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Enhanced x-ray gain through photodepopulation
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Radiation trapping currently creates one of the major limitations on population inversion, gain,
and size in x-ray lasers. The resulting increase in lower-level population may be reduced by photo-
depletion to higher energy levels. A natural energy match between hydrogenic lasing ions of nu-

clear charge Z, for n =2 to 4 or 6 excitation, and Z/2 radiating ions provides a scalable system for
even-Z elements.

INTRODUCTION

0

Reaching the next short-wavelength plateau ( (50 A)
in laboratory x-ray laser development could likely depend
on hn =1 transitions, because the successful hn =0,
3p ~3s neonlike ion transition does not readily extrapo-
late that far, and the inherent multiplicity of the n =4 to
4 nickellike transitions limits the achievable gain. For
An =1 transitions, hydrogenic ions continue to be very
attractive candidates, and there has been particular suc-
cess with the C + ion at 182 A on the n = 3 to 2
Balmer-a transition. The lasing wavelength for this tran-
sition extrapolates as simply Z (Z being the nuclear
charge), e.g., to 45 A for Mg" +. However, the size be-
comes micrometer in scale because of the need to avoid
radiative trapping on the 2p-1s Lyman-a resonance tran-
sition.

Electron-collisional recombination has proven to be a
most promising pumping method for producing popula-
tion inversions leading to amplified spontaneous emission
in the xuv spectral region, with the gain scaling hydro-
genically as -Z . Maximum pumping is obtained in a
high-density plasma consisting of totally stripped ions of
the element of laser interest in which the electrons are
suddenly cooled, leading to rapid collisional recombina-
tion and cascading. When the ion temperature is also
low, an additional enhancement of the overall gain (scal-
ing as T '~

) is obtained through reduced Doppler line
broadening. Also, for a similar laser wavelength, present
An =1 recombination-pumped devices operate at a lower
electron density than do the electron-collision-pumped
hn =0 devices, with the added advantage of lower refrac-
tion losses through the amplifying line plasma.

Even with these obvious advantages, measured gain
coefficients to date seem to be capped at about 3—6 cm
This can be associated with a relative population inver-
sion factor 1 —

N2g 3 /N3g2 which just marginally exceeds
zero, due to collisional mixing and radiative trapping at
the high densities required for such high gain. ' Hence,
N3 =N2(g3/g2). [Here the upper- and lower-state densi-
ties are designated, respectively, by N3 and N2 and the
statistical weights by g„=2n (n =2, 3) for the Balmer-a
transition. ]

Hence, to increase the population inversion and there-

by the gain to saturation, to improve the overall
efficiency, and to increase the plasma size for eventual
multiple-oscillator plus amplifier operation, it is impor-
tant to decrease the population density N2.

CONCEPT

The density N2 can be decreased by transferring n =2
electrons to the n =4 level through absorption of n =2 to
1 Lyman-a photons from a second Z/2 hydrogenic ion,
where Z is the nuclear charge. This results in photoexci-
tation to the n =4 level in the lasing ion (see Fig. 1).
From the Rydberg formula this Z, Z/2 is a natural
match ' which extrapolates readily for all even-Z ele-
ments. Also, a n =3 to 1 Lyman-P photon in the Z/2
plasma to a somewhat lesser degree can depopulate the
n =2 level by photoexcitation to the n =6 level (shown
with a dashed line in Fig. 1), followed by cascade to n =3
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FIG. 1. Hydrogenic energy-level diagrams for n =3 to 2 las-
ing in ions of nuclear charge Z, with n =2 depopulated to n =4
or 6 by Lyman-a and Lyman-P (dashed) photons, respectively.
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for further n =3 to 2 inversion and gain. A highly
relevant combination is Mg" + (Z =10) lasing on a 3-2
transition at 45 A with n =2 depopulated to n =4 and 6
by C'+ Lyman-a and Lyman-P emission at 34 and 28 A,
respectively. Such n =2 to 4 photoexcitation in Mg' +

by C + Lyman-a emission may have been demonstrated
already for pumping fluorescence on a n =4 to 3 transi-
tion.
is C + (Z =6) currently lasing at 182 A and irradiated by
Li + Lyman-a emission at 135 A. The following analysis
is based primarily on the latter, i.e., creating a fully ion-
ized carbon plasma at an electron kinetic temperature
kT =150 eV, rapidly cooling it to about 20 eV for recorn-
bination pumping, and irradiating it with a plasma
designed for strong emission on the hydrogenic Li +

Lyman-a line.
A less direct n =2 photodepopulation scheme that also

could decrease N2 involves matching only approximately
the incident photon energy and the n =1 ground-state
ionization potential. With sufficient irradiance, such a
decrease in N& would result in less radiative trapping on
the Lyman-a transition and hence a lower density N2.
This could also serve to reionize the lasing ion for addi-
tional pumping through the recombination with an
overall potential increase in efficiency, an effect already
demonstrated, for C + 2p~ ls irradiation of lithiumlike
Na + ions. Short of a complete numerical analysis, in-
cluding nonequilibrium radiative and thermal transport
between the two plasmas, some validity can be ascer-
tained by the following considerations.

For threshold inversion, N3 Ig3 ——N& Ig&. Also, for
Doppler broadening, the relative line width b v/v=6k/&
can again be taken as —3&(10, such that Eqs. (1) and
(2) give

N =
2 $24 342 v

=9 X 10' photons/cm (3)

N„'= [exp(hc/Az4kTs) —1] =N„.4m )Av
~24 v

(4)

Combining Eqs. (3) and (4) for matching line widths
leads to the simple relation (independent of wavelength):

exp(hc/A, z~kTs )=1+ =1.3,16 ~42

9 332
(5)

for tabulated" hydrogenic transition probabilities. This
leads to a required brightness temperature of

for the required flux at the lasing ion generated by
Lyman-a emission from the Z/2 pumping-source ion.
(The Lyman-P pumping will reduce this requirement fur-
ther, but is not included in this simple analysis. )

The quantity N„ in Eq. (3} may be used to estimate
some pumping-plasma characteristics. Assuming a com-
pletely congruent plasma mixture, i.e., collection of pho-
tons over 4m steradians, the required flux generated by an
optically thick Li + (primed quantities) Lyman-a line of
wavelength A, z, ——135 A ( =A.z4 for C +

) is given by the
blackbody formula:

LITHIUM-CARBON ANALYSIS k Ts ——4 X 10 IA, ~~ eV, (6)

The wavelength matches for the Li +-C + combination
are excellent. Most (-65%) of the Li +-ion Lyman-a
emission arises from the J=3/2 to 1/2 component at a
wavelength' of 134.998 A. For the C + lasant ion, ap-
proxirnately 63% of the total n =2 to 4 absorption
occurs on the 2p ~4d transitions, " about 75% (accord-
ing to statistical weights) of which should occur on the
J = —,

' to —,
' term at a wavelength' of 134.990 A. The

0
main coincidence, therefore, is within 0.008 A. A con-
venient 6gure of merit here is the ratio
hA, /A, =O. 59&(10,which is much less than a similar ra-
tio of hk/k —3)&10 for the Doppler spread' of the
broader (pumping) line.

To be effective in reducing N2, the n =2 to 4
volumetric photoexcitation pumping rate N2P24 must at
least exceed the n =3 to 2 spontaneous decay rate N3 2432
for populating the n =2 level (assuming that

) 3 N„A„z «N3 A 3z and that the n =3 to 2 lasing is
below saturation). Hence,

8mc g2 Av
~42 3 ~24 '

A 24 g4
(2)

24
=—N2N~o 24c & N3 32

where N is the photon density at the lasing ion and o24
is the peak n =2 to 4 photoexcitation cross section. The
transition probability A42 is related by o.

24 by

0
for k24 in A. For the Li + Lyman-a line, this becomes

kT~ ——300 eV .

Blackbody emission can be assured for an opacity'

rq)
——5X10 ' N A,~qd(p/kTs)'~ =100, (8)

8'p=5 MW . (10)

This could be expected to increase by -3 times for dual
plasmas separated by the same distance. ' ' That this is
in a reasonable range at least for laser-produced plasmas
is evidenced by a measured' value of 25 MW emitted
from a Na + pumping line in a plasma created by a
high-power laser with an irradiance on target of 5X10'
W/cm .

0
where p=7 is the atomic mass number, X24

——135 A, and
kT=kT~ is in eV. This opacity can be achieved for a
d = 1 mm dimension at an ion density of N; = 10' cm

We can also relate' the required photon density N in
Eq. (3}to a measurable emitted power W~, again starting
with congruent plasmas, by' '

8'P k24

4~ pr2c2

For a characteristic dimension r = 100 pm (200-pm
diam), this gives
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Such a powerful emission, corresponding to a Li +

plasma temperature of kT=300 eV (the brightness tem-
perature for the source), presents the possibility some-
what of overheating (e.g. , by thermal conduction) the
nearby C + lasing plasma, which must be cooled to -20
eV for lasing. In this regard, it should be possible to gen-
erate initially a homogeneously mixed C +-Li + fully ion-
ized plasma at an electron kinetic temperature kT=300
eV. This is subsequently cooled to kT =20 eV, such that
the lower-Z Li + ions recombine at a lower ( ~ Z ) rate
to provide the 2p-1s Lyman-a emission congruent with
the carbon ions, which are recombining and lasing much
more rapidly. For the sake of argument, suppose the
Li + stripped ions are at such a density as to recombine
within the mean C + Balmer-series decay time (lasing
period) of t„—100 ps. For the Lyman-a photon energy of
92 eV, the required 5 MW of congruent power
( =N; Vhc/A, 4zt„) could be produced by an ion density of
N;=10' cm in a laser-heated plasma of 500 pm ra-
dius. If operated at 10 times this density to assure a high
opacity (see above), the emission would be more than ade-
quate. (This recombination process is most likely the
mechanism by which the 25 MW Na + power was pro-
duced. '

) Hence, because this is a highly nonequilibrium
situation, the Li + Lyman-u emission would not be limit-
ed to a brightness corresponding to the 20-eV C + plas-
ma temperature.

Li +-C + combination above. The carbon-magnesium
plasma would have to be heated initially to kT =600 eV
and then be cooled to kT=80 eV for recombination
pumping, in analogy to the lithium-carbon scheme.

From Eq. (3), the required photon density N„scales as
A,zz, and therefore increases by a factor of ( —",,' ) =63, re-

sulting in 7.0X 10' photons/cm for Mg" +. From Eq.
(5) the blackbody brightness temperature is

kT~ =1.2 keV,

i.e., about 4 times that for the Li +-C + combination.
From Eq. (8), an opacity of rz& ——100 will be obtained at a
C + ion density of 6&(10' crn, for the same d =1 mm
depth.

From Eq. (9), the pump power Wt, required scales as
N„/A, 24, so that there is a total A, zz scaling from Li + to
C +. This results in an increase by a factor of 250 to 1.2
GW, which is high by present laser-produced plasma
standards. It is, however, quite reasonable for large
pulsed power devices, where 25 GW of power recently
has been measured. ' However, for nonequilibrium
recombination from C + to C + in a period t„reduced by
a factor of A, , or —,', the time of Li + to Li + (i.e., in -6
ps), the ion density N, = Wpt„l24/Vhc , scales as A,

' and
increases only to ¹

=4)(10' cm for C +.

SUMMARY

CARBON-MAGNESIUM ANALYSIS

Similar parameters can be derived for the C +-Mg" +

combination (with possible further enhancement by
Lyman-P pumping). The wavelength match' between
the Mg"+-ion 2P3&2~4D, &2 main absorption transition
at 33.733 A and the 2P3/2 1S,&2 dominant C + Lyman-a
component at 33.734 A, is 0.001 A. Also, the figure of
merit bt(, /A, =0.33)&10 is even better (compared to
that for Doppler broadening) than was the case for the

In summary, "naturally"-occurring hydrogenic line
matches for Z and Z/2, Z/3 elements promise a reduc-
tion of n =2 lower-level population and an associated in-
crease in gain for the n =3 to 2 Balmer-a line. The ini-
tial analysis is done for Z =6 and 12. The required
Lyman-a pumping-plasma conditions are reasonable for
Z'=Z/2=3 and 6, respectively. The Z =6, Z'=3 ex-
ample can be readily tested in present recombining C +

to C'+ lasers with added lithium [or with lithium carbide
(Li4C2)].
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