier coefficients for
the paths

3p /2

G (r, r', P)=
2M P

(43)

—1

f dzi f fdz, exp — (r —r') + g ~zk~
—Pf v,if(xz(r))dr . (42)

2' P

The Fourier path-integral representation of the Green s function was originated by Feynman and has been applied jn

statistical mechanics and chemical dynamics. See the references listed in Ref. 7(b).
Now G is used in Eq. (14) to construct the corresponding functional relation of Eq. (13). One finds

3p /2

p~ '(r, r')=2 f dzi f fdz, D3 /i(A k /2mO, mOl /2' ),
2mB

where Eq. (30}has been used and

f dz, f . fdz, D3 /z(A k /2mO, mO1 /2'~),

—1

1 = (r —r'} + g ~z„~, k = p —f U,s(x (r))dq.
P k & P ~2 eff P

The total electron density is the diagonal part of Eq. (43); namely,
3p /2

mO
p (r)=p' '[p —U,~;r]=p' '(r, r)=2

(44)

(45)

where
—1I'= g ~z„~', O'=, Iu

—f U,s(y (q))« (46)

and

&2 i' ' sin(kn. r)
y q. =r+ Zk

k=1
(47)
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(4g)

The self-consistent solution of Eqs. (5) and (45) gives the total electron density as the p-level approximation to the
Euler equation (4). From the solution p (r) and v,ff(r}, all other properties of the equilibrium state can be determined.
The function A '@(r,r') can be calculated by using Gp of Eq. (42) in Eq. (18), giving

3p /2

A' '(r, r')=8 fdz&lt fdz, D3p/2+, (A k„/2m8, m8I /2A ),
2 2

and its derivative
' 3p/2 2 2

8 (s&, m8
(r, r')= 2 fdz, f . fdzp, (3p/2+1)D3p/2+]

2 8D3p/2—
Ak

2m62 2m 8
m Hl2

2' 3p /2+ 2
P g) (49)

where the arguments of the D functions are implied and Eqs. (34) and (35) have been used. According to Sec. II, the

entropy S„kinetic energy T„and the free energy G, are all simply related to p, 2' ', and (8/88)A' ', all given above.
To compute directly the kinetic energy, insert Eq. (43) into Eq. (10), leading to

lim V'„p,'"(r,r')
2@i r'~r

m8
' 3p/2

27rR fdz, f . fd* 1 D3p/2 2 f——~Vv„(yp(~))«P P 8 p

3m8
D3p/2 —1 V eff yp dr D3p/2+ f (50}

where the arguments of the D functions are the same as
in Eq. (45). This completes the construction of the in-
tegral formulation of MKS density functional theory via
the Fourier path integral.

An appealing feature of the functional relation in Eq.
(45) is that the multiditnensional integration involved is
over the space of Fourier coefficients, rather than over
the real space as in the polygonal path-integral approach.
Therefore general computational algorithms can be
designed regardless of the external potential v(r). The
functional relation in Eq. (45) is also reduced to the
finite-temperature TF theory at the crudest level, p =1.

V. EXTENSION TO SPIN DFT AND SUMMARY

Extension of the foregoing integral formulation can be
easily made to spin-polarized systems; namely,

(51)

l

tute various schemes of self-consistent equations for the
total electron density of the many-fermion equilibrium
state, bypassing the set of infinite number of KS single-
electron equations. In view of the difBculties associated
with other approaches for many-electron systems, not-
ably the cancellation due to electron exchange, the
present integral formulation of the MKS density-
functional theory, combined with the recent advances in
exchange-correlation functionals might provide one with
an emcient approach to calculate the thermal properties
of many-electron systems.
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and

(52) APPENDIX A: FERMI-DIRAC FUNCTIONS
AND THE D (x,y ) FUNCTIONS

o*(r)= ,'o[p v,ff;-r], — (53)

where the functionals p, t, and o are defined in Sec. II
and explicitly represented in Secs. III and IV. The sym-
bol + / —denotes spin up (+) or spin down ( —), and the
factor —,

' appears because each spin orbital is singly occu-
pied, rather than doubly occupied as in Section II. The
spin-dependent local effective potentials v*,z are defined
similarly to the case of ground state [also see Sec. IV of
Ref. 7(b)].

In summary, sequential representations of the exact
functional relation p' '[p —v,ff, r] have been developed
via polygonal and Fourier path integrals (see Appendix B
for an alternative family of representations). Coupled
with the relation of v,ff(r) to p(r) [Eq. (5)], they consti-

The Fermi-Dirac functions defined by Eq. (40) can also
be represented via inverse bilateral Laplacian trans-
form, '

(x)= f dP e~", 0&y &1
@*sin(mg)

which can be put into a convenient form

(Al)

From Eq. (A 1 } follows the recurrence relation

BF (x) =F,(x) . (A3)

I

8F(x)= . f dP e~", 0&y &—
2~i y' i P sin(m. 8—P}

(A2)
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For o; = 1,0, these are elementary functions@':

F, (x)=ln(1+e"),

Fo(x}=(l+e ")
(A4)

(A5)

exp ——y =v'p/n Jt e ' y'e ~' dt, Re(p)) 0 .

(A8}

Inserting Eq. (A8) into Eq. (29} in the text, and using Eq.
(A 1), one obtains

Letting x =(p —E;)/8, the representation of Fo(x) via
Eq. (A2) is just Eq. (16) of the text, providing another
proof of Eq. (16). Comparing Eq. (A2} with Eq. (18) of
the text, one finds

A' '(r, r')=8&r~F, ((p, —8)/8)~r'&

=8& r ~ln j 1+exp[(p, —8)/8] I (r' &, (A6)

which, upon differentiation, leads to Eq. (17) in the text.
To relate the D functions to Fermi-Dirac functions,

use the identity'

2 2 q'
exp —p x'+qx &=exp 2, Re p &0

00 4p2 p

(A7)

and change the variable of integration to get

APPENDIX 8: AI.TKRNATIVK RKPRKSKNTATIONS
FOR THK DENSITY MATRIX

There is another way to relate the first-order reduced
density matrix of the KS noninteracting system of Eq.
(11) in the text to path integrals; namely,

—,'p' '(r, r')= &rlf(p —&)lr'&

=f dx f(IJ, «)&rl5(x —&)lr'&, (Bl)

where f (x) is the Fermi function and 5(x) is the Dirac 5
function. In turn, the 5 operator can be derived from

&r[5(x —8))r'& = &rig(x —&}Ir'&, (B2}

A ' '( r, r' ) =8 r ln 1+exp
8

where the step function operator is the ground-state den-
sity matrix discussed in detail in the preceding paper. ' '

See the following paper' for the explicit expressions of
the 5-function operator in terms of v,tt(r} via path in-

teg rais.
Equation (Bl), coupled with the Eq. (5) in the text, pro-

vides an alternative family of self-consistent equations for
the determination of p(r) and U,tt(r) for the equilibrium
state. Other properties are determined from the self-
consistent solution through

D (x,y)= ~ e*' «'F, &2(x t )dt . —

00 nx

F,(x)= g ( —1)" e x(0.
n

For x (0, F(x) has a convergent series expansion"

(A9)

(A10}

=8f dx ln 1+exp
00 8

X &ri5(x —B)ir'& (B3)

The corresponding expansion for D can be derived via
Eq. (A9); namely,

a~'"(r, r ) p X=f dx ln 1+exp

x &0.an=1

00 nx —y ln
D (x,y)= g (

—1)" (Al 1) (p —x)

Comparing Eq. (29) in the text with Eq. (Al) leads to
the proof of Eq. (39) in the text. Finally, comparing Eq.
(30) of the text with Eq. (26) of Ref. 7(b), one finds

0 1+exp
8

X&r~5(x —P)~r& . (B4)

lim 8 D (x /8, y 8)]= — J (2xy)g(x ),g~o
(A12)

assuming that the 8~0 limiting is interchangeable with
the complex P integration. Equation (A12) can be used as
a transition of the finite-temperature formulation to the
ground-state formulation.

This formulation avoids the use of the special functions
D (x,y) introduced in the text. With equivalent sequen-
tial path-integration representations to the 5-function
operator and the exponential-function operator, Eq. (B1}
and Eq. (14) in the text represent the first-order reduced
density matrix in two ways.
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