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A recurrent problem in mathematical physics, for example, in the theory of critical phenomena,
is the need to study the structure of physically interesting functions at a branch point of a complex
structure usually called a "confluent singularity. " In such a neighborhood the function is necessari-

ly multivalued. In addition, the value of such a function is sometimes required on a branch cut or
even off the first Riemann sheet. Our approach to this problem is inspired by the Riemann (global)

monodromy theorem and consists of using series expansions to form integral approximants (special
case of Hermite-Pade approximants) to represent multivalued functions on multiple Riemann
sheets. We prove an analogous local-monodromy-theorem, functional-representation results. We
further identify the important "separation property" and use it to prove a convergence theorem for
horizontal sequences of integral approximants. We make an extensive numerical investigation, us-

ing horizontal, diagonal, and constrained diagonal sequences, and find that these methods give ex-

cellent results on a wide variety of test functions of rather complex structure.

I. INTRODUCTION AND SUMMARY

The problem of obtaining information about the ana-
lytic structure of a function from a finite number of
coefficients of a power-series expansion is one which
occurs in many areas of physics, notably in the theory of
critical phenomena. Here one is normally interested in
estimating the location and nature of one or more singu-
larities of the function.

Much effort has been denoted to this problem over the
past 30 years. Provided that the behavior of the function
is sufficiently simple, for example, a single branch point
or a small number of isolated poles, the standard ratio
and Pade approximant methods yield essentially exact in-

formation. Unfortunately the function of interest ap-
pears often to be more complex than this. In particular,
it appears that confluent singularities are often present,
and this feature seems to have led to erroneous estimates
of critical exponents in the past. The possibility of essen-
tial singularities of the Kosterlitz-Tbouless type also pro-
vides a much sterner challenge for series-analysis
methods. These problems have led to the development of
more sophisticated methods of analysis of power series,
e.g. , integral approximant methods, special transforma-
tions, etc. It is not our intention here to review these
methods in any detail, rather we refer the reader to the
forthcoming review article by Guttmann. '

In this paper we describe a new method of analysis of
power series which, in principle, ought to be well suited
to functions with confluent singularities. The method,
which is based on the construction of inhomogeneous
linear differentia equations for the function, consistent
with the known series coefficients, is a generalization of
the familiar Pade-approximant methods. This is, of
course, the basic idea behind the "integral-approximant"

methods which have been used for many years. Our
contribution is to combine this approach with some ideas
from the classical analysis of functions of a complex vari-
able, in particular, the ideas of monodromy and the
theorem of Riemann. We are able, in this way, to pro-
vide a systematic method of testing for confluent singu-
larities and of estimating their exponents. Furthermore,
some theorems are now available regarding the conver-
gence of the sequences of approximants ("Hermite-Pade"
approximants) to the function of interest, which are ob-
tained in this way.

To make these comments explicit, suppose we are
given the first JV coeScients of a power series

where m+p+q+ . + +st=Jan+1 and we choose the
normalization P(0) = 1. Such a set of polynomials can al-
ways be found, by solution of a set of linear equations.
We then define an approximant, denoted

y(z ) = [t /s;;q;p ], (1.3)

as the solution, or integral function y(z), of the
differentia1 equation,

dm dm —i

P(z) +Q(z) + . +S(z)y+T(z)=0,
Zm m —1

(1.4)

f(z)= g f&z& .
j=0

We then construct polynomials P(z), Q(z), . . . , S(z) of
degrees p, q, . . . , s, t, such that

dm dm —1

P(z) +Q(z) + +S(z)f+T(z)
z Ill dz
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subject to the initial conditions y(0) =f(0);. . . ;
y' "(0)=f' "(0). The singularity structure of the
functions y(z ) will then provide estimates of the singular-
ity structure of the unknown function f(z ).

The outline of the paper is as follows. In Sec. II we

give a brief review of the classical theory of multivalued
functions of a complex variable, introduce the idea of the
monodromic dimension as a useful way of classifying
such functions, and relate these ideas to the problem of
series analysis. In Sec. III we define "horizontal" and
"diagonal" sequences of approximants and discuss some
of the convergence properties of these sequences. Section

IV is devoted to an analysis of a large set of test functions
using our method. It is shown that a number of quite
complicated test functions can be successfully analyzed in
this way, and that the accuracy is generally superior to
that achieved by other methods on a series of equal
length.

II. MONODROMY GROUP AND CONFLUENT
SINGULARITIES

We begin this section by briefly reviewing some aspects
of the classical theory of functions of a complex variable.
Suppose we have a Taylor series

y „.. . , y . Each one has a Taylor series about zo and so
defines a complete monogenic analytic function as did the
function f(z ). If we encircle the ith singularity a, of the
n singular points, then y (z) changes into

(2.2)

since it represents an analytic continuation of the original
f(z ) and any such is a linear combination of our basis set

y &, . . . , y . This continuation defines a number of
m)&m matrices M", known as the "monodromy ma-
trices, " one for each singularity of the function. One can
prove, by an application of Cauchy's theorem, that

M'"'=I (2.3)

It is a consequence of (2.3) that each of these matrices
M" has an inverse, and hence they generate a group
called the monodromy group of the y system.

A simple example may be useful at this point. Let us
choose

f(z) =(1—z)-"+(1+z)-'",
which has three singular points, at z =+1,00. If we
encircle the singular point z =1 we generate two linearly
independent coverings of the complex plane,

f(z)= g a„(z—zo)",
n=0

(2.1) y, (.) =(1—.)-"+(1+.)-'",
y (z)= —(1 —z) ' +(1+z)

which is convergent in some neighborhood of z =zo and
hence defines a unique, single-valued regular function of
the complex variable z in this neighborhood. By standard
methods of analytic continuation one can construct
from this "functional element" a finite, or at most
denumerably infinite number p of "coverings"
y~(z), y2(z), . . . , y (z) of the complex plane, which are
the Riemann sheets of the function. Not all of those cov-
erings are necessarily Linearly independent. We call the
number of independent coverings the "rnonodromic di-
mension" of the function. Some examples may make this
clearer:
Example (a),

f(z)=z' ~, y„(z)=e' '" " f(z) .

example (b),

f(z ) = lnz, y„(z ) =f (z ) +2mi( n —1) ..

Both functions are singular at z=0. Analytic continua-
tion around a path which encircles the origin n times
yields the function y„(z ). The function of example (a) has
exactly p sheets, but only one linearly independent cover-
ing, and hence its monodromic dimension is m =1. Ex-
ample (b) has an infinite number of sheets but has m =2
sine& there are only two linearly independent coverings.

We now consider a monogenic analytic function of
monodromic dimension m and with exactly n singular
points in the extended complex plane. At some regular
point zo we can use it to define, by analytic continuation,
the m linearly independent coverings of the complex
plane in the neighborhood of zo. We will call them

The corresponding rnonodromy matrices are found to be

M'-"=

M( )

—1+i
2

1+i
2

1+i
2

—1+i
2

(2.4)

holds as z approaches a, for all i and k. Let us next define
a function class (given A and r ), denoted by

a)). . . )a„
(2.5)

and it is easy to verify that M"'M' "M'"'=I. The ei-
genvalues are +1 for M'", 1 and —i for M' ", and —1

and i for M'" '. These reflect the phase factors obtained
for each of the two parts of f(z ) on encircling each of the
three singular points.

Returning now to the general theory, we will say that
the y system of a monodromy group A is of finite order if
there exist A and r both finite such that
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to consist of all the y systems of the above specified finite

order with the n singular points at a, with the corre-
sponding monodromy matrices M". We can now state
Riemann's monodromy theorem.

Theorem (Riemann) .For any m+1 systems of func-
tions (yj;j= 1, . . . , m+1) belonging to the same class Q
there exists a linear homogeneous relation of the form

A, (z)y, (z)=0,
j=1

(2.6)

with the A~(z ) being polynomials in z.
Now, since if y belongs to class Q, then so do the

derivatives y', y", . . . , y' ', as can be seen by
differentiating Eq. (2.2), we have an immediate corollary.

Corollary. If y(z) is a monogenic analytic function
which generates exactly m linearly independent coverings
of the extended complex plane and these coverings form a
y system belonging to class Q as defined above, then there
exist polynomials A (z ), j=0, . . . , m, such that

where p (z ) is a polynomial of finite degree and pj(z ) are
analytic in 2).

Proof. First we observe from (2.2) that at a specific
singular point, a& for example, we may introduce a
change of basis

l(z ) X Uk'Ijyj(z )

j=1
(2.9)

where U& is a constant matrix and y are the m linearly
independent coverings generated by f(z ) in 2), such that,
provided the eigenvalues of M'"' are not degenerate,

AI —UI M (2.10)

AI, "I AI, lu (2. 1 1)

which, again provided the A, I are nondegenerate, implies

is a diagonal matrix. This result can be shown from the
existence of a basis which gives M'"' the structure of a
companion matrix; see Eq. (2.26) below. Then

A (z)y'j'(z)=0 .
j=0

(2.7)
(2.12)

f(z) =(1+2z)'"+(1+z/3)'"+e'.

Inside the disk only the first term displays a branch point
at z= —,

' and there are exactly two linearly independent

coverings so the loca1 monodromic dimension is 2. Glo-
bally there are three singular points and six Riemann
sheets; however, only three linearly independent cover-
ings so the monodromic dimension is 3.

We next prove a theorem, using only a minor variant
of Riemann's original proof of his monodromy theorem.
The purpose of our theorem is to establish a representa-
tion analogous to (2.6), valid in I) when we only have in-

formation about the function in 2) and not necessarily in
the extended complex plane.

Theorem (Disk Monodromy) Let f (z ) be a con.vergent
Taylor series about z =0 and of local monodromic dimen-
sion m in a disk 2){z

~ ~

z
~

(R ). Furthermore, let there
be n & ~ singular points aj, of finite order in 2) and

~
al,

~
(R, k = 1, . . . , n. Then

m

g p, (z)f"'(z)=0,
j=0

(2.8)

We conclude therefore that, for functions generating y
systems in class Q, the integral approximants (1.3), for
high enough order, will be exact. Baker has suggested
that it is reasonable to consider the idea of monodromic
dimension in connection with the use of integral approxi-
mants. With this aim in mind and since often we lack
global information about a function of interest, we define
the idea of local monodromic dimension and state a
theorem, analogous to Riemann's monodromy theorem.

Deftnition. Given a convergent Taylor series f(z)
about z=0 and a disk 2)= {z ( ~

z
~

(R {, we say that
f(z ) has local monodromic dimension m if analytic con-
tinuation along all paths in 2) generates exactly m linear-
ly independent coverings of 2).

An illustrative example might be, on the disk
~

z
~

( 1,

uP'(z)=(z —z„) "' h. . l, ,(z), (2.13)

where h .I, I is uniform in the neighborhood of aI, .
With these preliminaries, we now consider the set of

equations

g c,y,'1'(z) =0, i =1, . . . , m .
j=0

Cramer's rule gives the solution for cj as

c, =b, (z)=det[y;" (z)];

(2.14)

/=1). . . )I) J=O). . . )P2) J/JO (2.15)

where hl, &(z) is uniform (single valued) in the neighbor-
hood of az and vz t (2ni )—'Ink&. I is a whole number. If
r =1 [Eq. (2.4)] holds exactly, then hl, t(at, )&0, ~ and

hl, &(z) is analytic at z =at, . We will not discuss either the
special cases r&1 or degenerate )I,'s as they add to the
complexity of the proof and obscure the essential
features. These extensions follow without modification
from the classical results.

We illustrate the case for r= —', with the example

f(z ) =exp(z ' ). This function can be written as

f(z)=[cosh(z ' )]+[z' sinh(z ' )]/z'

where each [ ] is a uniform function. Clearly m =2 for
this case. It takes only a little work to verify that

z f"+l. Sz f ' —0.25f=0

and so, to anticipate, (2.8) holds here, but not with
p2(z ) =z as one might have guessed. When degenerate ei-
genvalues or eigenvalues differing by integers occur loga-
rithmic terms are expected to appear.

As remarked above, y'j'(z) satisfies the same monodro-
my equations as y(z ). The same is true of the u(z ) and its
derivatives by differentiating (2.9). It is elementary to
derive from (2.12)
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l=1, . . . , m; j=0, . . . , m; (2.16)

The detUk is a constant and by factoring the u&'(z) as in
(2.13) we find that

m

g (z —a„) "'
&J,(z )

1=1
(2.17)

is analytic in the neighborhood of z=ak. By repeating
this argument at each singular point ak we conclude that

n m

PJ (z ) = g g (z —a ) ~k'™&J,(z )
k=1 1=1

(2.18)

is analytic at z =ak, k = 1, . . . , n and, of course, by con-
struction is analytic elsewhere in 2). Thus by multiplying
the solution (2.15) by the factor found in (2.18) we con-
clude from (2.14) that

The 6 (z)+0 because by hypothesis the y, are all linear-
Jp

ly independent. Next, following (2.9), we introduce a
change of basis y~u so that

AJ. (z }=detUkdet[uI"(z)];

f(z) —gh (z)(z —a) ',
J

(2.22)

where h, (z) are analytic functions of z in the neighbor-
hood of z=a. As we have seen above, a homogeneous
differential equation of mth order can represent such a
confluent singularity exactly when there are m terms in
the sum (2.22). According to the standard theory of
differential equations we expect that A (z ) ~ (z —a )

for such a case [or p (z) ~ (z —a ) in Eq. (2.8)]. Singu-
larities of lower degrees of confiuence will have A (z)
proportional to a lower power of (z —a ) even in the con-
text of monodromic dimension m. From the point of
view of approximation theory, the main problem is that
A (z) will not generally have a single, high-order zero
but rather a cluster of zeros. This problem has been ob-
served and discussed previously but not from the mono-
dromy point of view. A further, closely related, problem
is the difficulty of distinguishing between a true confluent
singularity and two or more nearby separate singularities.

We illustrate our approach to the problem of confluent
singularities using second-order inhomogeneous differ-
ential equations with polynomial coefficients, i.e.,

g P (z)y J'(z)=0,
j=0

(2.19)

where P~(z) exist, are not identically zero and are analyt-
ic in S. By standard theorems P (z) has only a finite
number of zeros in 2). We anticipate that there will be
zeros of P (z) at z=ak, k=1, . . . , n The.re may, how-
ever, be other zeros. For example, if

P(z) +Q(z) +R(z)y+T(z)=0 .
, dz dz

(2.23}

f(z)=(1—z) ' +e
Hunter and Baker find

(1—z)(-,' —z)f"—( —4'+2z z')f'+(-', z ———", )f=0

and the zero at z = —,
' corresponds to a solution

f(z)=(1—z) "—( —1.5/e) "e'
which has the behavior f(z ) —(z —2.5} + for z near
2.5. In any case we may factor

P (z)=p~(z}Q(z}, (2.20)

where p &0 for
~

z
~

&R and Q+0 for
~

z
~

&R. We
now define

p (z)=P (z)IQ(z), j=0, . . . , m —1 (2.21)

and so by (2.19) we conclude (2.8), the conclusion of the
theorem.

We remark that once p (z) is fixed the linear indepen-
dence of y„. . . , y fix the other p uniquely. If fewer
than m y's were independent then an equation of lower
order could be found and multiplied by an arbitrary fac-
tor and added to (2.10), destroying the uniqueness.

In the theory of critical phenomena one of the major
complications to the analysis of series is the occurrence,
or possible occurrence, of confluent singularities of the
form

y2+
—M~+' y1, j=0, 1,2 . (2.24)

From (2.24) we deduce the linear equations

3

y, +, ——g M,„y„+, „ i=1,2, 3, j=0, 1,2
k=1

from which we find at once that

(2.25}

The solutions of such equations are a subclass of the
functions of monodromic dimension three. To investi-
gate a confluent singularity we look, as did Rehr et al. ,
for two close zeros of P(z). We expect that, on a distance
scale of the order of the separation of the two zeros, the
change in the solution will be substantial as the approxi-
mation improves and tends towards a single double zero.
However, at a distance large compared to the separation
of the zeros, as the zeros merge into one, the monodromy
structure of the equation should go smoothly from that of
two isolated singularities to that of one confluent singu-
larity.

We therefore propose to compute the monodromy ma-
trix M=M"'M' ', the product of the two monodromy
matrices for the two singularities, by integrating around a
contour which encloses both singularities (and no others).
We first integrate (2.23) from the origin, with the given
boundary conditions, to a point zo convenient to the
singularities z, and z2, and then integrate counterclock-
wise around both singularities five times (2m + 1

times in general). This will produce the quantities
yo(zo), y, (zo), . . . , y~(zo). By the monodromy theory
discussed previously we then have

T

y1+j Vp
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0 1 0
M= 0 0 1

M3 ] M32 M33

(2.26)

A+ ———,
'

[M33 —1+[(M33—1) —4M3, ]' (2.27}

The behavior of y(z) near the confiuent singularity is
then given by

which has the structure of a companion matrix. The ele-
ments M», M32, and M33 are then obtained from the
solution of the set of equations (2.11). Since one of the ei-
genvalues of M is known to be unity, corresponding to
the analytic background term, it follows that

M3] +M32+ M33 —1

and this provides a check on the numerical integration.
It then follows that the nontrivial eigenvalues of M are

y(z)=y+(z)+y (z)+yp(z) . (2.34)

This decomposition can be computed in terms of the
functions yp(z ), y, (z ), and y2 (z ) defined in (2.24), giving

y (z)=

~ (y-yi) —(yi-y2)
(I, —A, + )(1—A, + )

~+(y —yi ) —(y~ —y2)

(A+ —X )(1—A, )
(2.35)

of z, and of the amplitudes A+, A, and Ao. Rehr et
al. suggest using z& or z2 as an estimate of z, with the
difference z& —z2 as a measure of the error. In the nu-
merical results on test functions, to be described later, we
find that the z, which has the most divergent local singu-
larity associated with it is the closest estimate and so we
adopt this criterion. In order to compute the amplitudes
we separate y(z) into

Y(z}=A+(z—z, ) ++A (z —z, ) -+A, , (2.28) yp(z)=yp(z) —y+(z) —y (z) .

where

2m.i y+ ——ink+, 2+i y = ink, (2.29)

Q(zi ) Q(z2)
P, = 1—, , P~=1-

P'(z, )
' P'(zz)

(2.30)

A difficulty appears at this point because we do not im-

mediately know which sheet of the logarithm to choose in
(2.29), since the monodromy matrix is a topological ob-

ject and is insensitive to shifts of the power of the singu-
larity by an exact integer. To resolve this problem we in-
troduce the following approximate method to compute
y+. A better method, in principle, but harder to com-
pute, is given at the end of this section. The approximate
method is based on a quadratic approximation to the
coefficient P(z) of y", a linear approximation to the
coefficient Q(z) of y' and a constant approximation to
the coefficient R (z ) of y in (2.9), near z, and z2. We first
compute the local singularity indices

Now asymptotically as z ~z,
y+(z}-P+(z)(z —z, ) ',
y (z)-P (z)(z —z, )

yp(z ) Pp(z ),
(2.36)

P (z)=(z —z, ) 'y (z),

(z}=(z—z, ) -y (z),

Pp(z ) =yp(z ),
(2.37)

and extrapolate them to the singular point z, by the
linear extrapolation

(z,J)=PJ(z)+Pi(z)(z, —z) . (2.38}

where the P's are analytic near z =z, . To obtain the am-
plitudes A+, A, and Ap of (2.28) we compute, by in-

tegration of (2.9), the quantities

and the auxilliary quantities

R(z, )

P(z)
lim
z-z, (z —z~)(z —z2)

R(z, )

P(z)
lim
z-z, (z —z, )(z —z2)

and, from these, the quantities

p=1 —p, —p2, r= —,'(r, +r2) .

(2.31)

(2.32)

Since the P' are directly available from the numerical
solution of (2.23), this extrapolation is directly comput-
able. Some care is required in selecting the point z to ex-
trapolate from since one wants to be close enough for the
linear extrapolation to be reliable but not close that the
z&, z2 difference will seriously perturb the estimate. We
also remark that study of the decomposition (2.36) pro-
vides an alternative way to fix the correct Riemann sheet
of the logarithm in (2.29).

In the case of a single isolated singularity [P(zp)=0,
P'(zp)&0] we follow the method Rehr et al. The singu-
lar point is, of course, zp and the exponent p in

The approximate critical indices are then given by

}'+ ,' [p+(p' 4r )
'"——]—, —— (2.33)

y(z ) —P, (z)(z —zp )~+$2(z )

is given by

(2.39)

which should suffice to determine which Riemann sheet
of the logarithm to use in (2.29).

To determine fully the representation (2.28) of y(z)
near the confluent singularity, we need to find the value

Q(zp)=1-
P'(zp }

(2.40)

as in (2.30). In order to compute P, (zp) and Pz(zp) we
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first note that it is numerically unstable to integrate (2.23)
into or out from a regular singular point. Instead we

compute the power-series expansions

yp(z)=(z —zp} 1+ g a„(z—zp)"
n=1

yp(z ) =1+ g b„(z —zp }",
n=1

from the homogeneous version of (2.23}and

(2.41}

V~(z)= g c.(z —zp}"
n=1

(2.42}

v(g) = A pvp(g)+ Apvp(g)+vpp(g)

y'(4) = A pv p(C)+ Apvp(k)+y~(k»
(2.43}

are then solved for A& and Ao. It then follows by con-
struction that

Pi(zp ) = Ap Iflz(zp ) = Ap (2.44)

from the full inhomogeneous equation (2.23). The full in-

homogeneous equation (2.23), subject to the prescribed
initial conditions at z =0, is then integrated to some con-
venient intermediate point where the series (2.41) and
(2.42) converge rapidly, and the equations

view that the usefulness of the horizontal sequences of
Pade approximants is their convergence properties in a
disk to functions whose properties outside the disk are
unknown, and perhaps horrible, in contradistinction to
the diagonal sequences whose natural domain is the ex-
tended complex plane.

In an entirely similar way we deAne diagonal and hor-
izontal sequences for the more general Hermite-Pade ap-
proximants being discussed here. A diagonal sequence
consists of approximants of the form

[L/Mp;Mi', . . . ', M ] with lim L/M~ ——1,L~ oo

whereas a horizontal sequence consists of approximants
[L /Mp', . . . ', M ] with L ~ ao and the M; finite. A num-
ber of theorems are known for this class of approximants,
and we mention these here for completeness. For details
readers are referred elsewhere. '

In particular, Baker has studied the invariance of
Hermite-Pade approximants with respect to Euler trans-
formations, and has obtained a general invariant form.
For the case of inhomogeneous second-order differential
equations, on which we concentrate here, the invariant
form is

P~+4(z ) +QQ+3(z ) +R&(z )f+ Tz(z )
d'f df
dz' + dz

III. DIAGONAL AND HORIZONTAL
SEQUENCES OF APPROXIMANTS where, if we write

=0(z +'), (3.1)

As stated in the Introduction, we seek to analyze
power series since by means of approximants denoted by
[tls;. . .;q;p] which are solutions of the differential
equation (1.4) with polynomial coefficients, subject to ap-
propriate initial conditions. A sequence of approximants
corresponds to a sequence of choices of the integers
(t, s, . . . ), the degrees of the polynomial coefficients. In
order to make reliable estimates of the singular quantities
it is essential to study a sequence of approximants, and it
is therefore not only desirable but necessary to investigate
the invariance and convergence properties of various
types of sequences.

For the case of ordinary Fade appzoximants, sequences
[L /M] for which limit „L/M =1 appear to converge
more rapidly and over a wider domain of z than other
types of sequences. We term these "diagonal sequences. "
It is well known that the strictly diagonal approximants
[L/L] are invariant with respect to Euler transforma-
tions, and it appears that the convergence property is not
unrelated to this invariance. That is to say, the value of
the [L /L ](z ) to f(z ) is the same as the value of
[L/L](u} to g(u), where z=au/(1+bu) and g(u)
=f{au l(1+bu )}. Another type of sequences for Pade
approximants, which we term a "horizontal sequence"
has the form [L lm ] with L ~~ and m fixed. A
theorem of de Montessus de Ballore (see Ref. 8 for de-
tails} states that, for an appropriate m and L ~ ~, the se-
quence of [L lm ] Pade approximants to a meromorphic
function f(z) in

~
z

~
&R converges to f(z) in compact

subsets of the largest punctured open disk
~

z
~

& R /Ip~ I

containing exactly m poles off(z }. We take the point of

N+4 N+3
N+4( ) X pjz Qiv +3

(z}= g q, z'
j=0 j=0

we have the linear restriction

(3 2)

qN +3—~PN +4 (3.3)

This restriction does not create any difficulties in the
computation of the polynomials P, Q, R, and T since the
system of equations remains linear. Riernann's P equa-
tion is an example of (3.1) subject to (3.3) where the re-
striction (3.3) corresponds exactly to the well-known re-
quirement that the sum of the six exponents at the three
regular singular points must sum up to unity. Riemann's
study of the P equation is closely related to his monodro-
my theorem which we quoted in Sec. II.

The behavior of diagonal approximants in the limit
N~ao is not yet well understood in general. For ordi-
nary Pade approximants Stahl' has recently shown that
[L/M], L,M~ ~, L/M~1 converges to the defining
function f(z ) in logarithmic capacity in a domain 2). His
set of conditions is that (1) the set 6' of singularities of
f(z ) be of capacity zero and not include the origin and
(2) the doinain 2) is defined by the three properties: (a)
f(z) has a single-valued continuation in 2), (b) the loga-
rithmic capacity of the boundary M) is minimal in the
1/z plane among all domains satisfying assertion (a), and
(c) 2) contains all domains satisfying (a) and (b).

Nuttall" has obtained results for a special case of the
diagonal integral approximants (and also for the same
special case of more general Hermite-Fade approxi-
mants). Chudnovsky' has also obtained some results for



GEORGE A. BAKER, JR., J. OITMAA, AND M. J. VELGAKIS

TABLE I. Test functions A —8' used to study the Hermite-Pade approximant method of series
analysis.

Test function

Z)
—1.5+e

—z

(1—)
1 5+(1+ 1Z2) 1 25+(1+ 15

Z —1Z2) 1 25

(1—z) 1 5(1+ 1z)1 5+(1+ I z2) 1 25+(1+ 15 z —1z2) 1 25

' 1.25

(1 )-15 (1 1 )-15 2(1 —z)(2 —z)
(2 —z)' —z'

(1—z) "+(1+—'z)
5

(1—z) "+(1+—', z) '"+e
(1—z) +{1—z) '+(1—z) ' 4+(1—z)' +{1—z)' +e
tan&z /&z

[(1—)'"[1+-,'(1—)'"]} '

(1—z) ' +(1—z) '+(1—z) ' +(1——'z)

[(1—z) '"+(1—z) '+(1—z) '"](1+z)"+(1——,'z)

(cos&z )'"+[cos(-,'&z )]'"+e
(cosgz )1 /2

{1 + [ 1 —(
7 )2z]1/2

}

V

1 —z

1+—'z
2

z) —7/4+( 1 )
—3/4+( 1+ 1

)
—1.25+ e

—z
3

1 —3z
1/2

(1—z) +(1—z)
1+—'z

3
' —5/4 '

1+ 1 '1/2+'' +1+z 1 —
—,
' z

TABLE II. Properties of test functions.

Series

Global
monodromic

dimension

1+b
1+b

Separability

1+b
1+b

Disk of 1 singularity
Local

monodromic
dimension Separability

Disk of 2 singularities
Local

monodromic
dimension Comments

Baker Lubinsky theorem
infinite number of sing.

[—1/1;2;2]
[—1/0;1;2] and

[0/1; 2; —1]

J
T
K
U
R
D
H*
E
P
V

2
2

2+b
2+b
2+b
3
3
3
3
3
3

1+b
1+b
1+b
1+b
1+b
1+b
1+b
1+b
2+b
2+b

3+b

S
N
S
S

S
S
N
S
S

2
2

2+b
2+b
2+b
2+b

2+b
3

S
N
S
S
N

[—1/1;2;3]
infinite number of sing.

infinite number of sing.
4 sing. total
line of sing. Re(x)=1

confluent m =2
confluent m =2
confluent m =2

and sing. at —1

confluent m =2
and sing. at —1

confluent m =3
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special cases. Specifically Nuttall has studied approxi-
mants defined by (m —1)st-order homogeneous
differential equations to meromorphic functions with a
finite number of singularities on an m-sheeted Riemann
surface defined by an irreducible polynomial R(y, z).
Such functions can, for example, have (z —zo)' -type
branch points. Of course, by Riemann's monodromy
theorem (Sec. II), an m th order homogeneous dif-
ferential equation with polynomial coefficients would ex-
actly represent such a function. However, Nuttall's work
illuminates the situation when such an exact representa-
tion is not possible. His principal results shows that al-

most all of the zeros of the polynomial coefficients for the
unrestricted [—1/n;. . . ;n] approximants lie on well-
defined curves in this case. We use the notation degree
—1 to denote a missing polynomial. It is tempting to
suppose, and we investigate numerically, that a situation
analogous to that for Fade approximants occurs. Name-

ly, the extended complex plane is cut in such a way that
the equation of the form defining the integral approxi-
mant could exactly represent the given function along all

paths which do not touch any of the cuts. The diagonal
integral approximants are then expected to converge, ex-
cept perhaps for a set of points of small size in some
sense, away from the cuts. The selection of the cut set
from all possible such cut sets is expected to be minimal
in some sense.

As a remark, we note that since Pade approximants (to
convergent series) generally converge geometrically fast
at regular points or even at poles (the reciprocal of the
Pade approximant is meant at a pole) and much more

slowly at branch points or cuts (which they cannot exact-
ly represent), we expect the same type of rapid conver-
gence at exactly representable paints but warn that it is
unlikely at points or cuts which cannot be |:xactly
represented by the integral approximant being used.

In the case of integral approximants, the identification
of a horizontal sequence with the disk convergence prop-
erty is less simple. We have, however, isolated one prop-
erty which aids in the analysis and appears to be essential
to this question. It is the separation property.

Separation property. If a function f(z ), possibly multi-
form, can be written as f(z)=f;(z)+f,(z), where for a
disk 2)= Iz ( ~

z
~

& R I, f, (z ) is analytic for all z E2) and

every continuation of f;(z) is analytic for all (z) in the
finite complex plane outside of 2), then f(z ) has the sepa-
ration property with respect to S.

The simplest nontrivial example of functions with the
separation property is the class of meromorphic functions
which have the separation property with respect to any
disk D of finite radius R. For this class Baker and Lubin-

sky have identified the horizontal sequences with the
disk convergence property. To quote one example of
their results, suppose f(z) is meromorphic in

~

z
~

&R
with l poles of total multiplicity p. Then
[L/p —I;I—I;. . . ;1—I;I] converges geometrically in L
and L goes to infinity on any compact subset of

~

z
i & R

not including any pole of f(z). The selection of the de-

grees of the finite polynomials is of key importance here
to the proof of convergence. The degrees are chosen so
any other set of polynomials of the same degrees which
cancel out the singularities in

~

z
~

& R are just a constant

TABLE III. Values of critical parameters for test functions with no confiuent singularities.

Function

D
E

H'

K
M
R

T
U

1.0
1.0
1.0

1.0
2.467 40
2.467 40

2.467 40
1.0

—1.5
—1.5
—1.5

—1.5
—1

0.5

0.5
—1.75

Al

E

1.837 12i
E

E

—2.0
0.564 190i

0.5801 192i
0.707 107
+ 0.707 107i

Al, o

1.923 35
1.923 35
0.632 158

0.847 513
0.202 692
0.925 701

0.0

1.065 83

Z2

—1.75
—1.75
1+0.481 575i

—1.25
22.2066
9.869 64

2.469 39

—3.0

—1.25
—1.25
—1.25

—1.25
—1.0

0.5

0.5

—1.25

As&

0.988 950
0.988 950
0.023 227 5
+0.032 275i
1.321 71
—2.0
0.398 942i

—0.016001 0

3.948 22

A2, o

0.710615
0.501 025
—1.59698
+1.989 58i
3.786 64
0.022 515 8

i+
5.172 32x 10
0.025 144 Si

20.5275

Function

0*
K
M
R

Z3

+2E

+21

61.6850
22.2066

22.2066

—1.25

—1.25

—1.0
0.5

0.5

A3

—0.382 683
+0.923 88i
—0.382 683
+0.923 88i

—2.0
0.325 735

0.325 735
+2.501 41i

A3, 0

—0.383 200
+0.228 982i
—0.070037
+0.081 091 3i

0.008 105 69
0.707 107i
+2.268 78 &(10
0.0
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TABLE IV. Values of critical parameters for test functions with a conAuent singularity.

Function Z]

1.0 —1.75

r2

—1.0

Ai

0.707 107
+ 0.707 107i

—1.0 0.367 879

Z3 3 3 A3 A30

P
1.0 —1.75

1.0 —1.75

—1.75

—1.0

—1.0

—1.25

0.707 107
+ 0.707 107i

2.0—2.0i

0.707 107
+ 0.707 107i

—1.0

—2.828 47

2.378 41

4.499 73

—0.707 107
0 707 107

0.707 107

—1.0 1.5

—3.0 —0.5

2.0 —1.25
—1.681 79
+ 1.681 79i

0.414 214

1.391 91 0.602 401

2.449 49 0.265 165

1.0 —1.75 —1.25
1.437 62

+ 1.437 62i

—1.681 79
+ 1.681 79i

1.341 64 —1.0 1.25 0.420 448 1.451 31

g A (z)f J'(z)=0.
j=o

(3.4)

From (3.4) it follows directly, as the differential multi-
plier,

m d J
g AJ(z)
j 0 dZ

(3.5)

TABLE V. Coefficients of the polynomials P(z), Q(z), R (z),
and T(z) for approximants [L/1;2;2], L =0, 1,2, 3 for test func-
tion 0. The coef5cients are tabulated in ascending order.

p(z)

Q(z)

R (z)

i=0
1.0

—0.6667
—0.3333

41.8757
—29.6384
—14.2363

—7.6182
—21.3545

L=1
1.0

—0.6667
—0.3333

29.5511
—21.4230
—10.1281

—5.5641
—15.1922

L=2
1.0

—0.6667
—0.3333

11.1411
—9.1496
—3.9915

—2.4957
—5.9872

L=3
1.0

—0.6667
—0.3333

3.2624
—3.8972
—1.3653

—1.1826
—2.0479

multiple of a particular one. Furthermore these polyno-
mial degrees are chosen so that when such a set of poly-
nomials cancels the singularity of f(z) the polynomial
multiplying the highest derivative vanishes only at the
poles off(z ).

More generally suppose f(z ) has the separation prop-
erty with respect to 2), a finite number of singular points
in the interior of 2), and none on the boundary of S, and
that all those singular points, plus the point at infinity for
the f;(z) (defined by the separation property} are singular
points of finite order (2.4). Suppose further that f;(z} is
of exact rnonodrornic dimension m. Under these hy-
pothesis, the corollary to Riemann's monodromy
theorem shows that there exist A.(z) polynomials, such
that

applied to f, (z ) does not change the radius of conver-
gence, that

A, (z)f"'(z)=P(z),
j=o

(3.6)

where P(z) is analytic in 2). It is no loss of generality if
we assume that of all possible sets of AJ(z) for which
(3.4) holds, we have chosen that one for which A (z) is
of minimum degree. A (z) cannot be identically zero
because f, (z) is of monodromic dimension m. For this
choice A (z) is essentially unique, i.e., all such A (z)
are just constant multiples of each other. For suppose
there were two such B (z) and C (z) not constant mul-

tiples of each other. Then we can form a linear combina-
tion of B (z} and C (z) of lower degree in z by cancel-
ling the highest power of z and leaving a new set of poly-
nomials for which (3.4) holds with A (z) of lower de-

gree. But this result is contrary to the hypothesis that we
had chosen that set of A (z } for which A (z ) is of
minimum degree. Therefore we conclude that it is essen-
tially unique. If we now normalize it as we please, say,
the largest coefficient of any power of z in A (z) is unity,
then, by the remark after the proof of our disk monodro-
my theory (Sec. II), the other A, (z ) and tI)(z ) are unique-

ly fixed. For this set of degrees of the polynomials we say
therefore that (3.5) is an essentially unique differential
multiplier.

Baker has proven that if f(z) satisfies an equation of
the form (3.6) with an essentially unique differential rnul-
tiplier, with P(z } an entire function, then the
[L /Mo' ~ . ~

'M ] converge to f(z ) in the limit L ~ oo

where the polynomial degrees M, are those appropriate
to the essentially unique differential multiplier. His proof
can be transcribed to the present case, except we now
need the estimate that the coefficients of the Taylor series
of P(z) are of the order R ". If r &R is the largest mag-
nitude of the location of any singular point of f; (z ) in D
then the difference between the appropriately normalized,
polynomial coefficients of [L /Mc, . . . , M ] and the
AJ(z ) of (3.7) is of the order,

T(z) —14.2363 —10.1281
0.0

—3.9915
0.0
0.0

—1.3653
0.0
0.0
0.0

L fixed power( /R )L

which goes to zero as L ~ ao. The convergence of the in-
homogeneous part follows as well. Thus we conclude the
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following theorem.
Theorem (separation property) .Under the hypothesis

stated before Eq. (3.4), (i) there exists an essentially

unique differential multiplier for disk S, whose
coefficients are polynomials of degrees MO, M&, . . . , M
and (ii) the integral approximants [L/Mo;. . . ;M ] con-

verge as L ~ ~ to f(z ) on compact subsets of 2) not con-

taining singular points off(z ).
By virtue of this de Montessus-type theorem and the

Baker-Lubinsky results, when f(z) has the separation
property, we obtain convergence in a disk by letting the
degree of the inhomogeneous term approach infinity

while the other polynomial degrees remain fixed and
finite. The appropriate degrees can be determined by a
systematic scan with M increasing steadily since if the

M, j &m, are too large the high-order coefficients will

converge to zero. With a limited number of coefficients,
as is usually the case in practice, it may be difficult to car-
ry out this procedure.

Finally, we consider the case when the separation
property does not hold. In this case, the representation
in a disk is given by the disk monodromy theorem, Eq.
(2.8). If the monodromic dimension is m in the disk then

it may be possible to represent the function as an analytic
background plus a singular part of monodromic dimen-
sion (m —I). In this case the horizontal sequence is
[L/L; . ;L;M, ] with M, fixed and L ~Do. If
the above-mentioned reduction of the monodromic di-
mension by the inclusion of an analytic background term
does not take place for the particular example, then the
horizontal sequence [—1/L;. . . ;L;M ] will be re-
quired.

It is important to remember here, as throughout our
discussion, that convergence of horizontal sequences of
approximants can only be expected if the differential mul-
tiplier, plus the inhomogeneous term when present, is
essentially unique. Even so, we have only demonstrated
convergence when the separation property holds, but do
investigate it numerically for some test functions which
do not have this property. If one tries to apply a se-
quence of the sort used for functions with the separation
property to those without it, one cannot expect to find
convergence beyond the first singularity. As an example
let x =z —zo, where zo is the nearest singularity to the
origin of f(z ). Suppose further that the dominant part of
the high-order coefficients of the expansion in z come

TABLE VI. Estimates of critical parameters at first singularity for test functions with no confluent
term, from horizontal and diagonal sequences of approximants.

Test
function

Horizontal sequence

1 A[ A]p
Diagonal sequence

3 1 A] A],p

U

18
28
40
50

18
28
40
50

18
28
40

18
28

18

18
28
40

18
28

18
28

2.8
5.7
7.9

11.1

3.5
6.5
8.6
9.6

1.9
2.2
3.1

7.7
14.2

12.5

3.2
8.2

14.9

5.5
6.5

6.5
16.2

[L/4;4;5]
3.9
3.3 4.8

[L/1;2;3]
5.0 4.2

14.5 10.5

[L/1;2;3]
1.5 0.7
4.0 2.6
6.2 4.5
9.4 8.5

[L /4;4;5]
2.1 0.0
4.7 3.8
6.6 5.7
7.2 6.4

[L /4;4;5]
0.9 0.0
0.8 0.0
1.3 0.5

[L /2;2;3]
5.1 4.2

12.5 9.6

[L /0;0;1]
11.0 11.5

[L/1;2;3]
1 ~ 3 0.0
5.9 5.7

12.1 11

0.3
0.7
3.0
6.5

0.0
2.1

3.5
3.6

0.0
0.0
0.0

2.3
8.3

9.0

0.0
6.9

11.2

2.4
8.9

4.3
7.0

12.0
13.3

4.0
6.7

10.4
15.2

1.9
3.0
5.9

6.0
11.6

23

4.4
9.6

13.9

4.0
6.5

8.3
12.6

3.3
5.2
9.7

10.9

2.6
5.0
8.3

12.8

1.0
1.7
4. 1

4.6
9.7

21.4

2.4
7.6

10.6

0.3
3.3

6.2
10.7

2.3
4.4
7.3
9.8

1.4
4.7
7.2
9.6

0.0
0.2
3.4

3.8
8.8

10.6

2.3
7.6

2.7
4.8

5.5
10.5

0.8
3.2
5.1

7.3

0.3
3.2
4.9
8.0

0.0
0.0
1.8

2.4
6.7

8.9

3.2
8.4

3.0
7.1
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TABLE VII. Estimates of critical parameters at second singularity for test functions with no
confluent term, from horizontal and diagonal sequences of approximants.

Test
function Z2

Horizontal sequence

y2 A2 A2, o Z2

Diagonal sequence

r2 A2 A2, o

K

U

18
28
40
50

18
28
40
50

28
40
50

18
28
40

18
24

18
28

18
28
40

40
50

2.7
4.1

5.6
3.7

1.6
3.0
44
4.5

0.7
1.3
2.8

4.0
12.5
21.9

3.6
54

1.2
3 ' 8

2.2
5.2
5.8

0.8
2.2

[L /4;4;5]
1.2 0.6
2.4 2.0
3.6 2.8
1.8 3.0

[L /4;4;5]
0.3 0.0
1.2 0.6
2.5 1.8
2.5 1.8

[L /4;4;5]
0.0 0.0
0.0 0.0
1.4 0.0

[L /2;2;3]
2.4 1.9

10.8 9.5
20.0 9.5

[L /1; 1;2]
2.2
3.9

[L/4;4;5]
0.0
0.0

[L/1;2;3]
1.3 0.3
3.5 3.0
3.9 3.3

[L /1;2;3]
1.0
1.3

0.0
0.3
0.8
1.6

0.0
0.0
0.2
0.0

0.0
0.0
0.0

1.0
8.7
9.0

0.1

2.5
2.6

3.9
5.3
8.8

11.1

1.7
4.3
7.0
7.3

1.0
3.6
5.6

3.0
9.0

14.0

7.5
8.4

2.9
3.8

1.5
3.9
8.0

3.1

3.5
6.9
8.9

0.6
2.5
4.7
5.0

0.0
1.7
3.4

1.1
7.0

11.8

6.0
6.9

0.0
0.0

0.3
2.2
5.6

3.0
2.9
6.2
7.8

0.0
1.8
3.7
4.3

0.0
1.4
2.6

0.3
6.4
9.4

0.0
1.6
4.9

1.0
1.4
44
5.9

0.0
0.2
1.5
1 ' 8

0.0
1.0
2.4

0.0
5.0
9.6

0.0
1.2
3.8

from the expansion of

f(z) =ax r+bx ~+'+cx r+2+ (3.7)

These coefficients can be computed to be (normalizing
A =1)

L
(Ax+8x )y'+(C+Dx)y = g E x'=E~x) .

g=0
(3.&)

If we try to analyze (3.7) with the [L /1;2] approximants
we need to solve for the limit L ~ ~ of the coefficients in

8 =(b 2ac)/ab, C=—y, D =y8 b/a, —(3.9)

which locates a second zero of the coefficient of y' at
z =zo —1/8 which, in general, has nothing to do with the
second singular point. Of course, this calculation is not
correct if b=O. It does, however, illustrate how pro-

TABLE VIII. Estimates of critical parameters at third singularity for test functions with no

confluent terms, from horizontal and diagonal sequences of approximants.

Test
function

18
28

18
28
35

Z3

0.8

1.0
2.1

2.7

0.0
0.7
1.5

[L /4;4;5]

Horizontal sequence

y3 A3

[L/3;3;4]
04

A3 o Z3

1.8
2.4

2.0
2.4
4.3

Diagonal sequence

r3 A3

0.5
1.7

0.0
0.0
0.0

A3o
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TABLE IX. Estimates of critical parameters for test functions with a dominant confluent singulari-

ty, from horizontal and diagonal sequences of approximants. The quoted values of the confluent criti-

cal exponents y l, y, were computed from (2.33).

Test
function Zl

Horizontal sequence

y, yz A, A2 Ao

Diagonal sequence

yl yq Ao

18
28
40
50

4.1

5.3
5.9
6.1

0.0
2.3
2.9
3.1

[L/3;3;4]
0.0 0.0
1.7 1.8
1.3 2.3
1.5 2.5

0.0
1.3
0.5
0.6

2.5
5.0
5.8
6.4

1.8 0.0
2.3 2.3
2.3 2.1

2.9 1.8

0.5
2. 1

2.0
2.2

0.0
0.8
0.4
1.8

P 18
28
40
50

4.5
5.2
5.8
6.0

0.0
1.8
3.0
3.3

[L /4;4;5]
0.0 0.0
0.6 1.2
1.2 2.4
1.4 3.0

0.0 0.0
0.0 0.0
0.4 0.0
0.6 0.0

4.5 0.0
5.6 3.0
6.0 2.0
6.3 2.0

0.0 0.0
1.0 2.0
1.2 2.2
2.0 2.3

0.0
0.3
0.0
0.0

0.0
0.0
0.0
0.0

18
28
40
50

3.8
4.6
5.1

5.3

0.0
2.0
2.5
3.2

[L/3;4; 5]
0.0 0.0
1.2 1.5
1.4 2.0
2.1 2.6

0.0
0.0
0.4
1.2

0.0 4.2 0.0
0.5 5.2 2.2
0.6 5.6 4.6
1.0 9.9 8.2

0.0
1.1
3.3
5.8

0.0
1.8
2.8
2.8

0.0
0.4
0.0
0.0

0.0
0.3
0.0
0.0

V 18
28
40
50

3.4
3.7
8.0

12.4

0.0
2.5
7.4

11.6

[L/0;1;2]
0.0 0.0
2.3 1.6
7.0 4.0

11.2 6.3

0.0
1.2
4.2
6.4

0.0 3.7
2.4 4.2
4.2 6.5
4.2 8.1

1.6
3.3
5.0
6.6

0.9
2.5
3.8
5.3

0.0 0.0 0.0

4.9 4.4 2.4

18
28
40
50

3.5
3.8
4.4
7.8

0.0
2.9
2.7
6.6

[L/3;4;5]
0.0 0.0
2.3 1.7
2.0
5.7 3.7

0.0
1.7

0.0
0.6

4.0 3.6

3.5 0.0
4.1 4.5
5.3 5.5
8.6 7.1

0.0
2.4
4.0
5.9

0.0
2.1

3.4
3.7

0.0
2.4
3.2
4.0

0.0
0.4
1.3
3.4

foundly the separation property affects the structure of
the function.

We remark that Baker has proven a convergence
uniqueness theorem which implies y ~f as L goes to
infinity. The conditions of this theorem are met in the
case (3.9) for

~

z
~

&
~
zo ~, z&zo —1/B and, in fact, con-

vergence fails for
~

z
~

&
~
zo

~

because of the divergence
of EL(x) unless very special cancellations occur. A fur-
ther note of caution is that while the horizontal sequences
we suggest above for functions without the separation

property correctly mimic the representation (2.8), it is not
a priori obvious that the degrees of the polynomials mim-
icking the infinite series should all go to infinity at the
same rate.

IV. ANALYSIS OF TEST FUNCTIONS

In order to test the effectiveness of our proposed
method of series analysis we have applied it to a number
of test functions, shown in Table I. Some of these test

TABLE X. Estimates of critical parameters at second singularity for test functions with a dominant
confluent singularity, from horizontal and diagonal sequences of approximants.

Test
function Z3

Horizontal sequence

y3 A3 A3 o Z3

Diagonal sequence

y3 A3 A3 0

18
28
40
50

18
28
40
50

5.2
9.5
8.6
9.6

2.9
5.2
6.3

10.2

[L/3;4;5]
3.9 3.5
6.3 5.5
6.6 5.9
7.4 6.6

[L/3;4;5]
1.6 1.3
3.5 5.0
4.3 4.4
8.1

5.4
9.0
8.9
9.9

3.1

5.5
6.7

3.6
7.2

13.0
16.6

3.3
6.3
9.0

13.1

2.3
5.3

10.9
14.5

2.0
4.7
6.8

10.8

1.8
4.6
9.7

11.5

1.9
4.8
6.4

3.8
7.5

13.1
13.3

3.5
6.7
9.2
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functions have been introduced previously' to serve as
test cases for methods of series analysis, while others are
introduced here for the first time.

Tables II—IV list some of the properties of these test
functions. The notation is as follows. For functions with
no confluent singularities, in the vicinity of the n th singu-
larity, we write

f(z)- A„(z —z) "+A„o (4.1)

and we seek to estimate the critical parameters z„, y„,
3„,and A„o for the first and second, and sometimes the
third, singularities. For functions with a leading con-
fluent singularity we write

f(z)-Ai(z —z, ) '+A&(z —zi) '+Ao

near the confluent singularity, and

f(z)- A3(z —z3) '+ A30

(4.2)

(4.3)

near the second singularity.
For purposes of analysis the functions have been ex-

panded to as many as 50 terms. The series have been
then analyzed, in the manner described in Sec. II, to esti-
mate the critical parameters. There is, of course, a vast
amount of data and it is only possible to report key re-
sults. These are given in Tables V-XIII. A few words
about these tables are in order. Firstly, rather than re-
porting the values of the critical parameters themselves,
we choose to tabulate the quantities

~exact
E' = log lo

+exact
(4.4)

2(3+z)(1—z)fo —(1+3z)fo —2=0

where p is the estimate of the critical parameter. This
quantity e is the number of significant figures correctly
estimated. We give the results from a particular horizon-
tal sequence, as specified, and from unconstrained diago-
nal sequences. Missing entries indicate that the particu-
lar approximant was defective, a feature which also
occurs in standard Fade analysis, or that the computer
program failed in some way. Another potential problem,
particularly with the longer series, is round-off error.
The apparent deterioration of some estimates with in-
creasing series length is probably due to this cause.

Test functions A, 0, and J are exactly represented by
low-order approximants, as indicated in Table II. In par-
ticular, the function 3 satisfies the equation

(1—z)( —', —z)f"—( —", +2z z)f'+( —', z ——", )f—=0

and thus the approximant [—1/1;2;2) is exact. Func-
tion J is represented exactly by the approximant
[ —1/1;2;3]. Our computer code obtains these known
exact solutions, providing at least a partial check on its
correctness. Other approximants, e.g. , [L/ —1;0;1]for
A and [L/1;2;2] for J, perform well, not only for the
nearest singularity at z = I but also for the second singu-
larity at z = —1.25. Test function 0 is interesting since it
satisfies both

and

2(3+z )(1—z )fo' —(5+7z )fo —3fo —0

and hence can be represented exactly by approximants
[—1/0;1;2] and [0/1;2; —1]. Taking an arbitrary linear
combination of these two equations shows that there is
not a unique differential multiplier for the approximant
[0/1;2;2]. In Table V we illustrate the results obtained
by our machine calculation for this case.

Test function M has an infinite number of simple poles
at z =(n+ —,

' } n. and can be used to illustrate the Baker-
Lubinsky theorems on convergence of horizontal se-
quences. Our results in Tables VI and VII show that the
horizontal sequence [L/0;0;1] converges rapidly at the
nearest singularity, while the sequence [L/1;1;2] also
gives the second singularity to 4 or 5 6gure accuracy with
24 terms.

The test functions K and U both have the separation
property and have monodromic dimension 2 plus an ana-
lytic background term. We have used a variety of hor-
izontal and diagonal sequences and all do very we11 for
both the first and second singularities (Tables VI and
VII}. We expect a double zero at the point z =1 in P(z)
for test function U as can be seen by a simple calculation.

The two test functions T and R are both nonseparable
and have an in6nite number of singularities. Both series
provide a severe challenge for any analysis method. The
first singularity is obtained quite accurately for R by both
horizontal and diagonal sequences, but no sequence is
able to consistently detect the second singularity to any
reasonable accuracy. Function T has a "pseudo-
confluent" singularity at z = —", , near the dominant singu-

larity at m/2. Beyond the leading singularity the results
are erratic, with the diagonal unconstrained sequences
doing best. Results are given in Tables VI —VIII.

The next group of functions D, H', and E have mono-
dromic dimension 3. Functions D and H* are separable
for the 6rst singularity while E is not. Horizontal se-
quences converge well for the first singularity for D but
the nearby second and third singularities greatly slow the
convergence for H'. Surprisingly, we find equally good
convergence for E. Fair convergence is obtained for the
second singularities of D and E but results for H' are
rather poor. For these three functions, for both the first
and second singularities, the diagonal approximants are
significancy better than the horizontal ones, as seen in
Tables VI and VII.

The final group of test functions P, V, Q, W, and L all
have a confluent singularity at z =1. The separable cases
P, Q, and V, are all exactly representable as L ~ ao. The
convergence here is fairly good for P and Q, and very
good for V. For the nonseparable case W the conver-
gence is better than for P and Q but poorer than V. For
L the convergence is similar to that for P and Q even
though the local monodromic dimension exceeds that of
the approximant. The diagonal approximants are
significantly better than the horizontal ones for Q, worse
for V„and about the same for L, P, and 8'. The second
singularity in Q and W is at the same distance from the
origin as the first one. Convergence of the horizontal se-
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TABLE XI. Comparison of exponent estimates for confluent and pseudoconfluent singularity from the approximate formula (2.33)
and the contour method.

Horizontal sequence Diagonal sequence
Test

function

P

18
28
40
50

18
28
40
50

18
28
40
50

18
28
40
50

18
28
40
50

18
28
40
50

Approx.

2.3
2.9
3.1

1.8
3.0
3.3

2.0
2.5
3.2

4.2
4.0

2.5
7.4

11.6

2.9
2.7
6.6

Contour

2.8
3.3
3.5

2.0
3.0
3.4

2.2
2.8
3.5

5.3
5.7

2.5
7.4

10.5

3.0

6.6

Approx.

1.7
1.3
1 ' 5

0.6
1.2
1.4

1.2
1.4
2.1

2.3
7.0

11.2

2.3
2.0
5.7

r2
Contour

2.4
1.4
1.5

0.7
1.2
1.4

1.1

1.4
2.1

2.3
7.0

11.2

2.3

5.7

Approx.

1.8
2.3
2.3
2.9

3.0
2.0
2.0

2.2
4.6
8.2

3.6
3.8
4.6
5.1

1.6
3.3
5.0
6.6

4.5
4.9
7.1

Contour

1.9
3.0
5.4
4.0

2.7
3.0
5.7

2.5
4.9
8.2

3.9
7.4
9.2
9.2

1.2

6.6

4.3
4.9
7.1

Approx.

0.0
2.3
2. 1

1.8

1.0
1.2
2.0

1.1
3.3
5.8

0.9
2.5
3.8
5.3

2.4
4.0
5.9

Contour

0.3
2. 1

2.1

2.0

1.0
1.0
2.7

1.1

3.6

0.5

5.3

2.4
4.0
5.9

Aq Aqo

TABLE XII. Comparison of unconstrained and constrained diagonal approximants for test functions with no confluent term.

Test Unconstrained sequence Constrained sequence
function n rl A 1 A1, 0 Z2 r2 ri ~i ~i, o && r~

18
28
40
50

4.3
7.0

12.0
13.3

3.3
5.2
9.7

10.9

2.3
4.4
7.3
9.8

0.8
3.2
5.1

7.3

3.9
5.3
8.8

11.1

3.1 3.0
3.5 2.9
6.9 6.2
8.9 7.8

1.0
1.4
44
5.9

3.4 2.1

7.2 5.2
10.5 8.3
13.1 10.7

1.4 0.3
3.7 2.0
7.2 5.2
9.8 7.3

1.8
5.7
8.5

11.4

0.8 0.7 0.2
3.6 2.7 1.4
6.6 5.9 4.0
9.1 7.4 5.8

18
28
40
50

4.0
6.7

10.4
15.2

2.6
5.0
8.3

12.8

1.4
4.7
7.2
9.6

0.3
3.2
4.9
8.0

1.7
4.3
7.0
7.3

0.6 0.0
2.5 1.8
4.7 3.7
5.0 4.3

0.0
0.2
3.5
1.8

3.9 2.4
6.6 4.9

11.3 9.2
13.8 11.4

1.6
4.0
8.4
9.5

0.3
2.0
5.9
7.8

0.8
4.2
6.4
6.6

0.0 0.0
2.4 1.7
4.4 4.2
6.4 3.7

0.0
0.4
2.0
1.6

18
28
40
50

1.9
3.0
5.9
7.2

1.0
1.7
4.1

5.2

0.0
0.2
3.4
3.7

0.0
0.0
1.8
1.1

1.0
3.6
5.6

0.0 0.0 0.0
1.7 1.4 1.0
3.4 2.6 2.4

1.8
2.3
5.8
7.0

0.7
0.8
3.7
4.8

0.0
0.0
2.9
4.0

0.0
0.0
0.4
1.2

0.8
3.7
5.2

0.0 0.0
2.1 1.7
3.0 3.0

0.0
1.1
2.0

18
28
40

6.0
11.6
18.0

4.6
9.7

15.8

3.8
8.8
9.6

2.4
6.7
8.3

3.0 1.1 0.3 0.0
9.0 7.0 6.4 5.0

14.0 11.8 9.4 9.6

4.0 2. 1

11.3 9.4
18.1 15.9

0.0
8.5
9.6

0.0
6.3
8.3

1.8 1.1 0.0
7.8 5.9 5.1

13.9 11.6 9.5

0.0
1.7
8.7

18 23.0 21.4 10.6 8.9 7.5 6.0 22.7 21.1 10.6 8.4 7.4 5.7

18
28
40
50

4.4
9.6

13.9
14.7

2.4
7.6

10.6
12.1

2.3
7.6

3.2
8.4

4. 1 2.2
8.8 6.4

10.6 7.9
12.7 10.0

2. 1 3.0

U 18
28
40

8.3
12.6
20.5

6.2
10.7
18.3

5.5
10.5
10.5

3.0
7.1

8.9

1.5
3.9
8.0

0.3 0.0 0.0
2.2 1.6 1.2
5.6 4.9 3.8

6.4 4.8 4.4 1.9
13.7 11.7 10.3 8.2
20.6 18.3 10.5 8.9

0.9
3.8
5.7

0.0 0.0
1.9
3.6

0.0
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TABLE XIII. Comparison of unconstrained and constrained diagonal approximants for test functions with confluent singularities.
The quoted values of the confluent critical exponents y, , y& were computed from (2.33).

Test
function yl

Unconstrained sequence
A2 Ap Z3

P

18
28
40
50

18
28
40
50

18
28
40
50

18
28
40
50

18
28
40
50

18
28
40
50

2.5
5.0
5.8
6.4

4.5
5.6
6.0
6.3

4.2
5.2
5.6
9.9

4.0
6.5
8.0
8.4

3.7
4.2
6.5
8.1

3.5
4.1

5.3
8.6

1.8
2.3
2.3
2.9

0.0
3.0
2.0
2.0

0.0
2.2
4.6
8.2

3.6
3.8
4.6
5.1

1.6
3.3
5.0
6.6

0.0
4.5
5.5
7.1

0.0
2.3
2. 1

1.8

0.0
1.0
1.2
2.0

0.0
1.1

3.3
5.8

0.0
0.0
4.7
5.1

0.9
2.5
3.8
5.3

0.0
2.4
4.0
5.9

0.5
2.1

2.0
2.2

0.0
2.0
2.2
2.3

0.0
1.8
2.8
2.8

2.7
4.8
5.0
5.0

0.0

49

0.0
2. 1

3.4
3.7

0.0
0.8
0.4
1.2

0.0
0.3
0.0
0.0

0.0
0.4
0.0
0.0

0.0

4.4

0.0
2.4
3.2
4.0

0.0
Q.O

0.0
0.0

0.0
0.3
0.0
0.0

0.0

2.4

0.0
0.4
1.3
3.4

1.1
2.4
1.8

2.6
3.0
3.8
6.3

3.6
7.2

13.0
16.6

2.9
3.8
7.7
7.6

3.0
6.7

10.0
10.0

3.3
6.3
9.0

13.1

0.0
0.0
0.0

0.0
2.8
3.6
6.2

2.3
5.3

10.9
14.5

0.0
0.0
4.6
4.2

1.2
4.6
7.6
7.6

2.0
4.7
6.8

10.8

1.8
4.6
9.7

11.5

1.0

7.1

7.2

1.3
4.8
6.4

3.8
7.5

13.1
13.2

0.0

5.6
5.8

3.5
6.7
9.2

Test
function Z f yl y2

Constrained sequence
A) Ap Ap Z3 A3p

18
28
40
50

18
28
40
50

18
28
40
50

18
28
40
50

18
28
40
50

18
28
40
50

3.8
5.2
6.2
6.7

4.4
5.6
6.0
6.0

3.9
4.6
5.5
6.7

5.2
6.7
5.0
5.0

3.8
4.2
5.8
7.9

3.5
4.4
5.3
8.1

0.0
1.0
2.9
2.8

0.0
3.0
2.0
2.1

0.0
1.9
4.2
8.0

0.0
4.4
1.8
2.0

0.0
3.3
4.4
6. 1

0.0
2.5
4.9
6.6

0.0
0.7
1.6
1.8

0.0
1.0
1.2
2.0

0.0
1.4
3.0
6.0

0.0
0.0
1.9
0.6

0.0
2.5
3.1

5.0

0.0
1.8
4.0
5.4

1.3

2.8

0.0
2.0
2.2
2.3

0.0
1.5
2.8
2.8

0.0
4.9
3.7
3.0

0.0

4.8

0.0
1.6
3.4
3.7

0.3

0.0

0.0
0.0
0.0
0.6

0.0
0.3
0.2
0.0

0.0

4. 1

0.0
1.3
34
3.9

0.0
0.0
0.0
0.0

0.0
0.8
0.0
0.0

0.0

2.2

0.0
0.3
3.5
2.8

0.0
0.0
1.2
2.0

3.7
3.9
3.9
4.0

4.5
8.0

12.7
17.0

0.0
3.8
4.7
2.8

4.0
6.7

10.6
9.9

3.1

5.4
7.7

13.4

0.0
0.0
0.0
0.0

0.0
2.6
2.0
2.7

3.3
6.3

10.6
14.5

0.0
0.0
2.3
1.0

2.4
4.6
8.2
7.5

1.9
3.5
5.6

10.9

2.8
5.6
9.8

12.8

2.2
4.3

7.0

1.6

4.7
8.3

12.8
12.8

1.0
3.0

5.7

3.3
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quences is very good, and that of the diagonal sequences
even better. Our results for these cases are given in
Tables IX and X.

In Table XI we compare the accuracy of the contour
method and the approximate formula (2.33) for the two
exponents at the confluent singularity for functions L, P,
Q, V, and W as well as for T, which has a
pseudoconfluent singularity. Results are generally simi-
lar but the contour method is significantly better for
function T.

In Table XII we compare the results obtained from un-
constrained and constrained diagonal approximants for
the functions D, E,H*,K,M, R, and U. As pointed out
in Sec. III imposition of the constraint (3.3) makes the ap-
proximants form invariant with respect to Euler transfor-
mations. For the constrained approximants sequence we
have studied not only the invariant but also some nearly
invariant approximants, i.e., [N+n IN+m;N+3;N+4]
with n, m =0,+1. There is little appreciable difference
between constrained and unconstrained approximants for
the functions. Table XIII presents the corresponding re-
sults for the confluent or pseudoconfluent functions L, P,
Q, T, V, and W. The function Wis regular at z=ac and
one might suppose that it would benefit from the use of
the constraint, which puts z = 00 on a par with any other
regular point. Nevertheless, neither 8' nor any of the
other functions show better convergence for the con-
strained sequences than for the unconstrained. Baker'
has made some comparisons of the results with those of
other methods.

A number of general conclusions can be stated, based
on our analysis of the test functions. (i) Integral approxi-

mants can be highly successful in the analysis of power
series for quite complicated functions. (ii) In most cases
diagonal sequences appear to converge more rapidly than
horizontal sequences, although horizontal sequences do
as well or better for a few of the test functions. (iii) A
comparison between constrained and unconstrained diag-
onal sequences reveals no systematic differences. There-
fore we can conclude that the constraint is of no practical
value. (iv) For functions with confluent singularities our
contour method often gives better results than the ap-
proximate formula, although in most cases the difference
is not great. We find that the best estimate of the critical
point is from the singularity with the dominant exponent.

We have also compared the effectiveness of our method
with the recurrence relation method of Rehr, Joyce, and
Guttmann. In most cases the Hermite-Fade approxi-
mants do somewhat better, but again the differences are
not great.

We are currently using the method developed in this
paper to analyze some of the series which have been de-
rived for various lattice models in critical phenomena.
This will be reported in a future paper.
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