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Solitons in hydrogen-bonded chains
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A one-dimensional model for hydrogen-bonded chains is investigated by including the dynamical
degrees of freedom of the oxygens and thus generalizing the original Antonchenko-Davydov-
Zolotaryuk model. Analytical solutions are derived within a continuum approximation up to
second order so that rather narrow solutions could be derived accurately enough. Numerical simu-

lations with a set of parameters derived from infrared spectra show stable low- and high-speed solu-
tions separated by a forbidden gap. There exists also an intermediate velocity range where the ini-

tial pulse is unstable in the sense that it is transformed to a high-speed solution with the same ener-

gy. Discreteness effects are discussed.

I. INTRODUCTION

Since the basic work of Antonchenko et al. ' and Zolo-
taryuk et al. there has been great interest in the soliton
dynamics in one-dimensional hydrogen-bonded systems.
These models seem to be an effective description of the
proton mobility in hydrogen-bonded chains, and there-
fore may also p1ay a role in interpreting certain biological
processes in such systems. Since the work of Bernal and
Fowler the hydrogen bonds have been described by some
kind of double-minimum potential. The high proton mo-
bility is given by a hopping contribution for the protons
from one of the minima into the other. The particular
mechanism, however, is not yet understood in detail. On
the other hand, the soliton picture for transport in bio-
logical macromolecules has been discussed intensively in
the literature and seems to be one possible mechanism in
some of these processes.

Besides the model by Antonchenko et al. which de-
scribes the hydrogen bond as a P potential, there has
been another model where the dynamics of the hydrogen
is given within the pseudospin formalism. " In both
cases the hydrogens alternate within the chain with oxy-
gen ions. This simple ice structure with harmonic
oxygen-oxygen and hydrogen-hydrogen coupling, a non-
linear hydrogen on-site potential, and a nonlinear
hydrogen-oxygen interaction leads to two coupled non-
linear difference equations. The origin of the nonlinear
on-site potential for the hydrogen is not further described
here, but one assumes that the detailed interaction mech-
anism may result in such a potential. In the same sense
the oxygen-hydrogen interaction is regarded as an
effective term. Since one assumes an on-site potential,
one expects as excitations a topological solitary wave for
the hydrogens and a nontopological excitation for the ox-
ygens. Antonchenko et al. found in their model analytic
solutions in the continuum approximation only for a cer-
tain solitary wave velocity. Further work on this mod-
el' ' has established existence of solutions in a far

II. THE MODEL HAMILTONIAN

Our model similar to the one by Antonchenko et al. '

consists of a diatomic chain of protons and oxygen atoms
(Fig. 1). The total Hatniltonian consists of three parts.
The proton part is given by

H =g —[u '„+co',(u„+,—u„)]+EV(u„)
2

(2.1)

with the onsite potential of strength E:

V(u„)=[1—(u„/b) ] (2.2)

greater range of velocities and has studied the stability of
these solutions. There are also modifications of the origi-
nal model by Zolotaryuk, ' where for a wide class of gen-
eral interactions two velocity regions of solutions were
found.

The original model of Antonchenko et al. ' did not in-
clude all degrees of freedom of the oxygens because a sin-
gle variable describing their relative motion was used for
a pair of oxygen atoms. The model that we treat in this
paper includes all degrees of freedom for the oxygens. A
similar model was previously considered in a continuum
approximation by Zolotaryuk et al. ; however, we start
here from a discrete model because we found that, when
reasonable parameter values are considered, the solutions
are rather narrow. Although we have to use a continuum
approximation to derive an analytical solution, we in-
clude higher-order terms which are necessary to provide
a correct description of the lattice effects. Section II
presents the model. In Sec. III we discuss analytic solu-
tions for the continuum model in the whole range of ve-
locities. In Sec. IV we discuss the various parameters and
give the energies of the solutions as a function of these
parameters. In Sec. V we discuss the stability of the
linearized lattice, while in Sec. VI the numerical investi-
gations are discussed in some detail.
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We note here that we know of no solution for the discrete
lattice equations, and therefore we try to find consistent
equations in the continuum approximation. This approx-
imation has to be done up to a certain order in the lattice
parameter a. We will approximate the Hamiltonian up to
second order in this parameter (the first-order approxi-
mation in the interaction part corresponds to a Lagrange
density discussed by Zolotaryuk et al. ).

III. SOLITARY SOLUTIONS IN THE CONTINUUM
APPROXIMATION

qh+1

FIG. 1. Hydrogen bond. The proton in the 4 potential is

drawn. The large circles correspond to the oxygen sublattice.

For solutions which change slowly compared to the
lattice spacing, one can use the continuum approxima-
tion. The resulting equations of motion are as follows
(where we have scaled the lattice constant a to 1):

The proton coordinate u„is the displacement of the hy-

drogen from the rniddle of the bond as it is shown in Fig.
1.

The oxygen Hamiltonian is written as

Ho=+ [q „+Q,(q„+,—q„)2], (2.3)

H; =Xg (q„+,—q„)(u„—b ) . (2.4)

The physical content of this interaction is the lowering of
the double potential barrier due to the oxygen displace-
ments. We note here that it is also possible to get analyt-
ic solutions with a slight generalization of H; by changing
the u„b term to a—general function W(u„) (cf. Zolo-
taryuk' ).

The parameters in our model are the harmonic lattice
frequencies co&,Q„the coupling constant 7, the barrier
energy c, and the width b of the potential. The actual
values of these parameters wi11 be discussed later. The
classical equations of motions are written in a dimension-
less form with the following notation:

q1„=u
„

/b, ij'j„=q„/q, r = t /t, ,

q =gb /(2MQ1), t, =1/co„a=Xq/(men, ),
P=E/(mb coi ), ) =01/coi .

With these abbreviations one finds

(2.5)

d 0'n pav+ (0'n +1+0'n —1 29'n )—
dr aV'n

+2aq „(f„+,—g„)=0, (2.6)

where q„describes the displacement from the equilibrium
position. In the original model of Antonchenko et al.
only optical vibrations were considered, whereas in our
model acoustic vibrations are included.

The interaction is as in Antonchenko's model:

+ q(24, +4„)=0V

81P

Qyy
—f„/y'—2(q&')y + (y')yy =0

(3.1)

(3.2)

From the special form of the interaction Hamiltonian it
follows that the interaction between the two sublattices is
quadratic in these expressions. Since we are only in-
terested in running wave solutions with velocity c the
partial differential equations can be transformed to ordi-
nary differential equations for a single variable z =y —c~.
From the equations of motion one then can do one in-
tegration in Eq. (3.2) and find

dz
=g'=[2(p' —1)—(q1')']/(1 —c'/y') . (3.3)

Herc we have used the following boundary conditions for
solitary solutions, which are appropriate for a solitary
wave:

6z
=1p' =+( 1 —1p') (3.4)

where we have used the following parameter functions:

A =P(1 c /y )/a 1—, B =(1——c )(1—c /y )/(2a) .

(3.5)

Depending on these parameters A and B two different
kinktype solutions are found: For A & 0 and 8 & 1 one
finds

(K2 1 )1/2 (K2 —q12)1/2+(K2 1 )1/2q2
qz =+ ln

2 (K2 ~2)1/2 (K2 1 )1/2~

lim
~

1p(z)
~

=1,
)z /~oo

lim P'(z) =0,
)Z )~oo

and all derivatives are vanishing at large z. Now the two
coupled ordinary differential equations are separated and
the remaining equation in q1(z) can be integrated at once
with the result

+(g„+1+/„1—2f„)+2(q'„,—q'„)=0 .y' dt' +arcsin(q2/K) (3.6)

(2.7) For A & 0 and B & 0 we have instead
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(~2+ 1 )1/2 (~2 +~2)1/2 +(K2+ 1 )1/2~
gz =+ ln

2 (~2+~2)1/2 (~2+ 1)1/2~
L

(~2+ ~2)1/2+~—ln (3.7)

c =y (oxygen sublattice), and has a pole at the intermedi-
ate velocity c =min(c „cz). Of special interest is the en-

ergy expression for the static kink. Here one finds (as-
suming a & 0.5, a/P & 1)

E(c =0)=EO

where we used the following abbreviations: a. = ~8 ~,
r) =

~

A
~

. These somewhat seemingly complicated
functions result in kinklike structures for y(z).

IV. DISCUSSION OF PARAMETERS AND ENERGIES

=(P/ —1)' '

+a 1+ 1

4a
1 —1

2a

1
1 — arcsin(2a )

'/
sa

' 1/2

The velocity ranges of the two kinklike solutions [Eqs.
(3.6) and (3.7)] follow from the definitions of the parame-
ters A and 8 in Eq. (3.5). If we introduce the additional
abbreviations

c f =y'(1 —a/P),
2c2 1+y2 [(1 y2)2+gy2a]1/2

(4. 1)

we can distinguish between mainly two different cases.
(a) In this case the speed of sound in the oxygen sublat-

tice is smaller than the corresponding velocity in the hy-
drogen sublattice. For our parameters this means y &1
and

or

A&0, B&1

for 0 & c & min(c f,c z ) with a & 0.5,a/P & 1

(4.2)

A &0, 8 &0 for y &c &1 with a,P&0 .

(b) In the reverse case with the hydrogen speed of
sound less than the oxygen speed of sound the above con-
ditions can be written as y & 1 and

3 &0, B)1
for 0 & c & min( c f,c z ) with a & 0.5, a/P & 1

(4.4)
In the case of vanishing coupling between the oxygen and
the hydrogen sublattice this reduces to the energy of a
static kink in a monoatomic P chain.

Eo ——4(2p)'/ /3 . (4.5)

For numerical calculation it is necessary to have an esti-
mate of the various parameters. We give here a brief
description of the "physical" parameter set used later (set
2 in Table I). From Raman and infrared spectra the
oxygen-oxygen stretching frequency QQ Q and the
oxygen-hydrogen frequency QQ H can be estimated to
be' "QQQ 1.9)&10' Hz, QQ H-4. 7)&10' Hz. The
potential barrier in the double minimum potential may be
assumed to be of the order of 0.5 eV. ' In our parameter
set 2 (see Table I) we used the Yomosa value for floo
directly to determine fI, . The parameter e in the P po-
tential was taken to be 0.4 eV. The oxygen-hydrogen
stretching frequency QQ H is given in terms of our model
parameters by the optical branch of the dispersion rela-
tion [see Eq. (5.2)] as Qo „=1.8X10' Hz. This is of the
order of Yomosa's value. Another check of the parame-
ter set is the energy of the static kink for which we find
ED=2.6 eV. In terms of the dimensionless parameters

y, a,p set 2 is equivalent to y =0.0075; a=0.0016;
P=0.08. For further details see Sec. VI.

V. LINEARIZED LATTICE
or

A &0, 8 &0 for max(l, c, ) &c &y with a,Pp0 .

(4.3)
In Sec. VI the stability of the solution (3.6) and (3.7) is

considered. In contrast to the work by Laedke et al. '

Thus in both cases we have a low-velocity range (the ex-
istence depending on a and p) with solutions of type (3.6)
and a high-velocity range with solutions of type (3.7).
For our numerical simulations in Sec. VI we have chosen
physical parameters in such a way that the first condition
is fulfilled. Due to the light masses of the protons this is
likely to be the case in physical systems. For more details
see Sec. VI.

The energy of our solutions can be calculated in both
parameter areas by inserting the explicit solutions into
the expression for the Hamiltonian density. In fact, this
calculation can be done analytically but the resulting ex-
pression for the energy is rather lengthy. In Fig. 6 this
expression is drawn as a function of the velocity for a spe-
cial set of parameters (see discussion in Sec. VI). In order
to give some insight into the general behavior of the ener-
gy as a function of velocity we note here that the general
expression has a pole at the sound velocity c = 1 (hydro-
gen sublattice), it is also infinite at the sound velocity

rn (a.m.u. )

M (a.m.u. )

a (A)
b (A)
~ (ev)
col (t.u. ')

01 (t.u. ')

7 (eV/A )

vo (A/t. u. )

v~ (A/t. u. )

E, (eV)
v, (A/t. u. )

Set 1

1

16
5
1

2
6
1

0.15
5

30
15.939
4.999

Set 2

1

16
5
1

0.4
2.218

0.1921
0.10
0.960
11.090
2.604
0.950

TABLE I. Sets of model parameters used in the numerical
simulations. This table lists also some physical constants associ-
ated with each set. Eo is the energy of the static analytic solu-
tion.
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y(y, r) =1+e,e'~~

P(y, r) =e,e "~~
(5.1}

where only linear terms in e&, e2 are considered. The re-
sulting dispersion relation can be given exactly by

'1/2 '

cog(q)=F 1+ 1—
F2

(5.2)

where F and 6 are functions of the wave number q

F = ,'(q'(1-+r'}+ g&)

G =q y [q +8@—a(q +4)] .
(5.3)

The stability of the lattice is now given by the condition

co+(q) )0

we use numerical simulations in order to get an indica-
tion of the stability of the solutions. Before we discuss
this point, however, we investigate the stability of the lat-
tice in the ground state.

We linearize the equations of motion (2.6) and (2.7) for
small fluctuations around the equilibrium position. This
is achieved by the ansatz

to preserve total energy to an accuracy better than 10
for the full duration of a simulation. The initial positions
and velocities of the proton and oxygen atoms are ob-
tained from the analytical solutions presented in the pre-
vious sections. In terms of the physical parameters, the
solutions are defined in two velocity domains.

(i} v & uo, where uo =a 0, is the sound speed in the ox-

ygen sublattice (a is the lattice spacing). This domain
corresponds to the case A & 0, 8 & 0 defined previously.

(ii) 0 & u & vl & uo which corresponds to the case
A ~0, 8 & 1, where uM is a maximum speed in the low-
velocity range u & uQ defined by the conditions

y2g 2b4
uM &u& with u&

——uQ-
2Mc,

(6.3)

which states that the effective barrier in the proton sub-
lattice coupled to the oxygen atoms has to be positive,
and

vair (vp wtth 2vp = (vp+uo)
1/2

4+b a
(

2 2 )2+
mM

for all q within the Brillouin zone. In the case of y & 1

(only this case is considered later on) a straightforward
examination of (5.2) yields the condition for a and P 10 ~

(a)

u 8—&min 2,
P 4+m (1—1/a)

(5.4)

VI. NUMERICAL INVESTIGATIONS
OF THE DYNAMICS

OF THE NONLINEAR EXCITATIONS

We notice here that in both examples of Sec. VI this con-
dition is fulfilled.

~cg

~6 ~

4Io I

4i

I

2 r~
,
' VL

0 1 2 3 4 5 6 7 8
Initial Velocity {AiI't u )

10

We have investigated numerically the dynamics of the
solutions presented in the previous sections in order to
determine their stability. Moreover the simulations have
been performed on the discrete lattice and not in the con-
tinuum limit so that discreteness effects, which may be
important in these systems, have been studied. In order
to make the comparison with real systems easier we have
worked with physical units, i.e., we have used the equa-
tions of motions that are derived directly from the Ham-
iltonian defined by Eqs. (2.1)—(2.4):

n.4

e~
03

0.2 ~

(b)

un
m = men, (u„+,+u„,—2u„)

dt2
Ol

+ II I

'VL
2

4c un
+ 2

u„1— +27u„(q„+& —q„),b2 ~ b2
(6.1)

d qn
M = MQ, (q„+,+q„,—2q„)dt2

—X(u„—u„,)(u„+u„,) . (6.2)

These equations are solved with a fourth-order Runge-
Kutta scheme and the time step is chosen small enough

0 I

4 5 6 7
Initial Velocity (A/ t.u )

8 9 10

FIG. 2. Velocity (a) and amplitude of the soliton kink (b) vs
initial velocity. The solid lines show the values for the analyti-
cal solutions; the crosses show the values of the final velocity (a)
or amplitude of the oxygen kink (b) when the steady state of the
two-component solitary wave has been reached. The dashed
line in the range u) Up indicates the parameters of the high-
speed analytical solution which has the same energy as the ini-
tial condition (parameter set l). (t.u. = time unit; see Sec. VI.)
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where v =ace, is the sound speed in the proton sublat-

tice, which is a condition for the definiteness of the in-

tegral used in the calculation of y. For the parameter
sets that we have used in the simulations U

&
& Uz. For the

protons the implicit solutions (3.6) [case (ii)] or (3.7) [case
(i)] written in terms of the physical variables are inverted

numerically and the displacements u„and velocities i„
are simply obtained from the values of the continuum
solution for x =na

For the oxygen sublattice the analytical solution gives
only the derivative dg/dz according to Eq. (3.3) and a
spatial integration is required to get initial conditions for

1.2 ~

Proton displacements

0.8

0. 4

0.0

-0.4

-0.8'

—1.2 ~

0 100 200 300 400 500

0.05.

Oxygen displacements

0.03 (b)

0.01

o~
-0.01

—0.03.

-0.05
0 100 200 300 400 500

FIG. 3. Proton and oxygen displacements showing the steady-state two-component solitary wave which is generated by an initial
condition in the low-velocity range v & v& & vo (v =3.0 A/t. u. in this case with parameter set 1) where the kink is situated at cell
n =20.
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the simulations. In order to get the best accuracy for the
discrete lattice we have used instead a discrete summa-
tion along the finite chain comprising N cells that we
simulate, according to

q„=q,+ y f(u„), n =2,X
k=1

(6.4)

in which f (uk ) is the expression of dfldz (Eq. 3.3) in
terms of the physical parameters. As the model is
translationally invariant for the oxygen sublattice, the
value of q, is not defined. It is chosen in our calculations
so that the solution in the oxygen sublattice is centered
along the chain in the same cell as the proton kink.

%e have defined a system of units which are con-
venient for the computations: energies are expressed in
eV, masses in atomic mass units (a.m. u. ), displacements
in A. This defines a time unit (t.u. ) equal to
1.0217)& 10 ' s. The simulations have been performed
with the two sets of model parameters listed in Table I.
Most of the simulations have been performed with set (l)
which is identical to the one we used in a previous work'
while set (2) has been used to check that the results are
preserved in this case which is close to the parameters ex-
pected for protons in ice. All simulations have been per-
formed with a chain of 500 cells and the initial kinks
were always localized at cell number 20.

A. Stability of the analytical solutions

Figures 2(a) and 2(b) compare the velocity of the two
component excitation [Fig. 2(a)] and the amplitude of the

kink in the oxygen sublattice [Fig. 2(b)] in the analytical
solution used as the initial condition, and in the final
solution which is selected by the system as a function of
the velocity v of the initial condition.

In the low-velocity range (U & v, ) the initial condition
is stable. The analytical solution obtained in the continu-
um limit provides a good approximation for the two-
component solitary wave which propagates as a steady
state in the system shown in Fig. 3. However, when U ap-
proaches v, lattice effects are observed. They are dis-
cussed in Sec. VI B.

As shown in Fig. 2, the behavior of the solitary wave in
the high-velocity range vz & v & v~ is more complicated.
There exists a velocity domain U~ & U & UL in which the
initial condition is instable. Any initial condition
launched in this domain with an initial speed U; ac-
celerates to the final speed UF larger than vL. Simultane-
ously, the shape of the solitary wave changes and the ex-
citation which emerges after some transient is the same
as the solitary wave that is generated by an initial condi-
tion almost equal to UF. Figures 4 and 5 show an exam-
ple of this behavior. In Fig. 4 the proton soliton velocity
versus time is drawn. The acceleration towards the final
speed vF is clearly visible. As shown in Fig. 5, the varia-
tion in the amplitude of the oxygen kink between the ini-
tial condition at speed v; and the solution at speed vF is
very large. This causes a large distortion in the oxygen
sublattice to be left behind the two-component solitary
wave while the kink in the proton sublattice is almost un-
disturbed by the change in speed. On the contrary, an in-
itial excitation launched with a speed higher than UL is

Proton soliton velocity

7. 2

6. 4

4. 8

4. 0

3.2.
o~

2. 4

1.6.

0.8

0.0,
0 100 200

Time (t. g.)
300 400

FIG. 4. Velocity vs time of the two-component solitary wave with an initial condition corresponding to a speed vQ (U (vL
(U =5.3 A/t. u. with parameter set 1).
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stable and the final excitation is very close to the initial
condition as can be seen in Figs. 2(a) and 2(b).

The origin of the particular velocity UL which separates
a domain in which the initial condition is instable from a
domain in which it is stable can be understood from Fig.
6 in which the energy of the analytical solution is plotted
versus its speed U. The speed UL corresponds to a
minimum in the energy and the domain U& & v & UL in
which the initial condition is instable is the only domain

in which the energy decreases as the speed of the solitary
wave increases. Due to the U shape of the energy curve
in the velocity domain U & Uo, a given energy corresponds
to two possible solutions in this domain. Initial states
uo & u; & ui lie on the left (unstable) branch of the energy
curve and they tend to evolve toward the solution with
the same energy on the right (stable) branch with uF & uL .
Although some energy stays in the local deformation of
the oxygen sublattice which is left behind the two-

1.2

Proton displacernents

0.8.
(a)

0.4

0.0

-0.4

-0.8

-1.2
0 100 200 300 400 500

0.25

Oxygen displacements

0.20

0. 15

0. 10

0.05

0.00
o~

-O. a5.

-0. 10

-0. 15 ~

-0.20

-0.25
0 100 200 300 400 500

FIG. 5. Proton and oxygen displacements showing the solitary wave and the large distortion in the oxygen sublattice that is left
behind (same initial condition as in Fig. 4).
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17

)
~ 165

C
LLJ

16
Vp VL

Velocity (A/l. u.)

FIG. 6. Energy of the analytic solution vs its speed.

B. Discreteness efT'ects

As mentioned previously, in the velocity range
0&v &v, additional features are observed when v ap-
proaches U &. A typical example is shown in Figs. 7 and 8.

component solitary wave which emerges, this is only a
small part of the initial energy so that energy conserva-
tion gives a rather good estimate of the final state as
shown in Fig. 2 where the dashed lines indicate for each
v; the velocity vF and amplitude of the analytical solution
lying on the right branch of the energy curve.

The solitary wave exhibits two noticeable features: (i) the
velocity of the proton kink shows regular oscillations
around its mean value which is very close to the initial
velocity (Fig. 7), and (ii) the kink in the oxygen sublattice
radiates a tail of oscillations which is particularly visible
on the velocities of the atoms (Fig. 8).

While feature (i) is yet unexplained, the variation of
feature (ii) versus the kink velocity indicates clearly that
it is created by discreteness effects. The amplitude of the
oscillatory tail increases when the solitary-wave velocity
approaches v, (i.e., becomes very close to the sound speed
in the oxygen sublattice) while the frequency of the oscil-
lations decreases. This behavior can be described by a
simple theoretical approach that we developed previously
for a one-dimensional nonlinear lattice. ' According to
this theory, the oscillatory tail (if any) has a frequency co

and wave vector k, which are determined by the intersec-
tion of the dispersion curve of the discrete lattice
co =f (k) and an "effective dispersion curve" for the soli-
tary wave moving at speed v which is simply m =k v

(Fig. 9). In monatomic lattice, when v is larger than the
sound speed (which is the case for solitary waves in non-
linear lattices without competing interactions between
second neighbors), the two curves do not intersect (except
at the origin) and no radiation is emitted. On the con-
trary, for a solitary wave moving slower than the sound
speed the two curves intersect and radiations are emitted.
Moreover, the higher the speed, the larger the radiation.
Although the theory was developed for a single chain, the
same ideas are valid here if one considers the oxygen sub-
lpttice except that the speed of the solitary wave is not
determined by the oxygen sublattice but also by the pro-
ton sublattice so that both subsonic or supersonic kinks
propagate in the oxygens. The case v & v

&
corresponds to

PROTON SOLITON VELOCITY

5.2

4.8

4.4

4 0.

3.6

3.2.

2.8.

n~»~vvrrvv

ow 2.0.

1.2 ~

0.4 ~

0.0 .
0 100 200 300 400 500 600

TIME (t. u.)
700 800 900 1000

FIG. '7. Variation vs time of the velocity of the proton kink for a solitary wave in the low-velocity domain with a speed close to U I.
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the subsonic case; thus we expect some radiations to be
emitted by the oxygen kink. Moreover, the theory shows
that when U increases and approaches the sound speed,
the frequency and wavelength of the emitted radiations
decrease very fast for small variations in U (see Fig. 9)
which is exactly what we observe in the numerical simu-
lations and the quantitative agreement between theory
and observation is good. The same analysis explains why

we never find any radiation in the wake of the oxygen
kink in the high-velocity range —because its speed is then
higher than the sound speed in the oxygen sublattice. It
is indeed tempting to also explain the oscillations in the
speed of the oscillatory wave by discreteness erat'ects.

However, its period is much larger than the time that is
required for the solitary wave to move along one cell and
we do not yet have an explanation for this phenomenon.
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FIG. 8. Displacements of the protons and oxygens at a later time with the same initial conditions as in Fig. 7.
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0
0

FIG. 9. Dispersion curve of the oxygen sublattice (solid line)
and of a kink in the oxygen sublattice moving at velocity v & UQ

(a) and v & Uo (b). The wave vector and frequency of the radia-
tion emitted due to discreteness effects are given by the intersec-
tion of the two curves.

den zone was found where no solitary excitations exist.
This seems to be a general intrinsic feature of such mod-
els not depending on the details of the interaction. '

Such a forbidden region should perhaps be experimental-
ly detectable in an anomaly in the proton mobility. In or-
der to do the calculations within a realistic model, we
have succeeded in establishing a set of parameters which
results in physical reasonable values for various energies
and frequencies. The stability of the solutions was
checked numerically by computer simulations of the
discrete model. In the low-velocity region typical
discreteness effects exist, while in a small intermediate ve-
locity region (where for a given energy two solutions were
possible) a transition to the high-velocity solution was
found.
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