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Energy values for the ground and three lowest excited singlet S states of helium have been calcu-

lated using hyperspherical coordinates in a variational basis consisting of Sturmian functions in R,
Legendre polynomials in 8», and problem-optimized functions in a. No adiabatic hypothesis is

made. The convergence and energy values are superior to previous calculations using similar

methods, but not as good as calculations in which r l2 is explicitly included. Plots of
(H —E)4(R,a, 8») versus 8 and a are presented, and they show that the greatest departure from

zero is in the a =0 region.

I. INTRODUCTION

Hyperspherical coordinates, first introduced into atom-
ic physics by Bartlett, ' have been extensively applied to
two-electron atoms, usually by means of an adiabatic hy-
pothesis. These studies have been primarily con-
cerned with the correlation structure of doubly excited
states, although other applications have been reported.
Feagin et al. have investigated the helium ground state
as well as S-wave e-H scattering and Christensen-
Dalsgaard has also performed a hybrid hyperspherical
coordinate and close-coupling calculation for S-wave e-H
scattering. The adiabatic hyperspherical approach has
provided an economical and quite accurate method for
studying low-lying doubly excited states, but has been less
successful for the ground state.

In order to obtain further insight into the suitability of
hyperspherical coordinates for two-electron systems, we
have begun a study of both the ground and low excited
states as well as doubly excited states using a hyperspher-
ical basis without the adiabatic hypothesis. In this paper
we report very precise energy values for the (ls ), ( ls2s),
( ls3s), and ( ls4s)'S states of helium. Results concerning
doubly excited states will be forthcoming in a subsequent
paper. We use a product basis consisting of Sturmian
functions in the hyperspherica1 radius R, specially con-
structed functions in the pseudo angle a (to be described
in Sec. II) and Legendre polynomials in 8,2.

Other, nonadiabatic studies ' have investigated the
ground state only and have used hyperspherical harmon-
ics for the a, 8&z dependence. We achieve a lower energy
with fewer terms than used in these studies due to the
basis functions in a. It is our experience that hyperspher-
ical harmonics do not converge well for a description of
the ground state, and the situation worsens considerably
for singly excited states. That the hyperspherical ap-

proach has diSculties when the two electrons are far
apart has been recognized and is implicit in the calcula-
tional method devised by Christensen-Dalsgaard to de-
scribe electron scattering.

An additional advantage of the basis selected here is
the ease with which matrix elements can be calculated.
The nonlinear parameter g in the Sturmian basis can be
varied to achieve an optimum energy without recalculat-
ing the entire matrix since it appears just as a scale fac-
tor.

In Sec. II we present the computational method and in
Sec. III the results. In Sec. IV we include some plots of
4 and (H E)tp versus —R and a to investigate the limita-
tions of the wave function, and there are concluding re-
marks in Sec. V.

II. COMPUTATIONAL METHOD

The hyperspherical coordinate system is defined in the
usual way by

R =(r&+rz)'i and a=tan '(rzlr&) . (2)

In order to describe a two-electron state completely, the
remaining coordinates can be chosen as

r

r( rp
Oi2 =COS (3)

The Schrodinger equation for a two-electron atom with
an infinitely heavy nucleus reads

—,'(b, , +5 ) —Z + + %(r„r)
1 1 1

r 1 r2 rl

=Ee(r„r,) . (1)
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and the three Euler angles. The wave function for S
states does not depend on the overall orientation of the
system and can be written as

1
q (R,a, 8») = & (R,a, 8») .

~i "z
(4)

The Schrodinger equation in hyperspherical coordinates
1S

8' I a I a'
dR R t)R R Ba R sina cosa

8 8
cotO 2 +

()g'„
Z 1 1+
R cosa sina

QO

+ g tan"aP„(cos8{2)
R cosa

1
"

1+ . g P„(cos8,2) 4=E4 . (5)
Rslna 0 tan a p (p

(n —2)!
2(n + I)! (gR }2e-~'"L{3' (gR)

where L„' 'z(gR ) is an associated Laguerre polynomial.
The trial function is given in the product form by

4(R,a, 8,2)= g c„I~S„((R)P)(cos8,2}f~(a) .
n, l, m

To achieve the required symmetry, f (a)=f (n /2 —a)
for singlet and f (a)= —f (n/2 —a) for triplet states,
the following boundary conditions are imposed on f (a}.
These are

=0
a=m/4

for singlet states, and

f (rr/4) =0

for triplet states. Furthermore, the function f (a) has to
vanish at a=0.

The question is how to make an effective choice of the
a basis functions f (a). We began by using suitably
modified sine functions. This seems natural because the
boundary conditions are easy to apply, and these func-
tions are closely related to the hyperspherical harmonics.
The energy of the ground state, however, converged very
slowly and in terms of the size of the basis, the results
were inferior to those of Petrov, Jarovay, and Babaev.
We found also that excited states are very difficult, if not
impossible, to calculate due to the poor convergence of

To solve for the energy of this Hamiltonian we employ
Sturmian functions in R, Legendre polynomials in 8&2,
and problem optimized functions in a, f (a}. The Stur-
mians are defined by

' 1/2

I

these sine functions. As an example, the energy of the
first excited state using ten radial functions, three Legen-
dre polynomials, and ten sine functions is E, = —2.0826
a.u. , i.e., 0.07 a.u. too high and the higher excited states
are not even bound.

Our approach to accelerate the convergence of the a
basis is to determine the coefficients V„l by using a basis

j (a) of trial functions (e.g., sine functions). One ob-
tains a first approximation to the a eigenfunctions g {„"(a)
given by

g'„"(a)=gc„,f (a) .

Then we try to find basis functions f~(a}which simulate
the functions g'„"(a).Plots of the functions g„'"(a)for
1=0 using the final basis are shown in Fig. 1 for the
ground state and two excited states. Curves for / &0 look
very similar but are smaller in magnitude. There are two
apparent features: (a) The amplitude of g„'"(a)decreases
rapidly for increasing n. Thus, e.g., no more than five
Sturmians should be adequate for the ground state. (b)
The functions g„("(a)only oscillate in the left region
(0&a&m/8) and in the right region (m/8&a&m/4)
there is no structure present; here the g„'"(a)appear to
behave exponentially.

From these graphs it is clear why a sine-function ex-
pansion or hyperspherical harmonic expansion is inap-
propriate for a) m/8. It is very difficult to find simple
functions in a which resemble the features of the a eigen-
functions. The main problem is that each basis function
has to satisfy the boundary conditions (8). We construct-
ed two sets of nonorthogonal functions, where each set
can represent the eigenfunctions g„(a)in different re-
gions, i.e., for 0&a&m. /8 and ~/8&a&m. /4. Our basis
has the form

1.2

g (a)
08

0.4
(o)

g (~) 0.S

0.2

g (a)
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FIG. l. Eigenfunctions g„'o'(a)= g c„of (a) for ground state, first excited state (1s2s)'S, and second excited state (1s3s)'S of
He.
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f (a)=

sin(ma)
)(m/cx 1+cd/4) '

e~~ e '~ ' ' 'sin(ma), m =3 7 11, . . .2

L

(10)
where c is a nonlinear parameter to be optimized for each
state. Both sets satisfy the boundary conditions and have
complementary features which result in an approximate
orthogonality to each other.

Figure 2 displays the behavior of f (a) for c =1. The
function set jf (a)I for m =1,5,9, . . . is able to de-
scribe the oscillating pattern ofg„(a),whereas the set for
m =3,7, 11, . . . can represent the constant amplitude
near a=n/4. The principal consideration in the selec-
tion of these functional forms was the ability of each
member to contribute to the overall function, g„(a),in
only a litnited range of a, a behavior which is clear in
Fig. 2. There are obviously other possible forms, but
these proved easy to use and showed good convergence
properties. All matrix elements involving the a basis
functions were computed numerically.

III. RESULTS

We foresee the principal application of this basis to be
the properties of doubly excited states of two-electron
atoms. Nevertheless as a preliminary test of interest in it-
self we have computed the energies of the ground and low
t:xcited states of helium. We anticipate that the basis wi11

become more and more unsuitable as the discrepancy in
principal quantum number of the two electrons increases,
yet precise energies are found up to the 1s-4s state. We
optimize the nonlinear parameters c and g for each state.
Table I contains the present results.

Two types of calculations are chosen for comparison:
approaches using Hylleras coordinates, including r, z ex-
plicitly, ' ' and one using hyperspherical coordinates
with hyperspherical harmonics. Of course other
methods of computing the He ground state exist, some
quite accurate and efficient, ' but these are not directly
relevant here. Petro v et al. used exponentials and
Laguerre polynomials for radial functions and included
up to 840 terms in all coordinates.

The comparison, in Table II, shows that the hyper-
spherical approach, at least with the present formulation,
can give very good energies if pushed hard enough, but
that the Hylleras coordinates remain the most efficient
basis. Our a basis has provided convergence for the ex-
cited states as well. Using hyperspherical harmonics, as
in Ref. 7, such convergence will be extremely difficult if
not impossible. The excited state energies could possibly
be lowered further by adding additional radial functions.
The amplitudes of the higher indexed Sturmians were
quite large in the diagonalizations.

The parameter c has the interesting property of in-
creasing by about unity as each higher excited state is
considered. For the ground state we obtained c=0,
showing that the a basis develops exponential behavior
since

sin(ma)
lim

,
=sin(ma)e

~-o (1+ca)
Preliminary calculations for S, 'P, and P excited states
were also carried out with the same pattern of results.

IV. LIMITATIONS OF THE a BASIS

The ability of our trial functions to give accurate ener-
gies for ground and excited states is a confirmation of the
applicability of hyperspherical coordinates. However,
getting good energy values does not necessarily imply
that the trial functions really represent the true wave
function over the whole (R,a, e,2) space. Therefore, we

have examined the goodness of our approximation to the
wave function by plotting the deviation (H E)4 for the-
ground, first, and second excited states, which is a much
more vivid indication of the limitations of the basis set
than the expectation value ( %~H E~4 ) or other—possi-
ble expectation values.

TABLE I. Energies for the lowest four S states of He in the hyperspherical basis, where N, and NI denote the number of Sturmi-
ans and Legendre polynomials, respectively. The optimized parameters are indicated by g„,and c,~, .

State
('s)

(1s')

(1s2s )

(1s3s )

(1s4s )

Energy
(a.u. )

—2.902 750
—2.903 300
—2.903 493
—2.903 576
—2.9037 106
—2.145 906
—2.061 101
—2.032 296

Ns

5
5
5
5
7
10
10
10

Included m in
a functions f la)

1,5,9,13;3
1,5,9,13;3
1,5,9,13;3
1,5,9,13;3

1,5,9,13,17;3,7
1,5,9,13,17;3,7,11,15
1,5,9,13,17;3,7,11,15
1,5,9,13,17;3,7,11,15

NL

3
4
5

6
13
3
3
3

4.208
4.208
4.208
4.208
4.208
2.206
1.552
1.134

&OPt

—0.0629
—0.0629
—0.0629
—0.0629

0.01508
0.813 31
1.769 10
2.91031

Matrix
size

75
100
125
150
637
270
270
270
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11 and 12) with the present, results.vious calculations (Refs 7 10 anTABLE II. Comparison of previous c

State
('S)

(1s )

(1s2s )

(1s3s )

(1s4s )

'Reference 11.
Reference 12.

'Reference 7.
Reference 10.

This work
Energy (a.u.)

—2.903 711

—2.145 906
—2.061 101
—2.032 296

Terms in
wave function

637

270
270
270

Other works
Energy (a.u. )

—2.903 724 377
—2.903 724 377
—2.9037047
—2.145 974045
—2.061 271 989
—2.033 586 728

Terms in
Wave function

246
230
840
174
174
174

Author

Frankowski et al. '
bFreund et al.

Petrov et al. '
Freund et al. b

Frankowski
Frankowskid

ace lots of 4 and (H E)4 —versusFigure 3 shows surface p ots o
lots it is clearnd a for the case 812=m. From these p o s i

sent the true wave functionthah t our a basis does not represen e
ro. h' '

th se where one electron isro. This is t e case

tonian, which become singu ar or a=,
1 d tli f

H E)@. —
we have not corre ate eUp to now, we

so these singularthe Le endre polynomials, and so ewith t e eg
f the single-particle angularterms, which come from t e sing

th spikes. If we take am o erators, cause t e spi
ion a roach to the wave function,g - o ppo

terms in the wave function of the form r, r 2

e a'+' as the lowest power in

f P ~ 8 ). This can be achieved bythe coef6cient of Pl cos 12 .
modifying our a basis to

f(I)(a)

l+1[sin( m a) ] for m =1,5,9(1+ca)(m /c)(l+ 1)(1+cm/0)

'sin(ma) for m =, ,
2

7 11.e e

(12)

la~ed ' "(a)Fi ure4s ows eah th pplication of the correla
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her s~~gle ~~cited st~t~s little

achieved. Also the corresponding energy is a litt e
higher compare to e ud the uncorrelated a basis because the
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functions f' '(a) decrease too fast as I increases. The
difference in energy is about 1X10 a.u. The a basis is
flexible enough to handle both the singularities in the an-
gular momentum operators and the potential, but the
rzr, factor in the differential volume element reduces to a
negligible level the contribution of the a =0 region in the
integral. Thus the variational principle does not lead to
the optimum determination of coefBcients for this range
of a.

V. CONCLUSION

gree to which the wave fgnction is an actual solution to
the Schrodinger equation in terms of surface plots of
equation (H E—)4 versus R and a for 8&z=~.

The graphical analysis showed that the region around
a=0 contained the primary departure of (H E—)@ from
0. Correlating powers of a with Legendre polynomials
improved the situation, but did not entirely remove the
problem which has, however, an extremely small effect on
the energy. We intend to apply this basis next to study
the structure and properties of doubly excited states.

We have found a simple variational basis capable of
producing very accurate energy values for both ground
and excited states of the He atom. We have paid particu-
lar attention to the a dependence and were led to use a
basis that has properties quite different from the hyper-
spherical harmonics. We have also investigated the de-
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