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We present a theoretical approach for describing clustering and percolation phenomena in an as-

sembly of nonspherical particles. The theory is based upon calculations of an orientation-dependent
pair connectedness function. We show how this function may be approximated using a perturbation
expansion in which the reference system is an assembly of spherical particles. The reference system
is treated via the connectivity Ornstein-Zernike equation in the Percus-Yevick approximation. Al-

though such an approach might appear to be limited to particles of small anisotropy, we find that as
the particle anisotropy increases, the regime of interest (i.e., densities below percolation) moves to
lower densities where the theory is increasingly accurate. Results are presented for systems of ran-

domly distributed ellipsoids with aspect ratios varying from unity to 5:1 and are compared with

Monte Carlo simulations. The approach successfully describes the pair connectedness function,
mean cluster size, and percolation threshold. In principle, the formalism is capable of describing
the connectivity of randomly distributed particle systems over a wide range of particle anisotropy,
including the limiting cases of randomly distributed spheres and infinitely extended rods.

I. INTRODUCTION

The description of cluster statistics in an assembly of
particles in which each particle may reside at any point in
space and not necessarily on a site of a lattice has impor-
tant applications in a variety of problems such as contin-
uum percolation. The clustering of continuum particles
can be used to mimic the domain structure in composite
materials and the appearance of percolating clusters may
be associated with drastic changes in the material proper-
ties or performance. Examples include the permeability
or conductivity of composite systems, such as fiber-
polymer' and polymer-polymer blend systems, flow
through porous media, and the sol-gel transition in po-
lymerizing systems. The clustering phenomena, as well
as the percolation threshold, depend upon the nature of
the particles, i.e., their shape, dimension, and their in-
teraction with other particles or an external field. There
is a variety of situations where departures from spherical
particle shape can be expected to play a determining role
in percolation. However, such a three-dimensional treat-
ment of anisotropic particle systems has received only
limited attention in experiment, simulation, and
theory ' even though a generalized theoretical descrip-
tion of clustering in continuum systems has been avail-
able for some time. '

Such a generalized description of clustering is based
upon the pair connectedness function, which measures

the probability that a pair of particles have a given sepa-
ration and are also members of the same physical cluster.
The range of the pair connectedness function reflects the
size of clusters present in the system and the function be-
comes long ranged as the density approaches the percola-
tion threshold. Such a function can in principle be ob-
tained for any monodisperse or polydisperse collection of
particles of arbitrary shape and potential. Coniglio
et al. ' derived an Ornstein-Zernike-like integral equa-
tion (the connectivity Ornstein-Zernike or COZ equation)
for the pair connectedness function, and showed that
solutions to this equation could be obtained via a closure
appro'ximation. The COZ equation has been solved using
the Percus-Yevick (PY) approximation" for a number of
models; these include randomly centered spheres, ' '
adhesive spheres, ' concentric shell, ' ' and attractive
square-well particles. ' The theoretical predictions of
these models have been shown to compare favorably with
Monte Carlo simulation. ' Most recently Xu and
Stell ' obtained analytic solutions to the COZ equation in
the mean spherical approximation for spherical hard-core
particles with an attractive Yukawa tail. Solution of the
COZ equation for nonspherical particle systems is a for-
midable task and has not been attempted.

In this paper we extend the Coniglio description of
clustering to assemblies of anisotropic particles. The ex-
tension is accomplished by defining an orientation-
dependent pair connectedness function. We develop an
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approximation scheme for calculating this function using
a perturbation theory, similar to the treatment originally
developed in the statistical mechanics of molecular
fluids. This method seeks to account for particle aniso-

tropy starting from a known reference system of spheri-
cal particles. Using this theoretical formalism and Monte
Carlo simulation, we investigate the role of particle an-

isotropy in the clustering and percolation of randomly
distributed ellipsoids. Other more complicated assem-

blies, as for example partially penetrable ellipsoids, can
be investigated using the techniques described here,

Prior to this work, the principal focus of theoretical in-

vestigations has been the conjecture that the percolation
threshold of randomly distributed objects scales with the
average excluded volume of particles. Using the cluster
expansion of Coniglio et al. ,

' Bug et al. recently
showed that this conjecture is exact to lowest order in

density, and provides an appropriate percolation descrip-
tion only in the limit of infinite particle extent or aspect
ratio. The theoretical formalism presented here allows us

to bridge the available descriptions of randomly distribut-
ed spheres' and infinitely extended particles, and de-
scribe the clustering and percolation over the entire range
of particle anisotropies.

The remainder of the paper is outlined in the following
manner. In the next section we briefly review the general
formalism of part connectedness in continuum models.
In Sec. III we extend the formalism to isotropic assem-
blies of nonspherical particles. Sections IV and V de-
scribe the model system studied, its numerica1 implernen-
tation in the theory, and the Monte Carlo simulation.
Section VI gives a comparison of the theoretical predic-
tions and Monte Carlo results, and we conclude in Sec.
VII with a summary of the results and a discussion of the
theory in the context of previous investigations.

II. GENERAL THEORY OF PAIR CONNECTEDNESS

The pair connectedness function P(1,2} for a system of
number density p is defined' such that the quantity

p P(1,2)d 1 d2 measures the probability that a pair of
particles possess a configuration lying between 1,2 and
1+d1,2+d2, and are members of the same cluster. The
coordinates 1 and 2 denote positions of the particle
centers, say, r& and rz, as well as the particle orientations

0, and fL2, where 0 denotes a set of angular coordinates,
depending upon the dimension of the system and the par-
ticle symmetry. In the case of a translationally invariant,
isotropic system, the pair-connectedness function is more
simply expressed for spherical particles as P(r), and for
nonspherical particles as P(r, Q„Q~),where r represents
the interparticle separation.

The pair-connectedness function can be described
within the context of the statistical theory of physical
clustt:rs set forth by Hill. The connectivity of particle
pairs is described by separating the Mayer function into
two contributions: f+(1,2), corresponding to bound or
connected particle pairs, and f (1,2) for unbound pairs,
such that f (1,2)=f+(1,2)+f*(1,2), where f (1,2)
=exp[ —Pu (1,2)]—1 and u (1,2) is the interparticle po-
tential. By introducing this notation into the cluster ex-
pansion of the pair correlation function h (1,2), Coniglio

et al. ' identified a subset of graphs at each order in den-
sity corresponding to contributions to the pair correla-
tion function from particles which are members of the
same cluster. Each graph in this subset has at least one
continuous path of f+(1,2) bonds between the root
points. The sum of these contributions over all orders in
density is the pair connectedness function. In complete
analogy with the pair correlation function, the pair con-
nectedness function is governed by an Ornstein-Zernike-
like integral equation, to which we refer as the connec-
tivity Ornstein-Zernike (COZ) equation,

P(1,2) =c+(1,2)+p fc+(1,3)P(2, 3)d3, (2.1)

g (1,2)=[1+f (1,2)]y (1,2), (2.3)

and y+(1,2) is its connectedness counterpart, defined via

P(1,2) =[1+f '(1,2)]y+(1,2}+f+(1,2)y (1,2) (2.4)

such that y (1,2) =y+(1,2)+y'(1, 2) and where the func-
tions y(1, 2)+ 1 and y+(1, 2) correspond to the subsets of
diagrams in h (1,2) and P(1,2), respectively, with at least
one nodal point. The mean cluster size can be obtained
from P(1,2) or c+(1,2) using'

S=l+pf P(1,2}dld2
—1

1 —pf c+(1,2)dld2
L

(2.5)

For some models of spherical particles, P ( 1,2) can be
solved from Eqs. (2.1) and (2.2) analytically, ' ' ' ' using
the factorization techniques developed by Baxter, or nu-

merically. ' However, for the case of anisotropic parti-
cles, Eq. (2.1}becomes very complex because of the orien-
tation dependence. One could follow a strategy used in
the study of molecular fluids where the angle-dependent
correlation functions are expanded in spherical harmon-
ics. However, this is still a relatively complex pro-
cedure, even for simple specifications of particle shape
and potential. Thus as an initial effort we take a some-
what simpler approach where we employ a perturbation
approach to the COZ formalism.

III. PKRTURBATIQN THEORY

A well-known method used to calculate the structure
and thermodynamic properties of fluids in statistical
mechanics is thermodynamic perturbation theory. The
basis of this approach is the relation of the Helmholtz

where e+(1,2) is the direct-connectedness function,
analogous to the direct correlation function c (1,2). The
functions c(1,2) and c+(1,2) correspond graphically to
the subset of diagrams in h (1,2) and P (1,2), respectively,
having no nodal points. Solution of Eq. (2.1) requires a
second independent relation between P(1,2) and
c+(1,2). A simple and often used closure is the Percus-
Yevick approximation, ' written in terms of the connect-
edness functions as

c+(1,2) =y (1,2)f+(1,2)+y+(1,2)f"(1,2), (2.2)

where y (1,2) is the cavity distribution function, defined
via
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f (1,2)=fo(1,2)+A[f (1,2)—fo(1,2)], (3.1)

where the subscript 0 denotes the reference system and A,

varies from zero to unity. In treating slightly anisotropic
particles, it is common to include the anisotropy only in
the perturbation, so that Eq. (3.1}becomes

f (1,2)=fo(r)+A[f (1,2)—fo(r)] . (3.2)

A variety of choices for fo(r) are available but the most
appropriate appears to be

f ( )=(f(1,2))„,„,, (3.3)

where the angular brackets indicate an orientation aver-
age. This approach ensures that the first-order term in
the Helmholtz free-energy expansion vanishes and that
the zeroth-order theory is exact in the limit of low densi-
ty. The pair distribution function or the cavity distribu-
tion function, written as a Taylor series expanded abaut
the reference system, can then be used to construct the
perturbation theory. Even at zeroth order in perturba-
tion, the approach yields reasonable results for the pair
correlation function in systems of slightly anisotropic
particles with repulsive interparticle forces. However,
for systems of large particle anisotropy, the perturbation
is very large and the approach generally fails.

At first glance it might appear that an analogous ap-
proach applied to the percolation description of aniso-
tropic particles would not have much merit. It turns out,
however, that the limitations of the perturbation ap-
proach are suppressed in the percolation problem since as
the anisotropy increases, the regime of interest in describ-
ing percolation moves to progressively lower densities
where the theory is more accurate.

To apply this Mayer function perturbation expansion
to the percolation problem we write, in addition to Eq.
(3.2},

free energy or pair distribution function of a complex
fluid to that of g simple reference fluid. Such a relation is
accomplished via a perturbation expansion in terms of a
parameter describing the change in the intermolecular
forces in passing from the reference fluid to the fluid of
interest. It is common to express the perturbation by
parametrizing either the intermolecular potential or the
Mayer function, as for example

initial approximation, we implement the expansions at
zeroth ordeg, hence we have

and

g (1,2) =[1+f(1,2)]yo(r) (3 &)

P(1,2)=[1+f (1,2)]yo+ (r)+f+(1,2)yo (r) . (3.9)

The orientation average pair connectedness function is
obtained by removing the angular dependence of the
right-hand side of Eq. (3.9) or, equivalently, substituting
the expressions (3.3) and (3.5) for f (1,2) and f+(1,2).
Thus it is easy to see that, to zeroth order in the pertur-
bation scheme, the orientation average pair connected-
ness function of the anisotropic system is simply the pair
connectedness function of the spherical reference system,

IV. APPLICATION TO RANDOMLY
DISTRIBUTED PARTICLES

A. Model

The preceding formalism is in principle applicable to
any anisotropic particle model, e.g., spherocyclinders,
rods, etc. However, in the present work we choose a
model that can be easily tested in Monte Carlo simula-
tions. This model is that of fully permeable or randomly
distributed ellipsoids with aspect ratios L/o ranging
from 1.0 to 5.0. The particle pair configuration is defined
by the separation vector R, and the particle axial unit
vectors ui and u2 or, equivalently, by r, 8t, 8z, and (()i2,

Fig. 1. The overlap or connectedness of particle pairs at
discrete orientations is determined using the criteria
specified by the Gaussian overlap model (GOM) of Berne
and Pechukas, i.e.,

(3.10)

In the zeroth-order perturbation approximation, the
mean cluster size of the anisotropic particle assembly also
corresponds to the mean cluster size of the spherical
reference system. For the remainder of the paper we will
denote the orientation average of the pair connectedness
function as P(r).

f+(1,2) =fo+ (r)+ A,[f+(1,2) f o+ (r)], —

where fo+(r) is given by

fo+ (r)= (f+(1,2})„„
(3 4)

(3.5}

and the relation

fo(")=fo (")+fo (") (3.6)

y (1,2) =yo(r)+y, (1,2)+y2(1, 2)+
y+(1,2) =yo+ (r)+y+i (1,2)+y2+ (1,2)+

(3.7a)

(3.7b)

where yk(1, 2) denotes the kth perturbative term. As an

still holds. The cavity distribution functions y(1,2) and
y+(1,2) can be written as Taylor series,

FIG. 1. Representation of ellipsoids of aspect ratio I./cr with
particle pair configuration described by the interparticle separa-
tion r and the set of angles (8„92and $,2). Parameters in the
Gaussian overlap model are u& and uz, the axial vectors of parti-
cles 1 and 2, and R, the separation vector.
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(R u, +R u2)
A(Q„Q2)=o 1 —

—,'X

(R u, —R.u2)
2

+ [1—X(u, uz)]

—1/2

(4.1)

where X=[(L/o ) —1]/[(L/o. ) +1]and particles 1 and
2 are directly connected if by this expression
r &A.(Q„Q2). This potential has been used successfully
in the Monte Carlo simulation to describe the thermo-
dynamics of systems of hard-core ellipsoids of small par-
ticle anisotropy, both prolate (L/o & 1) and oblate
(L/o &1). The GOM collision diameter does not ex-
actly mimic ellipsoids, but it gives a qualitatively similar
angle-dependent connectivity.

B. Numerical solutions of the integral equation

The pair connectedness of randomly centered ellipsoids
is obtained from a numerical solution of the COZ integral
equation using the perturbation formalism described in
Sec IVA. . The functions f+(r, Q&, Qz) and f'(r, Q&, Q2)
are determined from the GOM connectedness criteria,
Eq. (4.1), as

are found by Eqs. (3.3) and (3.5) using a Simpson's rule
integration evaluated over 300 or more discrete orienta-
tions, depending on the value of L/o. , in intervals of
r =0.025cr. Figure 2 displays the functions for ellip-
soidal particles of aspect ratio L jo.=2.0. The interpre-
tation of the Mayer function fo+ (r) is apparent: f+o (r) is
the probability that two reference particles separated a
distance r are directly connected. In this sense the parti-
cle described by these reference Mayer functions is a ran-
domly centered sphere with a "connectedness-in-
probability" criteria similar to that proposed by Coniglio,
Stanley, and Klein (CSK) for lattices and used most re-
cently in a continuum context by Xu and Stell. '

The tabulated reference Mayer functions serve as ini-
tial guesses to the direct connectedness functions co+(r)
and co (r) in an iterative solution of the COZ equation
coupled with the PY closure, Eq. (2.2). The solution of
these equations is obtained using an adaptation of the
method of Gillan, and yields directly yo(r) and yo+(r),
and the zeroth-order perturbation to the orientation-
average pair connectedness function and inverse mean
cluster size, via Eq. (2.5). The orientation-dependent pair

1 for r & A, (Q„Q2)
0 forr A(Q Q )

1.0 A, (Q) Q2) =a

(4.2) P ( r )

The spherical reference Mayer functions fo+(r) and fo (r)

1.0
0.0

0.0 1.0 2.0 3.0 4.0

1.0 g(Q, Q, ) =(L+ty) &2

05-

0.0
0.0

0.0 1.0 2.0 3.0 4.0

-05--
1.0 A (Q(,Q2) =L

0.5 1.0 1.5 2.0
0.0

0.0 20 3.0 4.0
FIG. 2. Spherical reference Mayer functions for randomly

distributed GOM particles of aspect ratio L/o. =2.0. The full
Mayer function, fo(r) is zero for all r, indicative of randomly
centered particles. The connectedness Mayer function f0+(r)
may be interpreted as the probability that two reference parti-
cles separated a distance r are directly connected. In the
zeroth-order approximation, the complete connectivity of an as-
sembly of spherical reference particles is taken to be the connec-
tivity of an assembly of anisotropic particles.

FIG. 3. Orientation-dependent pair connectedness function
P(r, Q„Qz) for randomly distributed GOM particles of
L/o =2.0 at /=0. 20 with fixed orientation, as pictured in in-
sets. As a consequence of the truncation of the perturbation at
zeroth order, P(r, Q„Q2)is independent of particle orientation
for r & A,(Q„Q2).
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connectedness is found by substitution of yo+(r) and

yc (r) into Eq. (3.9). Figure 3 displays P(r, Q„Qz) for
GOM particles of L/can=2. 0 at specific particle pair
orientations. Note that P(r, Q„Qz)is independent of the
relative orientation of the particle pair for r & A.(Q„Qz),
where A(Q„Qz) is the maximum separation for which

two particles of fixed relative orientation may be directly
connected. This is a direct consequence of the zeroth-
order approximation made in Eqs. (3.7a) and (3.7b).

V. MONTE CARLO SIMULATIONS

Assemblies of randomly distributed ellipsoids were
simulated using the Monte Carlo method. The simula-
tions were initialized with the ellipsoidal particles aligned
on the sites of a simple cubic lattice with periodic bound-
ary conditions and were carried out for various value of P
below the percolation threshold, where P is defined as the
product of p and the volume of an ellipsoid. At each
value of P, the simulations were carried out using several
different numbers of particles, N = 125, 216, 512, and
1000, in order to estimate finite size effects. Each simula-
tion consisted of 10000 moves per particle, where a move
constitutes a translation and rotation of arbitrary magni-
tude. Equilibration was considered complete after 500
moves per particle. Correlation and connectedness statis-
tics, as well as cluster characteristics, were compiled at
intervals of 5 moves per particle.

The cluster statistics, namely, the pair connectedness
function, mean cluster size, and particle coardination
number, were found using the cluster counting algorithm
of Sevick et al. ' This algorithm can be applied to the
simulation of particles of any dimension, shape, or inter-
particle potential with arbitrary criteria for direct con-
nectedness. The algorithm uses direct connectedness in-
formation, or in this case, the overlap of all particle pairs,
to detect clusters of particles and construct the pair con-
nectedness function. To obtain the orientation average
pair connectedness function and the mean cluster size, we
recorded particles "overlapping" according to Eq. (4.1).

As discussed elsewhere, ' simulations of percolation
phenomena are plagued by finite size effects, particularly
near the percolation threshold. To reduce the impact of
using a finite number of particles, we extrapolated the
mean-cluster-size results to infinite system size. Addi-
tionally, the pair connectedness functions were recorded
for the largest system size explored (usually 1000 parti-
cles). Nevertheless, for periodic boundary conditions and
for densities approaching the percolation threshold, we
can expect finite size effects to falsely increase the value
of the pair connectedness function for r &L/o. . Howev-
er, the magnitude of this error is relatively small, even for
the most extreme system studied, L/o =5.0 at /=0. 12,
or Pl/ =0.86, where P is the volume fraction at the
percolation threshold, and is not readily apparent on the
scale of the figures presented in this paper. As demon-
strated in simulations of the connectivity of spherical par-
ticles, alternative boundary conditions can further di-
minish the magnitude of the finite size results.

VI. COMPARISON OF THEORY
AND SIMULATION RESULTS

1.2-

1.0

0.8--

CL
0.6-

04-

0.2--

0.0—
0.0 1.0

I

2.0
I

3.0 4.0

FIG. 4. Orientation average pair connectedness function

P(r) for L/fr=2. 0 found from Monte Carlo simulation (sym-

bols) and the perturbation theory (lines). /=0. 05 (~), 0.20 ( ~ ),
and 0.25 (A) corresponding to P/P =0.17, 0.68, and 0.85, re-

spectively. Note that the theory underestimates the connectivi-

ty, particularly for densities approaching P .

Figures 4 and 5 compare the orientation averaged pair
connectedness function P(r) predicted by the perturba-
bation theory and obtained from simulation over various

P for L/rJ=2. 0 and 5.0, respectively. These figures show
that larger aspect ratios increase the range of connected-
ness, both direct connectedness (trivially by definition)
and indirect connectedness (for r ~L/o ); the perturba-
tion theory successfully mimics this trend. At small
L/o, Fig. 4, the theory describes connectivity reasonably
well at small P but increasingly underestimates P (r) as P
approaches the percolation threshold P . The connected-
ness of randomly centered spheres, predicted by the
Percus- Yevick approximation, is qualitatively similar. ' '
In contrast, at intermediate L/o, Fig. 5, the theory
overestimates P(r). From the range of P studied, it is not
apparent that this overestimation becomes more dramatic
as P approaches P .

Figure 6 displays the corresponding inverse mean clus-
ter size versus P for L /a =2.0, 3.0, and 5.0. Also includ-
ed in this figure are the randomly centered sphere results,
i.e., L/o =1.0, obtained from an analytic solution using
the PY approximation. ' Consistent with an underes-
timation of connectivity at larger densities, the theoreti-
cal predictions of S ' for L/o =1.0 and 2.0 are larger
than the Monte Carlo results, particularly at densities
close to the percolation threshold. At L/o =3.0, the
perturbation theory predicts mean cluster sizes quite well
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VII. SUMMARY AND DISCUSSION

We have presented a theory, based upon a erturb
expansion and tp

'
d the Percus- Yevick approximation, ca able

of describin the c
' '

g e connectivity of a random assembly of
a ion, capa e

anisotropic particles. Using this formalism
c ustenng of anisotropic particles, specificall

the mean cluster siize and the pair connectedness, func-
es, speci ca y,
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t at of Monte Carlo simulation. Alth h houg t e theory in
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zero -or er perturbation assumption and the PY a-
proximation.

e ap-

The perturbation theory description of assemblies of
particles of small anisotropy ( L/i.e., o =2.0 of Fi . 4) is
consistent with the Percus- Y k devic escription of random-
ly centered spheres. ' Both th eories predict the pair
connectedness function quite 11 1e we at ow densities, but
underestimate connectivity at d ensities approaching the
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percolation threshold. This underestimation is attribut-
ed, in the case of spherical particle assemblies, to an in-

complete cancellation of parallel and bridge diagrams in
the cluster expansion of P(1,2), since such a cancellation
to all orders in density is assumed in the PY approxima-
tion. ' We might expect this incomplete cancellation to
also yield an underestimation of connectivity in aniso-
tropic particle assemblies. However, as the anisotropy
increases, the low-density limit, correctly accounted for
in the PY approximation, increasingly becomes a dom-
inant contribution to the pair connectedness function. In
the limit of infinite L/cr, the pair connectedness function
is given exactly by f+(1,2) (Ref. 8) and the PY approxi-
mation is essentially exact. Thus it does not appear possi-
ble to explain in a simple way the accuracy of the PY ap-
proximation over a range of particle anisotropy; at the
very most we can say that the PY approximation un-
derestimates connectivity, and that its behavior with in-

creasing L /cr depends upon a competition between an in-

creasingly incomplete diagrammatic cancellation and the
growing contribution of the exact low-density result.

In contrast, the perturbation theory consistently
overestimates connectivity of systems with large aspect
ratio (i.e., L /tr =5.0), even at low densities, e.g. ,
P/)~=0. 18 in Fig. 5. Since the zeroth-order perturba-
tion approximation in Eqs. (3.7a) and (3.7b) becomes
more severe as L/cr increases, it seems reasonable to at-
tribute this connectivity overestimation to the perturba-
tion assumption. Given the lack of orientational depen-
dence for r ~A, (Qi, Q2) in Fig. 2, it appears that the
zeroth-order perturbation term alone cannot accurately
account for the propagation of the orientation-dependent
indirect connectivity. However, in the limit of infinite
L /tr, the zeroth-order approximation becomes exact
since the pair connectedness function is given exactly by
f+(1,2), and the reference spherical system then be-
comes an exact representation of the orientation average
L/cr~ ac system. We thus expect that the zeroth-
order assumption becomes less accurate as slightly aniso-

tropic particles become more anisotropic, and becomes
more accurate as highly anisotropic particles approach
infinite extent.

Thus we have demonstrated that the theory can, in

principle, bridge the regime between randomly centered
spherical particles (described in the PY context) and par-
ticles of infinite extent. We have not identified the range
of L/tr where the zeroth-order and PY approximations
combine to be more or less accurate. However, the for-

malism does appear to assess the connectivity and per-
colation threshold of randomly distributed ellipsoidal
particles of L/o. =5.0 more correctly than in the case of
spheres or L /o. = 1.0.

Another issue which we hope to address in future work
is the particle anisotropy dependence of the exponent y
defined through

(7.1)

For the case of randomly centered spheres y is thought
to be close to 2, as predicted by the PY theory. ' For
very long rods, y should approach unity. Our present
simulation results for the mean cluster size were not
sufficiently close to the percolation threshold to permit
the accurate determination of y. However, a more de-
tailed study of the predictions from our perturbation
theory should provide some useful information in this
context.

We are presently investigating other model systems
which are solvable for larger ranges of L/cr. One possi-
ble model is an assembly of spherocyclinders for which
the zeroth-order contribution to S ' is analytically
known. In order to more fully assess the utility of the
approach, we are currently applying the perturbation
theory to other models for which connectedness solutions
have been found by other methods such as the randomly
distributed interaction site models.

Application of the formalism might be extended to par-
ticles with various interparticle potentials. As an exam-
ple, increasing the hard-core content might improve the
perturbation results at low anisotropy, since the cancella-
tion of bridge and parallel diagrams is more complete in
the PY approximation. ' However, because of the isotro-
pic nature of the theory and the zeroth-order perturba-
tion assumption, the range of densities for which the
theory will be accurate is questionable. Nevertheless,
particle assemblies with anisotropic hard cores provide
the possibility of orientational ordering and perhaps
liquid crystallinity. The coupling of such effects with per-
colation phenomena presents an interesting theoretical
challenge.
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