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Bubbles in the Hele-Shaw cell: Pattern selection and tip perturbations
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We consider the motion of a symmetric finite bubble in a two-dimensional Hele-Shaw cell. In the
absence of surface tension, the Saffman-Taylor solution contains two free parameters, U and A, , for a
given bubble area J, where U is the dimensionless speed and A, is the dimensionless width of the bub-

ble. It is shown that, in the presence of surface tension, a solution does not exist for U & 2 for any
bubble area. We also derive the following scaling relations: {a) 2 —U=e for large J; and {b)
2 —U=e for small J, where e is a small parameter which is proportional to the surface tension. We
show that by creating a cusp at the tip of the bubble, one can increase the speed of the bubble U & 2.
We present predictions for the shape and speed of the symmetric bubble as a function of the exter-
nal parameters in the presence of a cusp at the tip. This picture may explain the recent experimen-
tal results of Maxworthy, where substantially enhanced velocities were measured for the anomalous
bubbles with a tiny bubble at the tip.

I. INTRODUCTION

Fluid motion in a two-dimensional Hele-Shaw cell has
received renewed interest in recent years. ' Attention has
focused on the selection mechanism of a finger width that
forms in the Hele-Shaw cell. The problem of predicting
the width of a steady-state finger turns out to be
mathematically similar to the selection mechanism of the
dendrite growing in the undercooled melt; in the absence
of surface tension, both problems possess a continuous
family of solutions. Surface tension breaks this continu-
ous family into a discrete set among which only one state
is dynamically stable and thus selected.

A less studied but closely related problem is the motion
of a finite bubble in a Hele-Shaw cell. " Consider a
finite bubble in a Hele-Shaw cell which is initially filled
with fluid of higher viscosity. The question is: What will
be the shape and the speed of the bubble if we push the
fluid from far left with the rate V8'per second, where V
is the velocity and W is the size of the wall? Taylor and
Saffman worked out this problem in the absence of sur-
face tension and discovered that for a given bubble area,
the speed of the bubble is undetermined; its speed can
vary from V to infinity. Experimentally, however, unique
velocity is selected. " This problem is similar in spirit to
the Saffman-Taylor problem, where the width of the
finger is undetermined. We thus expect that a similar
mechanism discovered in the Saffman-Taylor problem
should work; surface tension breaks the continuous fami-
ly into a discrete set. Recently Tanveer' studied this
problem with a finite surface tension and indeed found
that the continuous family breaks into a discrete set.
Moreover, he numerically found that, regardless of the
bubble size, the speed of the bubble never exceeds twice
that of the pushing fluid. This is quite similar to what
happens in the Saffman-Taylor problem where solutions
with the dimensionless width A, & —,

' are not allowed be-

cause they create an unphysical cusp at the tip. The first
purpose of this paper is to show how the limit 2V arises

naturally if we impose a smooth boundary condition
everywhere on the finite surface. We also predict scaling
relations between U and V as a function of the external
parameters.

The second question to be addressed in this paper is
motivated by the recent experiment performed by
Maxworthy. " He studied the motion of a rising bubble
to the tip of which a tiny bubble was attached in a two-
dimensional Hele-Shaw cell in the presence of the gravi-
tational field. He found that the rising velocity of these
bubbles is five to ten times that of ordinary bubbles,
which is significantly larger than the limit 2V found by
Tanveer. ' The size of the tiny bubble is insignificant in
comparison with that of the rising bubble, yet the effect
on the shape as well as to the rising velocity is dramatic.
This discovery is the same as what was observed by
Couder, Gerard, and Rabaud' who injected a tiny bub-
ble at the tip of the growing finger in the Hele-Shaw and
found narrow fingers with A, & —,'. Recently a model was
presented to understand Couder's experiment from the
view point of the solvability theory based on the idea
that the bubble creates a cusp at the tip and maintains it
by sitting there.

In this paper we extend the solvability theory
developed for Couder's finger to Maxworthy's anomalous
bubble. Our goal is to develop an understanding of the
anomalous velocity enhancement caused by a tip pertur-
bation within the framework of the solvability theory.
We also present some theoretical predictions which can
be tested experimentally. This paper is organized as fol-
lows. In Sec. II we first write down the solvability condi-
tions for the finite bubble in the presence of surface ten-
sion and then derive scaling relations between the speed
of the bubble and external parameters which includes
surface tension. We will show that solutions cannot exist
for U & 2V, where U is the speed of the bubble. We then
show in Sec. III how the anomolous velocity enhance-
ment due to the tiny bubble can be understood within the
framework of solvability theory.
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II. SOLVABILITY CONDITIONS
FOR A FINITE BUBBLE

b2
v= Vp =V/,

12@
(2.1)

where p is the pressure and P is the velocity potential.
The fluid is incompressible and the velocity potential P
will satisfy the Laplace equation

V /=0. (2.2)

Two boundary conditions must be satisfied at the surface
of the finger surface,

v n (2.3)

where v„ is the normal velocity of the finger surface and

U

This section is primarily concerned with the derivation
of the solvability conditions for a symmetric finite bubble
moving in a two-dimensional Hele-Shaw cell. We start
our analysis by first defining the geometry of the cell and
the governing equations of motion. The cell is made of
two infinitely long glass plates with width 28', which is
vertically a distance b && 8' apart and thus is an
effectively two-dimensional cell. The side walls of the cell
is blocked and the motion of the fluid is confined along
the x direction. The cell is filled with fluid of finite
viscosity p and a bubble with finite area is injected along
the center of the cell. We then push the fluid from left
and extract it from right with the rate 2 VW per second.
In what follows we set V=1. The bubble moves with
speed U which is in general greater than 1. Also the bub-
ble adjusts its shape and has a unique width A, as shown
in Fig. 1. Parameters U and A, are experimentally
measurable quantities and thus one should be able to pre-
dict their behavior as a function of the external parame-
ters. To this end we first write down the equations of
motion for the bubble. The velocity v satisfies Darcy's
law everywhere inside the cell,

the derivative is taken along the normal direction, and

b ya
12p

(2.4)

where P, is the value of P at the surface and a is the cur-
vature. There is one more boundary condition to be
satisfied at the side walls. Since the walls are blocked,
fluid cannot flow out and thus the normal velocity must
vanish at the side walls. This implies that if the bubble is
finite then the velocity field at infinity should not be
affected and

v =V at x=+~ . (2.5)

In the absence of surface tension y, the above equa-
tions can be solved exactly as was done by Taylor and
Saffman 30 years ago. Their solutions contain two pa-
rameters k and U and there is no way to select these two
parameters uniquely without surface tension. In the pres-
ence of surface tension, the solutions to Eqs. (2.3)—(2.5)
cannot be obtained in a closed form since this involves

solving a highly nonlinear and nonlocal integrodiffer-
ential equation. Therefore the natural way of solving the
above equations is to introduce the surface tension per-
turbatively. This can be justified as long as the capillary
length induced by the surface tension is small. Capillary
length do is defined as a length scale at which the pertur-
bation on the finger surface is marginally stable. Simple
linear stability analysis in the presence of surface tension
gives the capillary length in terms of the external parame-
ters

do=(b y/12W pv)' (2.6)

which is of the order of 10 and is small enough that a
perturbation approach is justified. There is, however, a
subtlety in doing this because surface tension acts as a
singular perturbation. The effect of surface tension on
the finger surface is exponentially small and can be safely
ignored. However, this tiny term is responsible for the
selection mechanism. The predictions of this scenario
have been tested in both numerical experiments' and
real experiment ' ' for a variety of patterns. One ex-
pects that the same approach can be applied to this prob-
lem as well. Tanveer ' recently included surface tension
in his analysis and indeed found that unique velocity and
shape are selected in the presence of surface tension. In
this paper we recast his equation of motion into a linear
second-order integrodifferential equation and explicitly
write down the solvability conditions. After a little bit of
tedious, but straightforward algebra, one obtains the fol-
lowing linear integrodifferential equation for the first-
order shape correction g, =g—go, where g is the true
shape, and go the Saffman-Taylor zero surface-tension
solution:

FIG. 1. Top view of the two-dimensional Hele-Shaw cell.
The cell is filled with fluid of viscosity p and a bubble is injected
along the center. The fluid is pushed from the left with a rate
WV per second. Vis set to 1. The bubble is moving with a rela-
tive velocity U & 1 and the dimensionless width of the bubble is
denoted as A, . For a given bubble area, U and A. are not uniquely
determined in the absence of surface tension.

dg,
e +ePo(g) +eP, (g)

dt/ dn' dn
d 2+eP, (g) +Q(q)g, =R (g),
dn

where (2 is the Hilbert transform of g& and

(2.7)
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Po(vy) = —vy,

S,(7})(l+q /5 )
P(q)=

2 2+5 +g 5(1+5 )

S,(q)(1+q'/5')

5(1+ri2)2

8a 7} 25[(1—a ) —(1+a )(U —'1) ]qS,(g}=—
2 2 2 2 25[(1+a ) (1+re /5 ) —4a ] (1+a )'(U —1) (1+21 )

S2(ri) = —AS)(ri) —5(1+q /5 ),
4( 1+~2)3/2

22(1—a ) ( U —1) [1+g /(U —1) ](I+g /5 )

(2.8a)

(2.8b)

(2.8c)

(2.8d)

(2.8e)

(2.80

R(ri) =— , , [Gi(ri)+G2(ri)],
( 1 +~2/52 )2

G, (ri) = 1 2(1—g /5 )(I+q /5)[U(1+a ) —2a ]
(1+a')( U —1)' ( 1+ 2/52)3/2

G2(g) = 4(l —a )[U(1+a2)—2a ]g (I+q /5 )[U(1+a ) —2a ]
(1+a ) (U —1) I 1 —(1—a 2} )/[1+a ( U —1) ]}(I+g /5 )

(2.8g)

(2.8h)

(2.8i)

and the small parameters e and 5 are defined as

2 2 2bye U d5 1+a
48pR' a 1 —cz

(2.9)

tion of motion:

d2Z d2Ze, +eP,(ri), +Q(21)Z =R(ri), (2.11)

For zero surface tension, Saffman-Taylor found a con-
tinuous family of solutions for a given bubble area, where
the speed U, the dimensionless width k, and the area of
the bubble are related to n as

where again Z is the Hilbert transform of Z and R (ri) is a
smooth even function whose detailed form is not impor-
tant. When (2.11) is solvable, then (2.7) is solvable, too.
We now construct WKB solutions to the above equa-
tion. We assume that solutions are of the form

~Uk, 8(U —1)a=tan and J= ln
4 m. U

2

(2.10)
1 —cx

Z =exp[SO(ri)/3/e] . (2.12)

For a given bubble area J, (2.10) provides a relation be-
tween U and k but no selection is made. As will be seen,
surface tension breaks the continuous family of solutions
into a discrete set and one of them is selected. Once the
speed of the bubble is selected, the width A, is automati-
cally selected by (2.10) for a given bubble area.

The variable ri in (2.7) is the tangential slope of the
zero surface-tension solution which varies from —~ to
+ ~ as we move from the center of the lower boundary
to that of the upper boundary crossing the tip at the
right. In the presence of an inhomogeneous term, (2.7)
still resists in yielding closed form solutions. We now fol-
low the standard procedure of selecting solutions out of
continuous family of solutions: We first construct an ad-
joint operator to the homogeneous part of (2.7) and then
employ the Wentzel-Kramers-Brillouin (WKB) technique
to find solutions to this adjoint equation (these two solu-
tions will be called null eigenvectors). Then the necessary
conditions for the existence of solutions will be to state
that these two null eigenvectors should be orthogonal to
the inhomogeneous term. The essential physics via solva-
bility condition will crucially depend on functions Po(g)
and Q(g). The other functions only make the algebra
complicated without changing the essential physics.
Therefore in this work we will neglect the first-order
terms in (2.7) and consider the following simplified equa-

In the limit of small e, we deform the contour of integra-
tion in Eq. (2.11) into the complex plane. The magnitude
of real part of So must decrease in the direction of de-
forming the contour in order to ensure that the integral
exists. Then the main contribution to the integral will
come from the pole in the real axis and can be evaluated
simply using residue theorem. We then end up with the
following equation for the two null eigenvectors, Z+ ..

d2Z+
e +Q(ri)Z+ =0,

d'g

where

Q(g)= 4(1+a ) (U —1) (1+i') (1+i'}' /

(1+r, z'}(I+r,q')'

with

(2.13)

(2.14a)

Z+ ——exp- i — dg'4(q')
v'e 0

J

(2.15)

I
1

—— and I 2= . (2.14b)
1 —e 1 1

1+a (U —1} (U —1)

Equation (2.13) is now an ordinary second-order
differential equation and its WKB solutions can be easily
constructed and have the form
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with

2 g (1 iq) (1+i')'
( U —1)(1+a ) o (1+I 1' )' (1+I 2' )

with

2 2'
Xo —— and Xo ——

73/41 (3) o 73/41 (3)
4 4

=f di) R (q)exp i
+ oo . %(i)) (2.17)

By symmetry, the imaginary part of H will automati-
cally vanish and thus we have only one solvability condi-
tion. The solvability condition is to state that II should
vanish. We now consider three distinct regimes: (a) the
Saffman-Taylor finger limit, (b) the large limit, and (c) the
small bubble limit.

A. Sa8'man-Taylor Anger limit

The Saffman-Taylor finger limit corresponds to the
limit a~ 1 and, simultaneously, UA, ~ 1. In this limit the
solvability condition, (2.17) reduces to what was obtained
previously. The main prediction of Ref. 3 will be
recovered: solutions do not exist for fingers of A, (—,'. For
a finger with A, ) —,', A, satisfies the scaling relation

2/3
2

B. Large bubble limit

Large bubbles correspond to the limit a~1 and U
finite. The dominant contribution to the integral of (2.17)
will come from the neighborhood of the stationary phase
of %(ri) which has two stationary phases q=+i with
branch cuts. The branch points now depend on I

&
and

I 2. Note that 0&a&1 and thus 1/I"2&1/11. If U) 2,
then the absolute value of 1/I

&
is greater than 1. In this

case the branch cuts run from g=+i to +i ~. The
steepest descent path for H will run from —ac to the sta-
tionary phase g=i and then run away to + 00. The sol-
vability function H will have the form

Io(a, U)
II =X (a, U, e)exp

(U —1)(1+a } e

where

(1—x) / (1+x)'
o (1—I,x )' (1—I 2x )

(2.18)

(2.19)

and N(a, U, e) is a multiplicative constant which is given
by

U 6/7
X(a, U, e)= —Woe as a~1,

( U 2)43/14( U 1 )8/7

(2.19')
N(a, U, e)= Noe—9/7 ( U —1)

as a~0,U1/7( U 2)15/14

(2.19")

(2.16)

Note that Z+(ri}=Z (ri)* and that the real and imag-
inary parts of Z+(r)) are even and odd, respectively. We
now write down the solvability condition,

11= (R (21)Z+(2)) )

= (R (q)Z (q) )'

(2.20)

The crossover from oscillating to nonoscillating state
occurs when 1I/(ri)/~e changes by an amount of order
unity as g moves from one side of the cut to the other at
ri=i Thus .by (2.20) we find

( 2 U) ~2/3 (2.21}

C. Small bubble limit

Small bubbles correspond to the limit a~0. Setting
a=0 in (2.16), we find

1I1(q) 2 1 g ( I+iq) (1 i q)'/—
3/E(U —1)'v e o [1+q2/( U —1)')]'/'

(2.22)

In this limit again, no solution will exist for U) 2 by
the same reasoning applied to the large bubble limit. For
U (2, the branch cut now extends from +i to
ri=+i ( U —1) and the steepest descent path must include
this section. If this section is long enough, then the sol-
vability function H will again oscillate and produce many
zeros. In order to be more specific, we expand 1I1(ri)

around the stationary phase ri=i for
i

oi
i
«2 —U « 1,

%(2)) %(i) . 23/2( U —1) oi /

v e v'e 7i/e [U(2 —U)]'/2

The crossover from oscillating to nonoscillating occurs
when the right-hand side of (2.23) becomes of the order of
one at the branch point cob ——2 —U; thus we obtain

(2 —U) =6 (2.24}

Predictions (2.21) and (2.24) are new and, in principle,

The solvability function H will be always less than zero
and thus no solution exists. This is the analytical ex-
planation for the absence of the bubble solutions for
U) 2. Now for U (2, the stationary phase g=i should
be considered as a complex conjugate pair because of the
logarithmic branch point at q=i (U —1) produced by a
term in the denominator. The function %(i) gains an
imaginary term due to this extra branch cut. The 5
steepest descent path now runs from —~ to i —6, with
5 « 1 running along the imaginary axis to q= i ( U —1)
and coming back to i +5 and running away to + 00. The
contribution along the extra branch cut will now produce
an extra term in the solvability function H which is pro-
portional to the cosine function. The argument of this
cosine function will be just the discontinuity in %(i)
across the cut. Simple residue theorem around this
singular point produces an imaginary part in 1I1(i),

(2 U)3/4U 1/4

[+(i +5) %(i——5)]=
[2( 1 + a2 ) ]1/2

as 5~0.
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can be directly tested in the laboratory. There are some
difficulties, however, as in the Saffman-Taylor experi-
ment. The theory presented above is strictly two dimen-
sional but in the real experiment one cannot ignore
three-dimensional effects which will produce slight devia-
tions from the theoretical predictions. For example, one
will definitely observe a bubble with the speed U&2,
which &s forbidden in a strictly two-dimensional theory.
In order to incorporate this three-dimensional effect, one
should use different boundary conditions and this will not
be addressed in this paper. For aspect ratio b/m «1,
the two-dimensional theory, however, will satisfactorily
explain the experimental results. In the absence of exper-
imental result, this remains to be seen.

III. TIP PERTURBATIONS

In this section we present an explanation for the exper-
imental results of Maxworthy. ' Maxworthy recently per-
formed a series of experiments on rising bubbles in an
effectively two-dimensional Hele-Shaw cell in the pres-
ence of a gravitational field. The gravitational field was
introduced by tilting the cell. The effect of the gravita-
tional field, however, can be eliminated by shifting the ve-
locity field and the net effect is the same as pushing the
background water with the modified speed which de-
pends on the tilting angle, viscosity, and the gravitational
field. Therefore his experimental results appear to be
relevant in checking our theoretical predictions of Sec. II.
Unfortunately, however, his experimental results seem to
indicate that two-dimensional formulation with Saffman-
Taylor boundary conditions only hold in the limit of van-
ishing gravitational field. In this paper we do not want to
investigate why this is so. Rather we are interested in his
discovery of anomalous bubbles which rise with substan-
tially enhanced velocities in comparison with ordinary
bubbles,

Now let us examine Maxworthy's anomolous bubbles.
Maxworthy provided a picture of his anomolous bubble
in his paper which we have reproduced in Fig. 2. The
bubble at the tip (hereafter at the tip is omitted) modifies
the flow field around the tip and we do not have precise
knowledge of this modified flow field. When we look at
Maxworthy's photograph of the bubble, the tip is slightly
pushed backward. If we ignore this tiny bubble and join
both sides of the bubble boundary, we will find a cusp
right at the tip. This cusp is responsible for the behavior
of the anomolous bubbles. As was shown in Sec. II, the
speed of the bubble without any external perturbation
must be less than 2. For U~2, we have shown that the
bubble must allow a cusp at the tip. Therefore the propo-

f(a, U)=
(1+a')(U —l)n U

(3.1')

In obtaining (3.1'), we have used the relations

y =(2/~U)tan '[2a sin8/(1 —ai)]

and g= 5 tan8. Here again we omit the first-order terms
in (2.7). Note that the additional term in the right hand
side represents an amount of mismatch at the tip. This
can be easily seen by integrating both sides twice across
the tip. We now ask the solvability conditions for (2.25).
Regarding the right-hand side of (3.1) as an inhomogene-
ous term, the null eigenvectors remain unchanged. Thus
the solvability condition for II defined in (2.17) is not zero
but finite. After a little algebra, we obtain the relation
between the mismatch angle b 8 and the solvability func-
tion H. We fin

b, 8(0)= N(a, U, e)f (—a, U)exp[ —Io(a, U)/v'e], (3.2)

where N(a, U, e) were defined in Eqs. (2.9') and (2.19"}
for different a, and f (a, U) was defined in Eq. (3.1').
Since we omitted the first-order term in obtaining (3.2),
b, 8(0) is not precise. This multiplicative factor, however,
is not important as long as it is not zero. As we will see
in what follows, what is important is an exponential fac-
tor in Eq. (3.2) which contains most of the information.
The physical meaning of Eq. (3.2) becomes clear when we

display b8(0) as follows:
1/2

p
W Wo yU

aIO(a, U)
1+a
U —1

(3.2')

where

sal in this paper is to assume that the effect of the bubble
is to create a cusp at the tip and maintain it by staying
there. When the rising velocity is large, the bubble
trapped at the tip oscillates and produces an array of
beautiful side branches. This paper is entirely focused on
the steady-state pattern of anomolous bubbles, leaving
dynamics for future study.

The starting point of our analysis is the previous obser-
vation that the tiny bubble at the tip creates a cusp. The
strength of the cusp, called a mismatch angle 50, is mea-
sured by the discontinuity in the tangential slope as usu-
al. We rewrite (2.11) as follows:

d2Z d2Z
, +~&,(g), +Q(i))z(rl)

d'g d'g

=R (g)+sf (a, U}b8(0)5(i)), (3.1)

where

Wo —— ln
&4S

N(a, UE)f (a, U—)
b,8(0)

(3.2")

FIG. 2. Schematic picture of the bubble with a tiny bubble
attached at the tip.

Equation (3.2) contains most of the relevant information.
Note that the mismatch angle b, 8(0},which is not an ob-
servable angle, enters the equation via logarithmic func-
tion and it weakly depends on external parameters. In
what follows we will assume that Wo=const. ' For
Couder's experiment, Wo was approximately determined
as 2.8.
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A. Sahan-Taylor limit

In this limit a~1 and Ui. = l. Substituting these into
(2.26) and rearranging the exponential factor, we arrive at
the same result for A, and W as was previously obtained in
Ref. 3,

b 1

W Wo

' 1/2

Io(1, U =1/A, ),
y (1—k)

(3.3)

where Wo = IVO(a, U = I /A, ) weakly depends on the
external parameters and may be regarded as a constant.
In this limit, Wo=2. 8.

B. I.arge but finite bubble limit

In this limit a again approaches 1 but UA, is no longer
1 but satisfies (2.10). In this limit the speed of U and W
satisfy

1

Wo

1/2
pU 1 Io(a= 1, U)

Motivated by Couder's experiment we now propose the
following experiment. For a given two-dimensional
Hele-Shaw cell, inject a tiny bubble along the center of
the cell and then inject a finite bubble again along the
center. Now push the fluid with a rate V8'per second.
Before the finite bubble touches the tiny one, the relation
between V and U will be given by Eqs. (2.21) and (2.24)
depending on the size of the bubble. Once it touches the
tiny bubble, the velocity U will increase dramatically.
We now want to predict the dependence of the enhanced
velocity on the wall size W' as well as on the area of the
bubble J.

Here again we consider three different regimes. In
what follows, Wo is given by (3.2"). The rising velocity
will depend on the size of the perturbing bubble but the
present model does not take into account this effect be-
cause we replace the bubble simply by the cusp. In order
for our model to work, the size of the perturbing bubble
must be extremely small in comparison to the rising bub-
ble, which is in fact what was observed in the experiment
of Maxworthy. " In the following discussion the speed U
is always assumed to be greater than 2.

1

Wo &168'o(a=0, U)

Based on (3.5) we find that the speed of the bubble U in-
creases with the wall size W. For a given wall size, the
speed U increases as the area of the bubble J increases as
(U —1) =J. We draw a schematic picture in Fig. 3.
Once U is selected then the width of the bubble is given
by (2.10) which, in the limit a~O, gives the relation be-
tween J, U, and X as

J=4(U —1)UA, (3.5')

IV. CONCLUSION AND SUMMARY

In this paper we have employed recently developed sol-
vability theory to shed light on the selection mechanism
of symmetric finite bubbles in the Hele-Shaw cell. By in-
troducing a cusp at the tip of the bubble we were able to
explain the appearance of anomolous bubbles observed in
the experiment by perturbing the tip. There are, howev-
er, several remaining questions. In a recent report by
Zocchi et al. ,

' it was discovered that a perturbation
caused by wire instead of bubble to the Saffman-Taylor
finger produces an asymmetric finger. Recently an at-
tempt' was made to understand this new discovery in
the light of the solvability theory by assuming that a wire
creates a cusp with negative mismatch angle. Here again
one can ask the same questions. In the presence of wire
along the center, can one observe an asymmetric bubble?
Moreover, as was discovered in the experiment of Zocchi
et al. ,

' if two wires are symmetrically placed along the
center of the cell, can one observe a transition from sym-
metric to asymmetric state? We suspect that the answers
to these questions are yes. In Ref. 17 it has been shown
that for the Saffman-Taylor finger with a wire at the
center, the mismatch angle created by the wire is the
same as the one produced by the bubble. We therefore
expect that predictions (3.4) and (3.5) will continue to
hold for the wire perturbation with a correction of the or-
der of yo, where yo is the degree of asymmetry. Recently

A schematic picture of A. as a function of W and J is
shown in Fig. 3.

/2 Jm' U
8(U —1)

(3.4)

where Wo= Wo(1, 1/U). This limit is essentially the
same as the Saff'man-Taylor limit if one interchanges U
and A, by the relation U =1/A, .

C. Small bubble limit

J2
J1

-- J2

This is the most interesting limit. In this case we set
a =0 when its contribution is regular. We obtain

' 1/2

where

1

, Io(a=O, U),
2

(3.5)
FIG. 3. Dependence of the speed U and the width A. of the

bubble in the presence of a cusp at the tip as a function of the
wall size and the area of the bubble J in the limit J~O. The
scale is arbitrary and J» Jl.
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Fearn perturbed the rising bubbles with wire at the center
and found that the speed is again dramatically
enhanced. ' His experiment appears to be another con-
vincing proof of solvability mechanism of pattern selec-
tion.
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