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Droplet growth and coarsening during heterogeneous vapor condensation
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A theoretical description of droplet growth and coarsening is presented for vapor condensing
onto a partially wetting surface. Both individual droplet growth and coalescences are included in

the description. The coupling of these growth mechanisms results in two characteristic lengths.
The radii of individual droplets, nucleated onto the surface, increase as a power of time: R —t

Diffusion-limited growth on the surface leads to a characteristic exponent m = —.As a result of
coalescences, however, the average droplet radius grows with an exponent of 3m. Further predic-
tions of the theory are also discussed.

I. INTRODUCTION

The dynamics of a first-order phase separation is an
important example of the growth of order in a nonequili-
brium system. The process is typically initiated by a rap-
id change (quench) of a thermodynamic variable (e.g. ,

temperature) such that the system is brought from a one-
phase equilibrium state to a nonequilibrium state inside
the coexistence curve. Following the quench, spatial in-
homogeneities in the order parameter develop into
domains, which then grow with time in a highly non-
linear manner. Recently interest has focused on the role
various length scales play in the pattern formation. For
systems with no impurities (i.e., homogeneous nucleation
and spinodal decomposition), there is considerable evi-
dence of the emergence of a doininant length (the average
domain size), leading to an evolving morphology which
scales with time. ' The time dependence of this length
and the extent of scaling have become central issues.
However, relatively little is known about the degree to
which similar behavior occurs during heterogeneous nu-
cleation, where phase separation is induced by a sub-
strate.

For the case of liquid-vapor phase separation, a partial-
ly wetting surface can serve as a site for nucleation and
growth of fluid droplets from a (thermodynamically)
metastable vapor. The mist formed when one breathes
on a cold surface is a common example of this
phenomenon (i.e., "breath figures"). Recent experiments
reveal the existence of three stages to this phase-
separation process. Initially there is a time regime of rap-
id creation and growth of small nuclei on the substrate
surface. This nucleation stage is followed by a period of
uniform coarsening of fluid droplets, which are large
compared to the embryos of nucleation. During the
coarsening stage, the radii of indiUidual fluid droplets and
the auerage droplet radius form two characteristic length
scales which have different temporal behaviors. In par-
ticular, while both lengths grow as a power of time, the
exponent describing individual droplet growth is
significantly smaller than the exponent corresponding to
the growth of the average droplet radius. Finally, gravi-
tational effects become important in the late stages of
growth.

In this paper a theoretical description of the coarsening
stage of surface-induced phase separation is presented.
The purpose of the work is to outline a framework for
understanding the process of pattern formation in a sys-
tem with coupled growth mechanisms. It is shown that
the coupling can lead to more than one characteristic
length scale in the problem. The growth of individual
droplets is considered in the limit where coarsening is
dominated by dynamics on the surface. A model of
diffusion-limited droplet growth is developed from a
mean-field boundary-layer approximation. Using asymp-
totic techniques, it is shown that individual droplets grow
with an exponent of —,'. A rate equation is used to de-

scribe the coalescence of droplets. A scaling analysis re-
veals that, in general, the average droplet radius grows
with an exponent three times as large as the exponent
describing individual droplet growth. Further predic-
tions of the theory are also discussed and compared with
experiments and computer simulations.

II. GROWTH EQUATIONS

A typical experimental setup for studying breath
figures employs a stream of saturated water vapor which
is directed towards a glass slide. The glass is chemically
treated to produce a partially wetting surface. The tem-
perature of the slide is less than the vapor temperature so
that the cold surface induces condensation of the water.
The term "breath figures" refers to the evolving pattern
of condensed water droplets that forms on the slide.

Two modes of growth are inherent to the system. Indi-
vidual drops grow as a result of the impingement of water
from their environment. This growth is characteristic of
the details of the system studied, and will depend on fac-
tors such as the treatment of the surface, the tempera-
ture, and the volumetric flow rate. When two growing
drops come into contact, they coalesce to form a larger
drop. The coalescence mechanism is a second, much fas-
ter growth process. For immobile drops, coalescences re-
sult primarily from geometrical constraints. Figure 1

shows schematically how the two processes are coupled.
In this figure the radius of a single droplet is plotted as a
function of time. The plateaus correspond to the growth
of the droplet in isolation, while the intermittent jump
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conservation. In this sense, the growth of drops is a
diffusive process, which has formal analogies to
diffusion-limited reaction theory. We define n(r, t) as
the concentration of adsorbed monomers at position r on
the glass slide at time t. This quantity, defined only in the
matrix surrounding the droplets, obeys a diffusion equa-
tion of the form,

gn(t)

FIG. 1. Radius of a droplet as a function of time is plotted as

a solid line. Dotted line corresponds to a growth exponent of 4,
dashed line corresponds to an exponent of 4.

discontinuities represent coalescences with neighboring
drops in the system.

Although intrinsically coupled, the modes can be
differentiated by virtue of the time scales involved. We
define vM as the average time between droplet coales-
cences. When the growth of a drop is considered over a
time scale much less than ~M, the impingement of water
from the environment is the dominant growth process.
For time scales much greater than ~~ the coalescence
mechanism is important. Based upon this separation of
time scales, a self-consistent description of the system is
developed in the following sections.

A. Individual droplet growth

The growth of individual droplets is mediated by the
flux of molecules from the environment. Growth mecha-
nisms can be identified according to the process whereby
molecules are transported to the droplet. The direct
molecular flux from the saturated vapor stream can pre-
vail for large volumetric flow rate and weak monomer ad-
sorption. This limit is discussed in Ref. 3 where it is
shown that individual droplet radii grow as a linear func-
tion of time. (However, there is evidence that this mech-
anism is suppressed for the case of water, either as a re-
sult of high surface temperature or strong reflectivity of
the polar molecules. } When the surface mobility is large
the two-dimensional motion of molecules on the substrate
can determine the growth dynamics. In this section a
theory of droplet growth is developed for the latter case,
where the dynamics of the system is dominated by
diffusion-limited growth. Attention is restricted to the
case that the diffusion of monomers controls the dynam-
ics. However, the nature of the diffusing species is not
important in determining the asymptotic growth ex-
ponents.

It is assumed that the monomers undergo diffusive
motion in a two-dimensional layer, parallel to the surface
of the glass slide. Upon contact with a drop, they are in-
stantaneously absorbed. The absorption of monomers
leads to an increase in the size of the drop through mass

where D is the diffusion coefficient for the matrix. The
quantity J represents the rate of incorporation of mono-
mers on the slide from the third dimension. It is assumed
that this process saturates at some density no, which will

depend on the incoming volumetric flow rate. The drops
themselves form diffusion sinks for the two-dimensional
flux of monomers.

In order to understand the nature of the growth pro-
cess it is insightful to consider the dynamics of a single
drop, in the absence of competition from neighboring
ones. The drop is assumed to have a spherical cap shape
as shown in Fig. 2. If the contact angle is the same for all
drops, then the morphology is characterized by the ra-
dius 8 of the circle covered by the droplet on the slide.
We choose a coordinate system with origin at the center
of the circle, and assume circular symmetry of the
diffusion field about the drop. Since the drop forms an
absorber, the concentration of monomers at its perimeter
satisfies

n (R, t)=0 . (2)

Concentration gradients in the neighborhood of the
droplet create a flux of monomers on the two-dimensional
glass slide. The flux, in turn, feeds the growth of the
droplet. The rate of increase of the droplet volume is re-
lated to the total flux of monomers at the perimeter of the
droplet by mass conservation,

p =2nRP,dV
dt

where V is the volume of the drop and p is the number
density of water. The flux P is related to the gradient of
the diffusion field normal to the droplet perimeter,

VAPOR

IQ U I

FIG. 2. Geometry of a droplet.

Sufficiently far from the drop, the field approaches the
saturation value,

n(00, t)=no .
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dn(r, t)
Br

dR
dt

—P

where

(6)

By using the geometrical relationship V=2mR /3I (8),
Eq. (4) can be rearranged to yield an equation of motion
for the droplet radius,

monorners in the effective medium is then a mass-
conserving process.

As a result of rapid droplet growth, gradients in the
diffusion field surrounding a given droplet are limited to a
narrow boundary layer. It is assumed that, in this region,
the concentration profile varies linearly with radial dis-
tance from the drop's perimeter as shown in Fig. 3. The
flux of monomers into a droplet can then be cast in the
form

Dno

I (8)=2 sin 8/( cos 8—3 cos8+2)

is related to the contact angle 0.
There is no general solution to the moving boundary

problem of diffusion limited growth, as defined by Eqs.
(1)—(6). Successful schemes for handling the problem rely
on developing an approximation ' for the two-
dimensional fiux P. For the case that the growth of the
droplet perimeter on the glass surface is slow compared
to the dynamics of the diffusion field, one can solve for
the growth of the droplet by assuming that a steady-state
concentration profile is maintained. ' In this quasistatic
approximation, the time derivative in Eq. (1) is set to
zero. For the opposite case of rapid droplet growth, it is
inappropriate to assume that the diffusion field over all
space can react instantaneously to the changes in the
boundary conditions. In this limit, a boundary-layer ap-
proxirnation has been developed, ' ' wherein gradients
in the diffusion field are confined to a small region sur-
rounding the growing drop.

For breath figures, the description of monomeric
diffusion is complicated by the fact that droplets are in
competi. tion. " ' Thus the flux of rnonomers into a
given droplet depends on the distribution of droplets in
its neighborhood. The long-ranged nature of the
diffusion field in two dimensions forces a careful con-
sideration of droplet competition from the outset.

In this paper a mean-field approximation is invoked,
whereby competition between neighboring drops is re-
placed by an "effective medium. " In the mean-field pic-
ture a single drop grows as a result of the diffusion-
limited flux of monomers from the effective medium. A
new length scale is introduced into the problem in the
form of a screening length, which can be defined as the
average distance from the perimeter of a drop over which
the diffusion field is affected by the presence of the drop.
The full many-body problem reduces to the consideration
of an isolated drop in the matrix of an effective medium.
The diffusion-limited growth of the isolated drop can be
solved using the approximation schemes discussed above.
The screening length is related to averages over the drop-
let distribution in a self-consistent fashion.

In the effective medium, rnonomers diffuse through a
collection of sinks (growing droplets) and sources (fiux of
new monomers). The quantity no is defined as the aver-
age concentration established in the medium. It will be
time independent when the rate of incorporation of new
monomers balances, on average, the rate at which mono-
mers are removed by the growing droplets. (This balance
is discussed in more detail in Sec. III.) The diffusion of

This equation serves to define the screening length g,
which is an average property of the effective medium.
Substituting into (6) gives

(8)

f dRQ(R, t) =p f dR P(R, t) (10)

where the droplet distribution function g has been intro-
duced. This function is defined such that g(R, t)dR is the
number of drops with radius between R and R +dR per
unit surface area at time t. Equation (10) relates the
boundary layer to averages over the entire drop distribu-

n.
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I

I
I
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I
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0
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FIG 3. Concentration profile in the vicinity of a growing
droplet. The abscissa corresponds to the radial distance from
the center of the droplet.

The dynamics of g is established from mass conservation.
In particular, there is a monomer deficit associated with
the boundary layer. It is convenient to introduce the
quantity h, which measures the depletion of monomers in
the boundary layer,

h = f dr(no n)=en —( . (9)
R

The last equality is valid provided g«R (see Sec. III).
The depletion zone arises from the absorption of mono-
mers at the perimeter of the droplet. On average, the
number of rnolecules entering the growing drops equals
the amount leaving the boundary layers. This restriction
leads to the relation,
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tion, and thus couples the growth of an individual drop
to tbe coalescence mechanism.

The equations can be rewritten in terms of dimension-
less variables using the following definitions:

R =n,'"R,
k=&o"0

r=4Dnot .

growing drops). It is assumed that when two drops of
size R& and R2 touch, they instantaneously coalesce.
Further, triple and higher multiple coalescences are re-
placed by independent, sequential binary coalescences.
Then, the probability distribution function obeys a
Smoluchowski-type rate equation:

t/i= fP(R„R2)5((R,+R2)' R)—dR, dR2

Equation (8) for individual droplet growth becotnes
—fP(R(,R}dR( . (16)

dR a
d7 Rg

wb. ere

The time derivative is defined over a time scale h7 ))7M,
which is large compared to the mean time between
coalescences, yet small compared to the time scales of the
experiment, i.e.,

3/2 Ino

4p
g(R(r+br}, r+br) P(R(r—),r) (17)

In order to establish the time dependence of (, it is con-
venient to rearrange (10) in the form

+a(R ) '(R--')g ——,
' =0, (12)

where we have used V =2m.R /3I, and have substituted
for dR/dr from (8). The angular brackets in Eq. (12)
denote an average over the droplet distribution function,
such that

ff(R)qdR
&I(R))=

gdR
(13}

for an arbitrary function f. The method of dominant bal-
ance' can be used to extract the asymptotic behavior of
g, with the result

g-r'"+O(r-'" in(r) ), (14)

provided {R ) ' {R ' )g tends to zero asymptotically.
This limit is obtained because of the rapid dynamics of
coalescence as discussed in Sec. IIB. Substituting (14)
into (11)generates

R(r) —2a'"r'"
for large w. Thus R and g grows as powers of time
asymptotically, with exponents of —,

' and —,', respectively.

B. Coalescence

The droplets are constrained by the geometry of the
surface of the slide. Since all drops grow as a result of
the flux of monomers, neighbors will come into contact
with one another. Coalescence is the process whereby
droplets whose surfaces are in contact merge to form a
single larger droplet. ' ' During this process the aver-
age droplet radius increases, while the number of drops is
reduced.

An important element of a theory of coalescence is the
droplet distribution function g{R(r),r). In defining l(,
the time-dependent growth of R due to diffusion has been
included such that, without coalescence, f does not
change with time (i.e., the R coordinates "move" with the

P(R „R2)=E(R „R~)p(R, )g(Rq } . (18)

Here the kernel K is equivalent to a reaction cross sec-
tion. Equation (18) does not account for the effects of
spatial correlations among the coalescing droplets.

The kernel reflects the dynamics which cause droplets
to come into contact. In conventional reaction theory
coalescences result from the collision of diffusing parti-
cles. However, in the system considered here, the drop-
lets are essentially immobile. Instead, collisions result
from the increased surface area covered by the growing
droplets. The kernel is given by

K (R „R2)=2m(R (+R2)(R )+R) . (19)

The relative velocity of approach of the two droplets,

R &+R2, must take into account all growth mechanisms
relevant to the time scale A~.

The instantaneous droplet coalescences are volume
conserving. Consequently, it is only through the growth
of individual droplets (between coalescences) that the to-
tal volume of condensed fluid increases. We consider the
general case that individua1 droplets grow as a power of
time, with an exponent m. (For diffusion-limited growth,
m =—' as shown in Sec. II A. ) A time-invariant quantity
can be constructed by rescaling the volume of each drop
according to the growth law. Namely,

mR v R w, wdR w=C, (20)

where the constant C is independent of time.
Equations (16)—(20) describe droplet coalescence in the

The factor P(R, , R2) represents the probability of coales-
cence of two clusters of size R, and R2 per unit area per
unit time.

The first term on the right-hand side of (16) is a gain
term representing the rate at which two droplets coalesce
to form one of size R during the time interval h~. The
second term represents the loss of drops of size R due to
their coalescence with other drops in the system. The
coalescence rate is related to the probability of overlap of
two drops. For a homogeneous droplet distribution, we
can write
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system. Although a general solution to these equations is
elusive, the asymptotic behavior of various quantities can
be established by means of a time-scaling analysis. ' '
The analysis involves the elimination of explicit time
dependence from the dynamical equations. In the pro-
cess, the late stage growth of the length scales in the
problem can be extracted. The scaling (or similarity)
analysis centers around the ansatz that the distribution
function assumes a form,

P(R (r), r }= r «go(z), (21)

where z =R(r)r ", and the exponents x and y are to be
determined. Scaling is an assumption of self-similarity in
the evolution of the morphology.

An immediate consequence of the scaling ansatz is a
power-law growth of the average radius. Specifically, the
scaling form of the distribution function leads to

(R ) =ar",
where a is a time-independent normalization factor,

z Ozdz

f Po(z)dz

(22)

(23)

From Eq. (22) it is clear that x is the exponent which
characterizes the growth of the average radius.

The exponents x and y are related through the equa-
tion for coalescence. The relationship is manifested by
eliminating the implicit time dependence of R in favor of
the scaled variable z. The time rate of change of the ra-
dius, when considered over the time scale rM, assumes
the form

R (r+ b r ) R(r)—
(24)

Substituting (21) and (24) into (16) generates an integral
equation for go. In order for Po to be time independent,
which is the hallmark of scaling, the explicit time depen-
dence must be eliminated from the equation. This occurs
when the exponents satisfy

P =3x (25)

Further, the partial integral equation of coalescence is re-
duced to an ordinary integral equation of the form,

2K 20o(z) = — dzi dziWo(z, )go(zz )(z i +z2 )
3

&& 5[(z', +z,' }'"—z]

+ dzitlro(zi )fo(z)(z]+z)2' 2

3

(26}

The solution to this equation is the scaling form of the
droplet distribution function.

A relationship between the radial growth of individual
droplets and the growth of the average droplet radius is
implicit in Eq. (20). Substituting the scaling form (21)
into (20) and using (25) yields,

fdzgoz =C.

Time independence of the coefficient C requires

x =3m (27)

Equation (27) shows that the average droplet radius
grows with an exponent three times as large as the ex-
ponent describing the growth of an individual droplet.
This is a general result which is independent of the mech-
anism for individual droplet growth.

The first few moments of the distribution function give
important information about the growth process. It is
these averaged quantities which are usually measured ex-
perimentally. The temporal dependence of these mo-
ments can be determined in a straightforward manner.
For example, the zeroth moment is defined as

N(r)= fdR(r)g(R(r), r) .

A = f dR(r)g(R(r), r}R (r)- f dz goz (29)

Constant surface coverage of the droplets is ap important
signature of scaling in the growth.

III. DISCUSSION

A theoretical description of droplet evolution during
heterogeneous phase separation necessitates the coupling
of growth and coalescence mechanisms. The radii of in-
dividual droplets on the surface increase with time as a
result of vapor condensation from the third dimension.
This growth is influenced by the details of the experi-
ment. For the case that the two-dimensional difl'usive
flux is the dominant growth mechanism, we have shown
that individual droplets grow as t '~ . This law is derived
from a mean-field analysis, wherein a screening length g
accounts for interdroplet interactions. Equation (14)
shows that the screening length grows as t ' . The
growth law results from the fact that g is a diffusion
length. Because of the rapid growth of the average ra-
dius, it is clear that

(30)

For large times, the screening length is small compared
to the droplet radii, so that the approximation leading to
Eq. (9) is valid. (Note, it is the average droplet radius
which ultimately determines the timescale for growth, as
illustrated in Fig. 1.)

It is interesting to compare this result with the
Lifshitz-Slyosov theory of homogeneous droplet coarsen-
ing. ' ' For the latter, the average droplet radius grows
more slowly than t' . Thus a boundary-1ayer theory will
eventually break down because the condition g «R can-

This quantity measures the total number of droplets per
unit area. Using Eq. (21) leads to the result

N(r)-r "fdx fo(z) . (2g)

Thus the number of droplets in the water condensation
experiment decreases as a power of time with an ex-
ponent of —', . From the second moment it is evident that
the area covered by the growing droplets is time indepen-
dent.
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J =2nFf dR. /RAN . (31)

The coeScient F is the average adsorption rate, which de-
pends on the volumetric flow rate of the gas and the sur-
face properties of the slide. The rate of change of the
number of molecules in the growing drops is given by

not be maintained. As a result, the dynamics of the
diffusion field become slaved to the average radius, result-
ing in a growth exponent of —,

' for both. For the hetero-

geneous growth described in this paper, the coupling of
coalescence to the diffusion-limited growth of individual
droplets dramatically increases the growth of the average
droplet radius. The rate-determining quantity for droplet
growth then becomes the diffusion length.

Implicit in the mean-field analysis is the requirement
that the rate of introduction of monomers onto the sur-
face is balanced by the rate at which the monomers are
incorporated into the growing droplets, when averaged
over the entire droplet distribution. Since monomers are
adsorbed only in the depletion zone in the immediate
neighborhood of the growing droplets, the flux rate will

be proportional to the total area covered by the boundary
layers,

analytic approach to droplet growth compares favorably
with recent experiments and computer simulations. For
example, in studying the growth of breath figures,
Beysens and Knobler measured an exponent of
0.23+0.05 for individual droplet growth, while the aver-
age droplet radius was characterized by an exponent of
0.75+0.05. During the pattern growth, the average sur-
face coverage remained constant, consistent with the as-
sumption of dynamical scaling. The relationship between
individual droplet growth and the average droplet radius
has also been verified in numerical simulation studies.

It should be noted that the exponent m (which de-
scribes individual droplet growth) depends, to a large ex-
tent, on the transport mechanism whereby the vapor mol-
ecules reach the droplets. Low volumetric flow rate and
high surface mobility are important characteristics of a
system where diffusion will dominate. In general, howev-
er, diffusion-limited growth is only one of a variety of
mechanisms that may contribute to the dynamics of indi-
vidual droplets. (We have not considered the role of sur-
face impurities and thermal transport, for example. ) In
contrast, the relationship between m and x (the exponent
for the average radius) emerges from the geometry, and is
a universal result.

dt
(32)

Substituting for the asymptotic solutions yields the result
that both J and ri„, are proportional to ~ ' . Thus the
temporal dependences balance, as required.

The coalescence of droplets leads to a faster growth of
the average droplet radius. This mechanism can be de-
scribed by a rate equation for the droplet distribution
function which assumes a particularly simple form in the
reference frame of the growing droplets. A similarity
solution exists which yields a growth exponent 3m, where
m is the exponent describing the growth of individual
droplets. The relationship between the two exponents is
a consequence of the geometrical constraints of three-
dimensional droplets growing on a two-dimensional sur-
face.

The process of vapor condensation on a cold surface is
a complex phenomenon. In this paper a simplified theory
has been presented which allows only two growth mecha-
nisms, namely, diffusion-limited surface dynamics and
droplet coalescence. Although restricted in scope, this

IV. CONCLUSION

The droplet patterns formed when a vapor condenses
on a surface has been described analytically in terms of
the interplay of two growth mechanisms. The radii of in-
dividual droplets grow as a power of time, with an ex-
ponent of —,'. This growth is the result of diffusion on the
surface. Droplet coalescences cause the average droplet
radius to grow with an exponent of 4. The predictions of
the theory are in agreement with recent experiments on
the condensation of water on a partially wetting surface.
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