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A lattice model is used to investigate the surface behavior of smectic fluids close to the onset of
smectic ordering. At the smectic-isotropic interface the nematic features of the smectic phase per-
sist further into the bulk isotropic phase than the strictly smectic features. At the isotropic-vapor
interface we find the possibility of a series of first-order layering transitions, each involving the addi-
tion of a smectic layer, in line with recent experimental results. However, at the nematic-vapor in-
terface surface smectic order, if it exists, grows smoothly without layering transitions.

I. INTRODUCTION

Wetting and capillary phenomena have long been stud-
ied by physicists and physical chemists.! A resurgence in
interest in these phenomena took place about a decade
ago’ as it became clear that advances in experimental®
and theoretical* techniques justified more detailed stud-
ies. Interest in surface phenomena in liquid crystals re-
sults partly from the importance of such phenomena in
understanding liquid-crystal-based technological devices.
After some initial studies,’ it soon became clear that sur-
face order in liquid crystals was a phenomenon related to
the wetting properties of the liquid crystal in question.®

Wetting phenomena in nematics are of extra theoreti-
cal interest because not only is one concerned with the
usual questions of the quantity of order at an interface,
but also, as a result of the nature of the nematic order pa-
rameter, with the direction and nature of that ordering.
This can lead to a variety of extra surface transitions, in
addition to the familiar wetting and prewetting transi-
tions.”® Smectic liquid crystals show, in addition to the
orientational order exhibited by nematics, positional or-
der. In the smectic- A4 liquid crystals discussed in this pa-
per, for example, there is layering perpendicular to the
direction of nematic order.” Such systems might be ex-
pected to show a still richer pretransitional surface order-
ing before the onset of bulk order, including perhaps lay-
ering transitions, by analogy with multilayer growth of
solids from a substrate.!®!!

Recent experimental work on these systems has indeed
produced interesting results. The first such study was by
Rosenblatt and Amer'? who studied freely suspended
liquid-crystal films, and found that a number of liquid
crystals undergo the nematic—smectic-A4 transition, for
this geometry, at anomalously high temperatures. X-ray
scattering from the free surface of nematic liquid crystals
just above the nematic—smectic-4 (N-S) transition
showed the development of surface smectic order with
the layering in the plane of the interface. This order per-

38

sists in the bulk nematic for distances of the order of the
bulk correlation length, a quantity which diverges at the
(second-order) N-S transition. In addition an anomalous
Gaussian-like decay in the smectic order has also been
observed.!® These results are consistent with other exper-
imental results by Rosenblatt!* who inferred, from anom-
alous Freidericksz transition phenomena in nematics
confined in a thin sample between plates, the existence of
surface smectic order close to a wall. The most dramatic
manifestation of pretransitional smectic was obtained,
however, by surface x-ray reflection from the liquid crys-
tal decylcyanobiphenyl (12CB) which undergoes a direct
isotropic-smectic phase transition. In these experiments
a number of discrete layering transitions—as many as
five—were observed for temperature just above the bulk
phase transition, as the surface smectic order increased
(but did not diverge).'®

In this paper we make a theoretical analysis of pretran-
sitional smectic surface phenomena in an attempt to in-
terpret the experimental results mentioned above. The
wetting paradigm is crucial in the interpretation of the
theoretical results. We use a lattice model of smectic be-
havior introduced by Ronis and Rosenblatt,'® which is it-
self a generalization of the model nematic now usually
known as the Lebwohl-Lasher model.!” Lattice models
of complicated molecular systems such as liquid crystals
are of course gross oversimplifications and one should be
cautious about the extent of the their applicability. Nev-
ertheless, bulk properties of nematic liquid crystals are
well modeled using the Lebwohl-Lasher model,'® and the
bulk phase transitions of the model discussed in this pa-
per correspond to known experimental features, as dis-
cussed in Sec. II. In addition powerful theoretical insight
into wetting and layering phenomena in a more general
context, although not perhaps quantitative agreement
with experiment, has been obtained using lattice mod-
els.!®!" A preliminary presentation of our results has al-
ready appeared.'’

We draw the reader’s attention to parallel work on the
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same subject by Selinger and Nelson.”® These workers
have used a density-functional theory to model the inho-
mogeneous fluid. Although in principle such a method
should be superior to the kind of lattice model we discuss,
there are in fact considerable problems in modeling even
homogeneous smectic systems; the microscopic mecha-
nisms responsible for the creation, and more importantly,
the stabilization of the smectic- A phase, remain clouded
in a certain amount of mystery.?! We have attempted,
nevertheless a brief comparison of the main conclusions
of the respective studies.

The onset of smectic order may occur (a) by a first-
order phase transition from the isotropic phase, (b) by a
first-order phase transition from the nematic phase, or (c)
by a continuous phase transition from the nematic phase.
We find, for case (a) the possibility of a number of layer-
ing transitions, which are first-order apart from the very
first—the onset of surface smectic order itself—which is
continuous. In the models we examine however there is
complete wetting (i.e., the number of layers diverges as
the bulk phase transition approaches), in contradiction
with the observed experimental results. In practice, how-
ever, only a few layering transitions are seen.?? In cases
(b) and (c), however, in contrast, we do not find layering
transitions, but only the possibility of growth of the
smectic surface region. This growth may diverge in case
(b) and does diverge (if it exists at all) in case (c). We
have not found the anomalous fall off of the smectic order
parameter remarked upon for case (c) by the experimen-
talists,!> although we do not find something resembling it
for case (a).

A number of experiments have seen incommensurate?
or antiferroelectric?* surface order in addition to strictly
pretransitional effects. We do not, however, address
these phenomena in this paper.

The paper is organized in the following way. In Sec. II
we setup the basic model, describe the method of solution
and its bulk properties. In Sec. III we discuss the proper-
ties of liquid-liquid interfaces within the model—topics
which have not thus far been the subject of experimental
test. In Sec. IV we discuss the properties of the liquid-
vapor (or more generally the liquid-wall) interface, con-
centrating on the induced surface order in the region just
above the onset of smectic order [cases (a), (b), and (c)
above], but starting with the rather well-understood sur-
face setting properties of the Lebwohl-Lasher model to
create the context in which to interpret the results. Fi-
nally in Sec. V we discuss our results and draw some con-
clusions.

II. MODEL

The Hamiltonian is defined on a simple cubic lattice.
At each point / of the lattice there is a rotor whose direc-
tion 1i; is defined by Euler angles (6, ) and an (Ising) spin
which takes values o, =+1. In the tradition of lattice gas
models o, corresponds to the local density p, being
greater than the average density p. For some purposes it
is useful to define the local nematic ordering tensor

#=1(3% *n #— 5°P), where the Greek superscripts cor-
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respond to Cartesian directions. The bulk Hamiltonian is

Ho=—J 3 P,(cosb;;)
{i.J}
+€ > QBQer(# Y 1850, , (2.1)
(4.4}
where the sum is taken over pairs {i,j} of nearest neigh-
bors, and the unit vector T joins the sites i and j. The pa-
rameter € indicates the strength of the smectic interac-

tion; €e=0 corresponds to the (nematic) Lebwohl-Lasher
model. This Hamiltonian is a subclass of the models in-
troduced in Ref. 16.

The smectic part of the interaction (1) is such that if
T-fi=1, it is antiferromagnetic, whereas if T-0n=0, it is
ferromagnetic, although on average it is neutral. The
first term induces nematic order for sufficiently low tem-
peratures. The second term is essentially inactive in the
high-temperature isotropic phase. However, when
nematic order is established smectic order is possible,
with ¢ taking opposite signs in alternate layers in a direc-
tion parallel to the nematic director, taken to be along
one of the principal directions of the lattice.

We first discuss the bulk properties of this model. The
nematic properties of a phase are described by the distri-
bution function f(fi) [=(47)~! in the isotropic phase],
and the nematic order parameter

Q=P,= [ Py(cost)f(R)dii . 2.2)

The smectic properties can be described by an order
parameter t =(—1)"u;u =&, where m is a layer index.
The mean-field free-energy difference between the or-
dered and disordered phases per lattice site is given by

Ad=kyT [ f(@)In[47f(R)]dR

+ [(T4+DIn(1+8)+(1—0)In(1—12)]

—1(6J0%+2€Q%?) , 2.3)

where k is Boltzmann’s constant.

It is convenient to define T=kyT/6J and €=€/6J.
The scaled free energy AA =A A /6J; henceforth all
tildes are dropped. The equations which result from
minimizing Eq. (2.3) are

Q=WI[Q(1+2et?)/T],
t =tanh[2Q%t /T],

(2.4a)
(2.4b)

where W is the Maier-Saupe function which occurs in the
Maier-Saupe mean-field theory of liquid crystals.”> This
is the appropriate mean field theory for the Lebwohl-
Lasher model.”

The resulting bulk phase diagram is shown in Fig. 1.
This phase diagram has all the crucial features predicted
in the early theory of smectic- A behavior by McMillan.?¢
There are isotropic (I), nematic (N), and smectic (S)
phases. For low € there are three phases, with the N-S
phase boundary continuous. However, beyond a tricriti-
cal point at €=0.141 this phase boundary becomes first
order. The N-S transition line meets the usual first-order
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FIG. 1. Bulk phase diagram exhibiting isotropic (I),  atic
(N), and smectic-A4 (S) phases. The N-S tricritical poin s at
€=0.141, T=0.164; the N-S-I triple point at €=0.284,
T=0.2202.

N-I transition at €=0.284. Beyond this point the N
phase is no longer stable, and there is a direct S-I transi-
tion, and Tg; increases with €. In this regime there is
strong order-parameter feedback. For instance, for e=0,
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Q (Ty;)=0.42, whereas at €=0.3, where many of our cal-
culations are made, Q(Tg;)=0.79 and ¢ (T;)~0.91.

It is interesting to note that Thoen et al.?’ has drawn a
similar phase diagram for the phases of the homogeneous
series nCB, with the tail length n taking the place of the
smecticity parameter €. In this case the S-N-I triple
point occurs at n=9.5, T, =318 K. The experiments
are carried out for n =8 and 12.1*1°

Next we turn to inhomogeneous systems. Bulk system
properties are given by Eq. (2.1). However close to a sur-
face the effect of surface potentials comes into play. We
are also concerned with boundaries between the phases
given in Fig. 1. For semi-infinite systems, we take m =1
to be adjacent to the interface. The Hamiltonian is now

H=FHy— > V;Py(cosb;)— ¥ H;o, , (2.5)

where V; and H; are surface potentials which are zero
sufficiently far from the interface. The mean-field free en-
ergy per site in layer m is now given by the inhomogene-
ous extension of Eq. (2.3),

AAm:Tff,,,(ﬁ)ln[4ﬂfm(ﬁ)]dﬁ+%T[(l+t,,, Mn(141,)+ (1=, )In(1—1,)]— 102 — 10,0 11— 50m @ 1

_6(%I;Q3’+%tmtm +1QQO +]+%tmtm—]QQO—])—‘VQO—(_l)mHmtm .

Minimizing the total free energy

AAd=Y AA, (2.7
yields the following mean-field equations:

0,.=Wi(x,), (2.8a)
where

1
Xm:_T_[%Qm +Et31Qm+%(Qm—]+Qm+l)

+%6tm(tm +1Qm+l+tm—1Qm—l)+Vm] ’

(2.8b)
t,, =tanhy, , (2.9a)
where
GQm . Km
Ym="7F [Qntm +3(Qp 1t +1+Qm—1’m—1)]+_T“
(2.90b)
and
K,=(—-1)"H, . (2.9¢)

We remark that Tx,, and Ty, are, respectively, the
mean fields felt by the order parameter Q,, and ¢,,.

(2.6)

The equations [(2.8) and (2.9)] are solved iteratively us-
ing the procedure

D — g (x My (2.10a)

1"+ D —tanhy(" | (2.10b)

where the superscripts are iteration indices. The quanti-
ties x\",y{" are related to Q™. t\m using Egs. (2.8b) and
(2.9b). In some cases there is more than one stable solu-
tion. When discussing interphase boundaries or adsorp-
tion effects it is important that the system size be
sufficiently larger than the length scale of the
phenomenon under examination, and in some cases the
stability of particular solutions was tested under system
size change. Most of our calculations were for systems of
between 20 and 50 layers.

Finally we note that, from a formal point of view, one
smectic layer corresponds to two layers in our system.
However, apart from convention, there is nothing obliga-
tory in the mapping o >0 corresponding to the above
average density. An opposite choice would have been
equally consistent. This will have some consequences in
our discussion of semi-infinite systems, and in particular
with respect to “free” surfaces in which for a full self-
consistent treatment it would be necessary to consider
density variations in the immediate liquid-vapor interface
region. We shall return to this point later in the paper.
In all our discussions, however, we consider the behavior
of the order parameter ¢ (rather than u); this is the en-
velope of the amplitude of the density oscillations.
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II1. LIQUID-LIQUID INTERFACES

We do not discuss here the nematic-isotropic (N —1)
interface which occurs for 0 <t <0.284 and which has
been much discussed elsewhere!® other than to remark
that in our model the surface free energy per unit area
¥ vy =0.00385 and the 10-90 width of the surface region is
5.7 lattice units. This width, which is the distance over
which the middle 80% of the order-parameter change in
the interface takes place, is traditionally used as a mea-
sure of interface thickness. These quantities serve as
markers for the magnitudes of quantities in other calcula-
tions.

We now discuss the smectic-isotropic (S-I) interface
which occurs for € >0.284. We first make an asymptotic
analysis far into the isotropic phase; we shall suppose
that the layer index m — — o, +  in the S, I phases re-
spectively. In this regime the order parameters Q, ,¢,
and the mean fields x,,,y,, are small; there are not exter-
nally applied fields. In this limit Egs. (2.8) and (2.9)

reduce to
1
Q=57 (300 +4Qp 1400 1) 3.0
€
tm:—?Qm(thm+%Qm+ltm+l+%Qm41tm—l)' (3.2)
The factor 1 arises because (3 W/ax)(O):%.25
A standard analysis now yields
Qm ~e KT, (3.3)
where
5 5 172
=3 |l ———= |- 19|l ——= | -1 3.4
¢ =157 [ { 15T B4

The behavior of ¢,, is rather different, however, as a re-
sult of the nonlinear couplings. In Eq. (3.2) the last term
dominates in the asymptotic limit, and now

t, ~e "M (3.5)

The decay of ¢,, is much more rapid than that of Q,,
and this suggests that the nematic features of the smectic
phase persist much further into the isotropic phase near
the S-I interface than the strictly smectic features. These
conjectures are barne out by explicit calculation. In Fig.
2 we show the normalized order-parameter profiles at the
S-I interface for e=0.3. The 10-90 width of the Q profile
is 5.3 lattice units; this is slightly less than the N-I profile,
but can be accounted for by the increase in the value of
Q. as compared to Qy. By contrast, the 10-90 width of
the ¢ profile is only 2.5 lattice units. In addition the medi-
an point of the t profile (the point where ¢/t =0.5) is
shifted in the direction of the smectic phase by 1.5 lattice
units as compared to the median point of the Q profile.
The dramatic difference between the S and I phases is
highlighted by the value of y4;=0.036; a factor of 10
larger than the surface free energy at the NI interface.

This phenomenon is even more evident in Fig. 3 which
shows the S-I interface at €=0.284 just beyond the S-N-1
triple point in the region of direct S-I coexistence. In this
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FIG. 2. The S-I interface at €=0.3. Normalized order pa-
rameter W is plotted against distance (in lattice units).

case the ¢ profile is essentially unchanged, but the Q
profile has broadened to 10.4 lattice units, and the shift
between the medians has increase to five lattice units.
The crucial point about this profile, however, is the devel-
opment of the shoulder in the Q profile, which appears to
be diverging as the triple point is approached. This
shoulder is the signature of the metastable nematic phase
coexisting with the S-I phases; the N phase is here seen
wetting the S-I interface.?® In the limit of the triple point
we expect here a macroscopically thick N phase inter-
posed between the S and I phases, with Qy/Qg
=0.42/0.79=0.53. We see in Fig. 3 that the flat region
indeed occurs for Q /Q, =0.53.

We turn now to the smectic-nematic (S-N) interface
which occurs between the S-N tricritical point at
€=0.141 and the S-N-I triple point at €=0.284. We
make an asymptotic analysis in the region far into the
nematic phase, by taking the limiting cases of Egs. (2.8)
and (2.9). We obtain

1 oW
BQm:?K(XN)(%SQM+%8Qm+l+%8Qm—l)’ (3.6)
€05
b = TNZ (I +3tm 1t 3tm 1) 3.7)

where Q,, =0x+60Q,,. Qy is the equilibrium value of
the nematic order parameter in the N phase, and

QN:W(xN) .

One now obtains

lattice units

FIG. 3. The S-I interface at €=0.284 (same legend as in Fig.
2). The nematic order parameter has developed a shoulder indi-
cating perfect wetting of this interface by the N phase.



—[9(1—-22)—1]"2  (3.8)
and
1 oW
kz?-—x—(xN) ;
whereas
t,~e 2" 3.9)
with
2K2 2
sech’——=Qxy€e/Tys - (3.10)

2

A particularly interesting limit is close to the tricritical
point. At the tricritical point, from Eq. (2.4),

Qe
Tys

) (3.11)

[SIES

and thus the distance from the tricritical point can be
parametrized by a parameter §, where

20%¢
Ove | s

(3.12)
Tns

Comparison of Egs. (3.10) and (3.12) in the limit §—0
now yields

61/2

Ky~2 (3.13)

The lengths I, =« ', [, =«; ! are the relaxation lengths
for nematic and smectic perturbations, respectively. The
relaxation length for smectic perturbations becomes large
at the N-S phase transition, and diverges at the tricritical
point (and indeed all along the second order N-S line
€<0.141).

This asymptotic analysis suggests that the N-S inter-
face, in contrast to the S-I interface, it is the z profile
which is broader than the Q profile, and that the center of
the ¢ profile will be shifted in the direction to the N phase,
as compared to the center of the Q profile.

More detailed calculations confirm these general re-
marks. We show an example in Fig. 4, in which for
€=0.2, the profile medians are separated by roughly 0.7
lattice units. We note, however, that as a result of the
(nonlinear) coupling between the Q and ¢ profiles, both
profiles diverge as the tricritical point is approached.

1.01
+ —s t/tg
yr ---s(Q-Qn) /(Qs-Qn)
0.5
% 5 0 15 26

lattice units

FIG. 4. The S-N interface at
(Q — Qn)/(Qs — Qn); dashed line, t /1.

€=0.2. Solid line,
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We now make some more general comments about the
applicability of the results of this section. The most strik-
ing feature of the S-I interface is the Gaussian, rather
than exponential, fall off of the ¢ profile in the asymptotic
I limit. This is surely, however, an artifact of the model,
and results because there is no direct nearest-neighbor ¢
interaction in the Hamiltonian. It seems likely that a
more realistic model would replace the Gaussian by a
rapid exponential decay. The corollary of this result,
however —the increased width of the Q profile and its
shift relative to the ¢ profile—seem much more stable and
result from the general physics that lie behind the model
rather than the details of the Hamiltonian. In the S-N
profile we found that it is the ¢ profile which is thicker, in
contrast to the S-7 case. In the asymptotic analysis, Egs.
(3.6) and (3.7), the Q and ¢ decays correspond to different
eigenvalues; an improved model would probably mix
these decays, but we speculate nevertheless that the result
concerning the relative position of the profile media and
their relative thickness would still hold. There is a final
corollary. In most of the work in Sec. IV there is some
tendency for formation of smectic layers at an imposed
surface. Associated with the smectic surface order is sur-
face nematic order. The considerations of this section
suggest that if the bulk is isotropic, there is in some sense
(defined more precisely in Sec. IV) more nematic than
smectic order at the interface, whereas by contrast if the
bulk phase is nematic, the reverse applies.

1V. THE FREE SURFACE

We model the free surface by taking a semi-infinite sys-
tem with layers m =1-o0, subject to the Hamiltonian
(2.5). We take a surface potential

FHg=—VP,(cosb,) 4.1)
acting on the first layer only. This term, as in a number
of physical situations, acts as a surface anchoring term on
the nematic director close to the interface. All ordering
effects at the free surface follow from this term. The sur-
face ordering competes with the lack of nearest neighbors
close to the interface. Through the interaction with the
smectic order parameter it can in principle induce, as
well, smectic order close to the interface.

The theory is not self-consistent in the sense that the
theory does not exhibit, as of itself, a vapor phase in equi-
librium with the liquid phases. The approach we adopt is
nevertheless likely to be successful so long as the liquid-
vapor interface is thin on the scale of other length scales
in the system. Liquid-crystal phases are in general far
from liquid-vapor critical points and this assumption is in
general correct.

We shall find it useful to define the surface free ener-
gies, defined per unit area, associated with the free sur-
face v;, ¥n» Y5, applicable, respectively, in the isotropic,
nematic, and smectic phases. The interface free energies
at the S-I and S-N interfaces are then yg; and y gy -

The precise value of V appropriate to the liquid-vapor
interface is not known. We shall therefore study the
properties of interface as a function of V. The surface po-
tential can also be tuned by considering semi-infinite sys-
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tems close to a wall at which homeotropic boundary con-
ditions are applied.

In the remainder of this section we consider a number
of cases in turn. We first discuss the growth of nematic
order for the e=0 case above T =T);. We then discuss
the case of surface smectic order for the direct S-I transi-
tion, and then discuss surface smectic order for the S-N
transitions; in the last case the first- and second-order S-
N transitions exhibit slightly different behavior.

A. Surface nematic order

The growth of nematic wetting layers has now been
much discussed in the literature.® In this section we
merely present a number of results which are qualitative-
ly already known, but which serve as orientation for the
surface smectic order studies.

Surface order is measured by the quantity

Q)= 2 Qm/QN(TNI) . (4.2)
m=1

This gives, using the Gibbs criterion, the number of sur-

face nematic layers.

We present results for e=0 (the mean-field theory is
the same for all € <0.284) and T > Ty;=0.22019. For
V =0, as found earlier'® there is complete wetting of the
surface by the isotropic phase. For V >0 there is partial
wetting of the interface, and at V=V, =0.07 there is a
second-order wetting transition. For V' > ¥V, the nematic
phase wets the surface; equivalently I'(Q) diverges in this
regime. As expected in theories of this type, in the region
close to V, along the line T=T,, we find
r(Q)~In(V,—V), and once in the wetting regime
N(Q)~In(T —Tyyp).

B. Surface smectic order close to the S-I transition

Our calculations are carried out for €=0.3. The
relevant surface “‘adsorptions” are now
rnQE= 3 Q,/0,(Tg), (4.3a)
m=1
C(ty= 3 t,/ts(Tg) , (4.3b)

m=1

where I'(Q) and I'(¢), as above, give measures of the
number of adsorbed layers using, respectively, the Gibbs
criterion on the nematic and smectic order parameters.
As an example of the kind of results we obtain we show
in Fig. 5 a plot of I'(Q) and I'(¢) as a function of temper-
ature above T, for ¥=0.8. The relevant scale is loga-
rithmic. A number of features are noticeable in this
plot. T'(Q) is consistently larger than I'(z), with
I'(Q)—TI'(t)~2. This was already predicted qualitatively
at the end of Sec. III; it is the signature of the emergence
of an embryonic “‘smectic-isotropic” interface between
the surface smectic order close to the surface and the
bulk isotropic phase. Feature A corresponds to the onset
of surface smectic order. This is a continuous surface
phase transition, occurring at T, and near which, as far
as we can tell, ['(¢)~(T,; —T). Features D, E, and F are
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FIG. 5. Layer growth above Tg; for €=0.3, ¥'=0.8. Solid

line, I'(1); dashed fine, ['(Q). Features 4 —F (marked) are dis-
cussed in the text.

layering transitions between, respectively, 3 and 4, 4 and
5, and 5 and 6 surface smectic layers. These transitions
are first order. Features B and C are anomalies in the ad-
sorption isotherm which correspond to the transitions be-
tween 1 and 2, and 2 and 3 surface smectic layers. They
are strongly reminiscent of pretransitional layering phe-
nomena. They are not phase transitions in the thermo-
dynamic sense. Their existence suggests, however, that
for slightly different thermodynamic control parameters
first-order surface phase transitions between 1 and 2, and
2 and 3 layers, also exist.

All features in I'(¢) are mirrored in I'(Q), apart from
the initial onset of surface smectic behavior. Very close
to the phase transition there are also metastable states
with I'(#)=7, 8, 9, etc. In this region it becomes difficult
to distinguish numerically between the stability of the
various solutions. It is not a priori clear whether the
hierarchy of layering transitions continues to I'(#)=
(i.e., perfect wetting of the surface by the smectic phase)
or terminates at I'(#)=6, as shown in Fig. 5 (i.e., partial
wetting by the smectic phase). This question can, howev-
er, be answered by studies over a variety of V. In Fig. 6
we show the behavior of the contact angle 0 at the S-I va-
por contact line where 0 is defined in the usual way,""6 us-
ing the Young-Laplace formula

Ys—Y1=7sc080 . (4.4)

This plot shows that there is a wetting transition at
V' =0.645, beyond which a macroscopic smectic layer in-
terposes itself between the isotropic phase and the sur-
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FIG. 6. Contact angle cos6 plotted against surface potential
V for €e=0.3 at T, indicating a wetting transition at ¥'=0.645.
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face. The linear behavior of cosf in the region V <0.645
establishes that the transition is first order.* We are not,
of course, able to observe the growth of an infinite layer,
in a finite system. The existence of a first-order wetting-
like transition convinces us nevertheless that in an infinite
system this is what we would see.

In Fig. 7 we exhibit a wetting-layering surface phase
diagram, as a function of ¥ and T. This shows the first-
order wetting transition at V¥, =0.645, the continuous
surface smectic transition line, the layering transitions,
and critical points at which the 1-2 and 2-3 layering tran-
sitions end. However, the detail of the higher layering
transitions very close to T; is not visible on the scale of
this diagram.

An interesting point to note is that the wetting transi-
tion occurs for a value of V =0.645, which is much
larger than necessary for wetting the e =0 interface with
N phase (V,=0.07). We ascribe this primarily to the in-
creased order parameters in the ordered phase, which re-
quire larger surface forces to maintain them in the bulk
phase.

C. Surface smectic order above the first-order
S-N transition

Our calculations are carried out for €=0.2, for which
Tgy=0.190115. Here, in contrast to the previous case,
we do not find layering transitions, although we do find
induced surface order.

The relevant adsorption parameters are now

rQ= 2 [Qm"QN(TSN)]/[QS(TSN)_QN(TSN)] ’
m=1
(4.5a)

L= 3 t,/ts(Tey) .

m=1

(4.5b)

As an example of the growth of surface order we show
in Fig. 8 the growth of I'(¢) for ¥=1.2. It is logarithmic

ost
\Y
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0225 0226

¥ 0227 0228 T
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FIG. 7. Surface wetting-layering phase diagram for €=0.3.
Solid lines are (first-order) layering transitions, terminating at
the critical points C,, and C,;. The dashed line marks the (con-
tinuous) onset of smectic order. Numbers indicate the number
of smectic layers.
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FIG. 8. The growth of smectic order from the nematic phase
at €=0.2, V=12. The logarithmic dependence of I'(t) is
characteristic of complete wetting. Note the absence of layering
transitions.

as a function of (T'—Tgy) over more than 3 orders of
magnitude. We thus have a divergence of I'(¢) close to
Ty, and complete wetting of the surface by the smectic
phase. The full surface phase diagram as a function of V'
and T is shown in Fig. 9. This is a much simpler version
of the previous surface phase diagram of Fig. 7. The con-
tinuous surface smectic transition line remains, but now a
continuous wetting transition to complete smectic film
growth occurs at ¥, =1.1, much higher than the onset of
surface smecticity at T;, at Vgg(T;)=0.57.

D. Surface smectic order above the continuous S-N transition

We present here a typical calculation, at €=0.1, for
which Tgy=0.135083. The crucial difference as com-
pared to the previous example is that now the susceptibil-
ity to smectic layer formation diverges at the continuous
S-N transition. The concept of a wetting layer is no
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FIG. 9. Surface phase diagram for €=0.2. Note that the
dashed line marks the (continuous) onset of surface smectic or-
der. The dotted line highlights the wetting transition at ¥,, be-
tween complete wetting (W) and partial wetting (PW) regimes.
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longer useful. The divergence in correlation lengths
makes calculations of analogues of TI'(f) somewhat
difficult close to the transition. In any case, if there is
surface order such quantities diverge at Tgy. We show
the surface phase diagram in Fig. 10. As compared to
the previous example it has of course lost the wetting
transition, but the continuous surface smectic transition
remains. The best measure of the quantity of surface or-
der is given by the surface order parameter ¢;. In the re-
gion of the phase diagram shown, this reaches ~0.2.

We remark on the analogy between the surface phase
diagram exhibited here, and the surface phase diagram
which can occur in magnetic systems close to the
second-order Curie points.” In this magnetic language
for V < V(T )=1.72 the surface exhibits an ordinary
transition, for V> V(T ) the onset of surface smectic
order is an extraordinary transition, and at V="V (Tg;)
there is a special surface transition.

V. DISCUSSION AND CONCLUSIONS

In our discussion we concentrate on the results of Sec.
IV which represent our modeling of the free interface of a
liquid just above a liquid-crystal transitions. The most
striking results are the layering transitions just above the
S-I transition (Fig. 5) and the consequent wetting-
layering surface phase diagram (Fig. 7). These results
correspond to 12CB, studied by Ocko et al. and Als-
Nielsen'’.

In our preliminary calculation we failed to observe
these layering transitions, partly because there is only
weak hysteresis involved up to I'(¢z)=4, whereas the
higher layering transitions are subject to very strong hys-
teresis effects; technically speaking it was necessary to
search for the I'(z)=35, 6, etc., solutions. The ‘“‘quasi-
wetting” we referred to, was metastable I'(#)=4 solution,
which has an energy very close to a complete wetting
solution. It is now clear that this was an artifact.

Our present, more complete, study shows I'(¢)=35, 6, 7
solutions which are thermodynamically stable, as well as
I'(t)=n > 7 solutions which are indistinguishable in ener-
gy at T=Tg; on the accuracy which is available to us.
From the circumstantial evidence of the contact angle
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FIG. 10. Surface phase diagram at e=0.1. All that remains
of the menagerie of transitions in Fig. 7 is the dashed line mark-
ing the onset of surface smectic order.
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(Fig. 6), we infer that there is in fact infinite (though
presumably discontinuous) layer growth, but this is un-
likely to be observable on a sensible temperature scale.
The actual size of this wetting layer is, however, much
smaller than the S wetting layer growing from the N
phase (Fig. 8), or the N wetting layer growing from the 7
phase, discussed in Sec. IV A but not shown.

A particular feature of our results is the growth of
“half-integer” smectic layers (recall the 1 smectic lay-
er=2 lattice layers). This is clearly an artifact of our
model. A more realistic model would include the mean
density as a separate variable, and would essentially
choose, say, the I'(z)=even solutions as opposed to the
I'(¢)=o0dd solutions. It is less clear how to introduce
such a correction into our model, and there is some doubt
as to how useful this exercise would be in the context of a
study such as ours. In our previous paper'® we accom-
plished this by introducing a long-range force which cou-
pled with the density field. This choice is between odd
and even I'(¢) solutions, but only at the price of eliminat-
ing the surface smectic transition; some smectic order is
now always present.

But there are many studies in normal liquids to show
that, despite early speculations by Croxton,>® there is in
general no surface smectic order in fluids. The real prob-
lem is that in our model the surface is localized
(“smooth” in the language of the roughening transition),
whereas a real fluid has a delocalized, “rough” surface.
This delocalization is sufficient to smear out any density
fluctuations near the surface, unless there are other physi-
cal forces (such as discussed in this paper) to the con-
trary. The input of a surface field coupling to the density
and the delocalization of the surface have opposite
effects, leaving a qualitatively correct phase diagram, but
with “too many”’ layering transitions.

In all cases at the onset of surface smectic order we
find I'(1)~AT=Tgg—T. This result seems slightly
surprising in the context of mean-field theory; normally
the onset of an order parameter at a second-order phase
transition might be expected to show I'(¢)~AT!/? in ac-
cordance with Landau theories. Our result is numerical,
however. More detailed experimental work in this re-
gime is clearly desirable.

In our first letter we invoked the mechanism of de
Olivera and Griffiths'! to explain, qualitatively, the layer-
ing phenomena. In this mechanism there is a long-
ranged surface field and a bulk field which compete. In
that picture layering resulted from competition between
forces of different ranges. It is clear from the present cal-
culations that this mechanism was not necessary; in this
paper we obtain layering with only local surface forces.
We find this somewhat surprising; it presumably arises
from the nonlinearity of the model.

A striking feature of our results is that either we find a
series of layering transitions which appear to lead to com-
plete wetting by the smectic phase, or we have no smectic
surface order whatsoever. It is difficult to know, a priori,
how much universality to apply to this result. Why do
we not find a series of layering transitions leading to par-
tial wetting? This does not appear to be forbidden by any
theorem. It may be that an even more careful study
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would give rise to this possibility too. The experiments
on 12CB free surfaces seem to show layering and partial
wetting by the smectic phase, as does the density func-
tional theory of Selinger and Nelson.”® Nevertheless the
similarity between the general features of our results (Fig.
7) and the experiments'’ is somewhat persuasive; it may
be simply that further layering transitions would involve
probing a temperature scale too fine for present experi-
mental techniques. In any event measurements of the
surface tensions yg, Y;, and yg would presumably
resolve this question.

Another interesting contrast is between the layering
transitions leading to growth of the smectic phase at the I
free surface at Tg;, on the one hand, and the smooth
growth of the smectic surface layer (Fig. 8) at the N free
surface at Ty, on the other. Once again there does not
appear to be a theorem enforcing this, but it seems to be
consistent with the available experimental results;'? there,
in contrast again with the results close to Tg;, there does
appear to be a possibility of growth of a smectic layer to
partial wetting. We note, in passing, the similarity from
a theoretical point of view, between the continuous sur-
face smectic transition discussed here, and the surface
symmetry breaking transition predicted by one of us”® in
nematics close to a surface with tangential boundary con-
ditions. The analogy between this transition and similar
transitions in magnets for the case when the S-N transi-
tions is second order has already been remarked upon.
We emphasize that this case tends to be the experimental-
ly observed case, as in 80CB.!3

Finally we make a few comments about the density-
functional theory of the same phenomena by Selinger and
Nelson.”® They remark that it is possible that a lattice
theory would be unreliable and give rise to spurious lay-
ering transitions. We cannot, of course, rule this out.
Nevertheless we note that our theory makes strikingly
different predictions about layer growth for a free I sur-
face above Ty, a free I surface above Tg;, and a free N
surface above Ty, and that qualitatively speaking these
predictions are borne out by experiment. Selinger and
Nelson found fewer layering transitions than we did in
the case of growth of smetic layers close to the I surface,
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and found always partial wetting in these cases. An ex-
perimental study of the wetting behavior at this surface
using other techniques is clearly required. They specu-
late that the reason that they find fewer layering transi-
tions than the experiments is that mean-field theories fail
to take into account fluctuations which lower the bulk
phase transition, thus leaving, as it were, more space for
surface layering transitions to manifest themselves. We
are skeptical of this argument; our model provides the re-
quired number of layering transitions, is a mean-field
theory, and because it is a lattice model, is less suscepti-
ble to fluctuation effects. However, what is clear is that a
full self-consistent density functional theory with general
potentials and allowing for the existence of vapor, isotro-
pic liquid, and liquid-crystal phases would be expected to
yield more detailed results than our theory can hope to
do.

In conclusion we have provided a framework, using a
rather unsophisticated lattice model, and a rather unso-
phisticated mean-field theory of the model, which enables
the behavior of smectic-forming materials near a free in-
terface, in particular just above the onset of smectic be-
havior, to be understood. Rather good qualitative agree-
ment with experiment results has been obtained. The
record of such theories, despite their lack of sophistica-
tion, is rather good, and there seems some ground for
hoping that the agreement with experiment might even
be made quantitative in the future. The theory, however,
is really applicable to any interface, and we strongly sug-
gest experiments on smectic pretransitional effects on
treated surfaces, by analogy with successful experiments
on nematic pretransitional behavior.’
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